
Breaking O(nr) for Matroid Intersection

Joakim Blikstad
ICALP 2021

KTH Royal Institute of Technology, Sweden

What is a Matroid?

• Set of elements V. n = |V|.
• Notion of independence I ⊆ 2V.

Exact definition is
not important for
this presentation.

Graphic Matroid Linear Matroid


0 1 2 0 1
1 0 1 2 0
2 0 2 4 0
1 1 3 2 1
0 0 1 0 5



V = edges V = row vectors
I = forests I = linearly independent

1

Matroid Intersection

Given: two matroidM1 = (V, I1) andM2 = (V, I2)
Goal: find a common independent set S ∈ I1 ∩ I2 of maximum size
Queries: independence-oracle Is X ∈ I1? Is X ∈ I2?

Matroid Intersection models many combinatorial optimization problems.

E.g. Bipartite Matching:
• M1 = “≤ 1 edge per vertex on the left”
• M2 = “≤ 1 edge per vertex on the right”

2

Augmenting Paths & The Exchange Graph

• Special case: Bipartite Matching
• Augmenting Path algorithms

• Similar idea works for matroid intersection too!
• Find augmenting paths in the Exchange Graph.

[Edmonds 60s]

3

The Õ(nr) query bound

(n = #elements, r = size of answer)

• Õ(nr) bound ≈ “find each of the r augmenting path in O(n) queries”.
[Nguyen, CLSSW 2019]

• To beat this we need to find several paths “in parallel”.

• Challenge: Exchange Graph changes after each augmentation:
• Some edges added, some removed.
• Set of vertex disjoint paths ≠⇒ augment along all of them.

↑ unlike for bipartite matching / max-flow
(Hopcroft-Karp / Dinitz)

4

The Õ(nr) query bound

(n = #elements, r = size of answer)

• Õ(nr) bound ≈ “find each of the r augmenting path in O(n) queries”.
[Nguyen, CLSSW 2019]

• To beat this we need to find several paths “in parallel”.

• Challenge: Exchange Graph changes after each augmentation:
• Some edges added, some removed.
• Set of vertex disjoint paths ≠⇒ augment along all of them.

↑ unlike for bipartite matching / max-flow
(Hopcroft-Karp / Dinitz)

4

The Õ(nr) query bound

(n = #elements, r = size of answer)

• Õ(nr) bound ≈ “find each of the r augmenting path in O(n) queries”.
[Nguyen, CLSSW 2019]

• To beat this we need to find several paths “in parallel”.

• Challenge: Exchange Graph changes after each augmentation:
• Some edges added, some removed.
• Set of vertex disjoint paths ≠⇒ augment along all of them.

↑ unlike for bipartite matching / max-flow
(Hopcroft-Karp / Dinitz)

4

The Õ(nr) query bound (cont.)

(n = #elements, r = size of answer)

Breaking Õ(nr):

• Previous: large r = ω(
√
n):

• (1− ε)-Approx.: Õ
(
n
√
n

ε
√
ε

)
queries [CLSSW 2019]

• Exact: Õ(n6/5r3/5) queries [BvdBMN 2021]

• This paper: full range of r:
• (1− ε)-Approx.: Õ

(
n
√
r

ε

)
queries

• Exact: Õ(nr3/4) queries

5

The Õ(nr) query bound (cont.)

(n = #elements, r = size of answer)

Breaking Õ(nr):

• Previous: large r = ω(
√
n):

• (1− ε)-Approx.: Õ
(
n
√
n

ε
√
ε

)
queries [CLSSW 2019]

• Exact: Õ(n6/5r3/5) queries [BvdBMN 2021]
• This paper: full range of r:

• (1− ε)-Approx.: Õ
(
n
√
r

ε

)
queries

• Exact: Õ(nr3/4) queries

5

Technique

Approximation
Improve algorithm of [CLSSW] with two new ideas.

Ak+1Ak

RefineABA

Bk+1

⊆ S ⊆ S̄ ⊆ S
⊆ S⊆ S̄

s

⊆ S̄ ⊆ S̄

t

⊆ S

|B1| |A1| |B2| |A2| |B3|≥ ≥ ≥ ≥

Exact
Plug in the approximation algorithm in the framework of [BvdBMN].

