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What is a Matroid?

Exact definition is

- Set of elements V. n = |V|. not important for

- Notion of independence Z C 2". this presentation.
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V = edges V = row vectors

7 = forests 7 = linearly independent



Matroid Intersection

Given: two matroid M, = (V,Z;) and M, = (V, 1))
Goal: find a common independent set S € Z; N Z, of maximum size
Queries: independence-oracle IsXeZ;? IsXeI,?

Matroid Intersection models many combinatorial optimization problems.

E.g. Bipartite Matching:
- M; ="<1edge per vertex on the left”

- M, = “< 1 edge per vertex on the right”



Augmenting Paths & The Exchange Graph

- Special case: Bipartite Matching
- Augmenting Path algorithms

- Similar idea works for matroid intersection too!
- Find augmenting paths in the Exchange Graph.
[Edmonds 60s]



The O(nr) query bound

(n = #elements, r = size of answer)

- O(nr) bound & “find each of the r augmenting path in O(n) queries”.
[Nguyen, CLSSW 2019]
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The O(nr) query bound

(n = #elements, r = size of answer)

- O(nr) bound & “find each of the r augmenting path in O(n) queries”.
[Nguyen, CLSSW 2019]

- To beat this we need to find several paths “in parallel”.

- Challenge: Exchange Graph changes after each augmentation:
- Some edges added, some removed.
- Set of vertex disjoint paths == augment along all of them.
1 unlike for bipartite matching / max-flow
(Hopcroft-Karp / Dinitz)



The O(nr) query bound (cont.)

(n = #elements, r = size of answer)
Breaking O(nr):
- Previous: large r = w(+/n):

- (1—¢)-Approx. < ) queries [CLSSW 2019]
- Exact: O(n 6/5r3/5) queries [BvdBMN 2021]




The O(nr) query bound (cont.)

(n = #elements, r = size of answer)
Breaking O(nr):

- Previous: large r = w(+/n):

- (1—&)-Approx. @(%) queries [CLSSW 2019]
- Exact: 0(n®/°r3/%) queries [BvdBMN 2021]

- This paper: full range of r:

+ (1—¢€)-Approx. ©<4> queries
- Exact: O(nr’/*) queries



Approximation
Improve algorithm of [CLSSW] with two new ideas.
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Exact
Plug in the approximation algorithm in the framework of [BvdBMN].



Open Problems

- Gap between lower and upper bounds for matroid intersection.
- No Q(n"*?) lower-bound is known for § > 0.

- Can one also solve weighted matroid intersection in o(nr) queries?

Thanks!



Extra Slides




Result: (n = #elements, r = size of answer)
First independence-query matroid intersection algorithms breaking @(nr).
- (1—¢e)-approximation
- Previous best: O(nr/e) and O(n'>/&').
- 0urs: O(n+/r/e) queries.
- Exact:
- Previous best: O(nr) and O(n®/>r3/%)
- Ours: O(nr¥/*) queries

Technique:

- (1 —¢)-approximate: Improve CLSSW's algorithm with two new ideas.
- Exact: Plug in approximate algorithm in the framework of BvdBMN.



Exact Algorithm

Algorithm [BvdBMN]:

1. Many short paths: (1 — ¢)-approximation algorithm
2. Few remaining long paths: find them one by one

Old Query Complexity: O(n®/°r?/°)
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Exact Algorithm

Algorithm [BvdBMN]:

1. Many short paths: (1 — ¢)-approximation algorithm
2. Few remaining long paths: find them one by one

Old Query Complexity: O(n®/°r?/°)

Bottleneck: @(%) approximation algorithm by [CLSSW].

Replace with our improved ©<M> approximation algorithm:
New Query Complexity: O(nr’/*)



Approximation Algorithm

We improve the é(%) approx-algorithm [CLSSW]:

Algorithm [CLSSW] _
Run in O(1/¢) phases and find “blocking-flow”:

Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.

Blocking-Flow: (think Hopcroft-Karp / Dinitz’s)
Find a maximal set of “compatible” augmenting paths of the same length.
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Approximation Algorithm — Improvements

Algorithm [CLSSW]
Run in O(1/¢) phases and find “blocking-flows™:

Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.

This Paper: Two new improvements:

- In stage 1: We refine on three consecutive layers instead of two.
- Guarantees we make “progress” on “even” layers C S. |S| <.
- Replaces v/n term with /r.

- In stage 2: We find paths directly on top of the output of stage 1.
- Fewer path need to be found.

- Shaves of 1/,/e-factor.
1



Augmenting Sets [CLSSW]

Augmenting Sets = Collection of “compatible” augmenting paths.

Only local constraints:
“S— A+ BeZ"where Aand B are in adjacent distance-layers.

CcS S CcS S cS

S—A+Bel, S—A+B3eZ
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Augmenting Sets [CLSSW]

Augmenting Sets = Collection of “compatible” augmenting paths.

Only local constraints:
“S— A+ BeZ"where Aand B are in adjacent distance-layers.
S \ -

\, Y ¥ Y

S—A+Bel, S—A+B3eZ
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Finding a maximal augmenting set (“Blocking-Flow")

Keep track of a partial augmenting set.
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Finding a maximal augmenting set (“Blocking-Flow")

Keep track of a partial augmenting set.
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Locally improve two consecutive layers.
1. Extend A, while it can be “matched” from B..
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Locally improve two consecutive layers.
1. Extend A; while it can be “matched” from B;.
2. Throw away “unmatched” elements of B..
3. Now |Aj| = |Bil.



New Idea 1: Refining 3 consecutive layers

cS cCs CS ¢35 €S ¢S cs
Br Ap Ak Br Ak Brt1 | Akt
RefineBA RefineAB

Guarantees that we make progress on “even” layers C S. [S| <.
Replaces /n term with /r. +— allows us o(nr) algorithms.
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New Idea 2: Finding Paths
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When refining-progress stagnates:

- Fall back to finding augmenting paths individually.
- New Idea: Find them with respect to partial aug-set (By,Aq, ... Byi1).

Lowers dependence on e from O(1/&'°) to O(1/¢).



Result: (n = #elements, r = size of answer)
First independence-query matroid intersection algorithms breaking @(nr).
- (1—¢e)-approximation
- Previous best: O(nr/e) and O(n'>/&').
- 0urs: O(n+/r/e) queries.
- Exact:
- Previous best: O(nr) and O(n®/>r3/%)
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Technique:

- (1 —¢)-approximate: Improve CLSSW's algorithm with two new ideas.
- Exact: Plug in approximate algorithm in the framework of BvdBMN.
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