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Maximum Flow

Given: Directed graph G = (V, E), edge capacities ¢ : E — Z, source s, and sink ¢.
Goal: Compute s, t-flow f of largest size.

Flow satisfies:
(1) Capacity constraints f(e) < c(e)
(2) Conservation of flow “incoming = outgoing”
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New Era? — Comeback of Combinatorial Algorithms

2024 Bernstein-B.-Saranurak-Tu ~ O(V?) “linear time in dense graphs”

2+0(1)

Main Result: Maximum flow in on n-vertex graphs in n time.

Techniques: In2c!re0|(31e)ndent Work:

Augmenting Paths (new version of Push-Relabel) combinatorial

bipartite matching

Directed Expander Hierarchy [Chuzhoy-Khanna'24]

My Hope: (in a few years)
“Simple”, “Combinatorial” O(E) Maximum Flow?
Non-bipartite Maximum Matching in O(V?) or O(E) time?
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[Ford-Fulkerson 1955]
Remainder of this talk: unit-capacities c(e) =1 [Jacobi 1836]

Reverse it




Approximate Flow — Exact Flow



Approximate Flow — Exact Flow

Proof. Recurse on residual graph.

Goal in rest of talk: constant- or ﬁ—approx flow.

(does not work in undirected graphs)
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Push-Relabel / Augment-Relabel [Goldberg-Tarjan'88] —Analysis

RELABEL O(n” (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Augmentations O(nm) (n per edge)
------------------------------------------------------ O(nmlogn) (capacitated graphs:

y T Link-Cut trees of admissible edges)

Total: O(nm)
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New ldea: Edge Lengths

“short” = “frequent” >
w(e) = 2

“long” = “infrequent” >
w(e) = 10

Potential Faster Algo:

look for short paths
Guarantee: Path /7 in maxflow

w( ) < n1+0(1)

few long edges, potentially many short
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Weighted Push-Relabel

(u,v) admissible iff {(u)=l(v) + w(e)

edge €

¢(v) Rdist,, (v, t)

¢=0

(=3 (=2 (=1

Not all forward edges are admissible!
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Running Time Analysis

RELABEL O(n?)  (n vertices, n layers)
Keeping track of admissible edges: (n (after relabel: recheck Mt edges)
Augmentations 0, ) ()( per edge)

(nm10gn) (capacitated graphs:
Link-Cut trees of admissible edges)

~S

_ #layers
Goal: O (ZeEE w(e) ) (#layers = 100n, or n1+0(1))

After relabel v: recheck only incident edges e where w(e) divides ¢(v)

—— —
— ——
-— —
- _——
- ——
_——

Augmentations = = o
((u) = £(v) + w(e)
¢(v) inc. by 2w(e)




Pseudo-Code

Algorithm 1: PUSHRELABEL(G, ¢, A, V,w,h)

N

]

12
13
14

15

16
17
18
19
20
21
22

23

Initialize f as the empty flow.
Let £(v) =0for allv € V. // levels

Mark each edge e € ﬁ U % as inadmissible and all vertices as alive.

function RELABEL(v)
Set £(v) «+ £(v) + 1.
if £(v) > 9h then

L mark v as dead and return.

for each edge e 3 v where w(e) divides £(v) do
Let (z,y) = e.
if £(x) — £(y) > 2w(e) and cy(e) > 0 then mark e as admissible.
else mark e as inadmissible.

main loop
while there is an alive vertex v with V ¢(v) = 0 and without an admissible out-edge do
| RELABEL(v)

if there is some alive vertex s with Ag(s) > 0 then
// P is an "augmenting path"
Trace a path P from s to some sink ¢, by arbitrarily following admissible out-edges.
Let ¢®'&™ « min{A¢(s), V ¢(t), minecp cs(e)}.
for e € P do // Augment f along P
if e is a forward edge then f(e) < f(e) + c218™ent,
else f(e') « f(e') — c2uement where €’ is the corresponding forward edge to e.
Adjust residual capacities cs of e and the corresponding reverse edge.
if cy(e) = 0 then mark e as inadmissible.

| // Ag(s) and Vg(t) goes down by c*ement

else return f

Similar to normal
Augment-Relabel / Push-Relabel
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Good Edge Lengths

Good w:

: 2+0(1 . .
ZeeE w?e) is small (= n ol ), running-time)

1+O(1))

“Optimal” flow /' which is short w.r.t. w  (flow paths of length = n

Lemma.
Weighted Push-Relabel finds f

with | f] = &1 1

S

Proof Sketch.

If not: | f| < 1—10|f*|
= some flow path is still short in residual graph G



How to find good edge lengths?
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Directed Acyclic Graphs (DAG)

Def: no directed cycles Good edge lenghts w?

n .
) eE w(oy s small

“Optimal”  flow
which is short w.r.t. w

Topological order T

w(u,v) = |7(u) - 7(v)]

2

wyY

— Y
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Directed Acyclic Graphs (DAG)

Def: no directed cycles Good edge lenghts w?
Topological order T \/ zoeeE 'w(le) IS Tc‘lma”
_ _ “Optimal” oW
wlu,v) = |7(u) = 7(0)] \/ which is short w.r.t. w

w(/l’) <n 5 : ,

/ 3 \7

Theorem: “Simple” %—approx flow on n-vertex DAGs in O(n”log” n) time.