6

Open Problems

• Gap between lower and upper bounds for matroid intersection.
• No Ω(n1+δ) lower-bound is known for δ > 0.

• Can one also solve weighted matroid intersection in o(nr) queries?

Thanks!

7

Extra Slides

Summary

Result: (n = #elements, r = size of answer)
First independence-query matroid intersection algorithms breaking Õ(nr).

• (1− ε)-approximation
• Previous best: O(nr/ε) and Õ(n1.5/ε1.5).
• Ours: Õ(n

√
r/ε) queries.

• Exact:
• Previous best: Õ(nr) and Õ(n6/5r3/5)
• Ours: Õ(nr3/4) queries

Technique:

• (1− ε)-approximate: Improve CLSSW’s algorithm with two new ideas.
• Exact: Plug in approximate algorithm in the framework of BvdBMN.

8

Exact Algorithm

Algorithm [BvdBMN]:

1. Many short paths: (1− ε)-approximation algorithm
2. Few remaining long paths: find them one by one

Old Query Complexity: Õ(n6/5r3/5)

Bottleneck: Õ
(
n
√
n

ε
√
ε

)
approximation algorithm by [CLSSW].

Replace with our improved Õ
(
n
√
r

ε

)
approximation algorithm:

New Query Complexity: Õ(nr3/4)

9

Exact Algorithm

Algorithm [BvdBMN]:

1. Many short paths: (1− ε)-approximation algorithm
2. Few remaining long paths: find them one by one

Old Query Complexity: Õ(n6/5r3/5)

Bottleneck: Õ
(
n
√
n

ε
√
ε

)
approximation algorithm by [CLSSW].

Replace with our improved Õ
(
n
√
r

ε

)
approximation algorithm:

New Query Complexity: Õ(nr3/4)

9

Exact Algorithm

Algorithm [BvdBMN]:

1. Many short paths: (1− ε)-approximation algorithm
2. Few remaining long paths: find them one by one

Old Query Complexity: Õ(n6/5r3/5)

Bottleneck: Õ
(
n
√
n

ε
√
ε

)
approximation algorithm by [CLSSW].

Replace with our improved Õ
(
n
√
r

ε

)
approximation algorithm:

New Query Complexity: Õ(nr3/4)

9

Approximation Algorithm

We improve the Õ
(
n
√
n

ε
√
ε

)
approx-algorithm [CLSSW]:

Algorithm [CLSSW]
Run in O(1/ε) phases and find “blocking-flow”:
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.

Blocking-Flow: (think Hopcroft-Karp / Dinitz’s)
Find a maximal set of “compatible” augmenting paths of the same length.

10

Approximation Algorithm — Improvements

Algorithm [CLSSW]
Run in O(1/ε) phases and find “blocking-flows”:
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.

This Paper: Two new improvements:

• In stage 1: We refine on three consecutive layers instead of two.
• Guarantees we make “progress” on “even” layers ⊆ S. |S| ≤ r.
• Replaces

√
n term with

√
r.

• In stage 2: We find paths directly on top of the output of stage 1.
• Fewer path need to be found.
• Shaves of 1/

√
ε-factor.

11

Approximation Algorithm — Improvements

Algorithm [CLSSW]
Run in O(1/ε) phases and find “blocking-flows”:
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.

This Paper: Two new improvements:

• In stage 1: We refine on three consecutive layers instead of two.
• Guarantees we make “progress” on “even” layers ⊆ S. |S| ≤ r.
• Replaces

√
n term with

√
r.

• In stage 2: We find paths directly on top of the output of stage 1.
• Fewer path need to be found.
• Shaves of 1/

√
ε-factor.

11

Approximation Algorithm — Improvements

Algorithm [CLSSW]
Run in O(1/ε) phases and find “blocking-flows”:
Stage 1: Keep refining a partial augmenting set.
Stage 2: When progress stagnates, find remaining paths one at a time.

This Paper: Two new improvements:

• In stage 1: We refine on three consecutive layers instead of two.
• Guarantees we make “progress” on “even” layers ⊆ S. |S| ≤ r.
• Replaces

√
n term with

√
r.

• In stage 2: We find paths directly on top of the output of stage 1.
• Fewer path need to be found.
• Shaves of 1/

√
ε-factor.

11

Augmenting Sets [CLSSW]

Augmenting Sets ≈ Collection of “compatible” augmenting paths.

Only local constraints:
“S− A+ B ∈ I” where A and B are in adjacent distance-layers.

⊆ S⊆ S̄

s

⊆ S̄ ⊆ S̄

t

⊆ S

B1 A1 B2 A2 B3

S− A1 + B1 ∈ I2 S− A2 + B3 ∈ I1

12

Augmenting Sets [CLSSW]

Augmenting Sets ≈ Collection of “compatible” augmenting paths.

Only local constraints:
“S− A+ B ∈ I” where A and B are in adjacent distance-layers.

⊆ S⊆ S̄

s

⊆ S̄ ⊆ S̄

t

⊆ S

B1 A1 B2 A2 B3

S− A1 + B1 ∈ I2 S− A2 + B3 ∈ I1

12

Finding a maximal augmenting set (“Blocking-Flow”)

Keep track of a partial augmenting set.

⊆ S⊆ S̄

s

⊆ S̄ ⊆ S̄

t

⊆ S

|B1| |A1| |B2| |A2| |B3|≥ ≥ ≥ ≥

13

Finding a maximal augmenting set (“Blocking-Flow”)

Keep track of a partial augmenting set.

⊆ S⊆ S̄

s

⊆ S̄ ⊆ S̄

t

⊆ S

|B1| |A1| |B2| |A2| |B3|≥ ≥ ≥ ≥

13

Refining

Locally improve two consecutive layers.

1. Extend Ai while it can be “matched” from Bi.
2. Throw away “unmatched” elements of Bi.
3. Now |Ai| = |Bi|.

⊆ S⊆ S̄

|Bi| |Ai|≥

14

Refining

Locally improve two consecutive layers.
1. Extend Ai while it can be “matched” from Bi.

2. Throw away “unmatched” elements of Bi.
3. Now |Ai| = |Bi|.

⊆ S⊆ S̄

|Bi| |Ai|≥

14

Refining

Locally improve two consecutive layers.
1. Extend Ai while it can be “matched” from Bi.
2. Throw away “unmatched” elements of Bi.

3. Now |Ai| = |Bi|.

⊆ S⊆ S̄

|Bi| |Ai|≥

14

Refining

Locally improve two consecutive layers.
1. Extend Ai while it can be “matched” from Bi.
2. Throw away “unmatched” elements of Bi.
3. Now |Ai| = |Bi|.

⊆ S⊆ S̄

|Bi| |Ai|=

14

New Idea 1: Refining 3 consecutive layers

⊆ S

Ak

⊆ S̄

Bk

RefineBA

Bk+1Ak

RefineAB

Ak+1Ak

RefineABA

Bk+1

⊆ S ⊆ S̄ ⊆ S ⊆ S̄ ⊆ S

Guarantees that we make progress on “even” layers ⊆ S. |S| ≤ r.

Replaces
√
n term with

√
r. ←− allows us o(nr) algorithms.

15

New Idea 2: Finding Paths

⊆ S⊆ S̄

s

⊆ S̄ ⊆ S̄

t

⊆ S

|B1| |A1| |B2| |A2| |B3|≥ ≥ ≥ ≥

When refining-progress stagnates:

• Fall back to finding augmenting paths individually.
• New Idea: Find them with respect to partial aug-set (B1,A1, . . .Bℓ+1).

Lowers dependence on ε from O(1/ε1.5) to O(1/ε).
16

Summary

Result: (n = #elements, r = size of answer)
First independence-query matroid intersection algorithms breaking Õ(nr).

• (1− ε)-approximation
• Previous best: O(nr/ε) and Õ(n1.5/ε1.5).
• Ours: Õ(n

√
r/ε) queries.

• Exact:
• Previous best: Õ(nr) and Õ(n6/5r3/5)
• Ours: Õ(nr3/4) queries

Technique:

• (1− ε)-approximate: Improve CLSSW’s algorithm with two new ideas.
• Exact: Plug in approximate algorithm in the framework of BvdBMN.

17

	Extra Slides