1 2 2 - j/ -
\3 , 4/+
1 4
n n—1 1 21
Z(Uﬂ)) |7 (u)—7(v)| =n Z’UEV Zkzl k =n logn




General Graphs — Attempt One

Good edge lenghts w?
) eE w(oy s small
“Optimal”  flow
which is short w.r.t. w

1. Compute maxflow




General Graphs — Attempt One

Good edge lenghts w?
) eE w(oy s small
“Optimal”  flow
which is short w.r.t. w

1. Compute maxflow

2. Look at graph induced by

()]
9

2

¢ DAG! c )

O
0
[\



General Graphs — Attempt One

Good edge lenghts w?

) eE w(oy s small
“Optimal”  flow

which is short w.r.t. w

1. Compute maxflow

2. Look at graph induced by
3. Edge lengths w from topological order

()]
9

2 ]

¢ DAG! c )

O
0
[\



General Graphs — Attempt One

Good edge lenghts w?
) eE w(oy s small
“Optimal”  flow
which is short w.r.t. w

1. Compute maxflow

2. Look at graph induced by
3. Edge lengths w from topological order

4. Use weighted push-relabel to solve approx maxflow :)

- D

2 ]

¢ DAG! c )

O
0
[\



General Graphs — Attempt One

Good edge lenghts w?
) eE w(oy s small
“Optimal”  flow
which is short w.r.t. w

1. Compute maxflow «—Cheating!

2. Look at graph induced by
3. Edge lengths w from topological order

4. Use weighted push-relabel to solve approx maxflow :)
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General Graphs

?
“Pseudo-Topological” order 7 Good edge lenghts w:

w(uw,v) = |r(u) — 7(v)] \/ ) oer —— is small

w(e)
“Optimal”  flow
which is short w.r.t. w

Directed Expander Hierarchy
Can build using n°"
(Cheating!)

p—
""—-

many maximum flowcalls! ___________

Instead: y ..
Build Bottom Up "
Bootstrap Weighted P.R. 9

N
(solve “easier” flow instances) "< s _

~

Technically Complicated :(
(bad guy: nestedness) (half of our 99 page paper)
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(Directed) Expanders

Def: G is ¢-expander if E(S,V \S) = ¢ - min{vol(S),vol(V \ S)} VS

(vol(S) = ¥ es deg(v), ¢ = 1/n" ") G s

Examples: ,/’/ \\‘
Cliques // V\S i
Bidirected Stars I'

Random

”‘—r—--

Why? _ //
Well-connected K Sl
log(n) .~ . .
¢
Easy to route (short) flow in

Low diameter

Robust to small changes
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(Directed) Expander Decomposition

Every graph can be decomposed into: Good edge lengths in G'\ B :
1. Expanders X,.... X, =58CC(G\ B) w(u,v) = |7(u) — 7(v)]
2. DAG edges D T respects DAG
3. Few backward edges B 7 contiguous in expanders

—_—— —
- —~~

What to do about B7
recurse!

o ———— e
-
-

——
*

*._expander decomp.
w.r.t B
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Technique Highlight: Path-Reversal Expander Pruning

,,,,,,,,, ..  Expander X
/,/’ \\
S X\ P
s ‘. Delete D edges
/ 1
/ I
/ I
/ / Small “pruned” part P vol(P) < 6|D|/¢
LT
I‘\ ~+\\‘~ - //I
\ . / X \ P is still expander
\ AN /
\ \\ /

. —— Known: “Expander Pruning”

~ -
_______
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Technique Highlight: Path-Reversal Expander Pruning

Expander X

reverse D paths

Small “pruned” part P vol(P) < 6|D|/¢

”_—r—--

X \ P is still expander

Theorem: Path-Reversal Expander Pruning

Directed Expander Hierarchy is robust under flow augmentation



Bottleneck towards O(m):
Approximate Max Flow in DAGs
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2+0(1) time.

O(m « min{y/m, n?31)
[Karzanov'73]
[Even-Tarjan'75)]
[Goldberg-Rao'98

Main Result: Maximum flow in on n-vertex graphs in n

First combinatorial / augmenting-path improvement since

Techniques:
Augmenting Paths (new version of Push-Relabel)

Directed Expander Hierarchy

Mostly Self-Contained
’ Thanks!
Open Questions:
“Simple”, “Combinatorial”, “Implementable”: gtrol) o O(E) Maximum Flow?

(bottleneck: apx. maxflow on DAG)

Minimum Cost Maximum Flow, General Matching, Matroid Intersection, ...
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Comparision

Ours

Maximum Flow

n2+o(1)

Combinatorial
Augmenting Paths

Implementable?

[Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22]

Minimum Cost Maximum Flow

m1+0(1)

Continuous Optimization
Dynamic Data Structures

Tricky to implement



