Combinatorial Maxflow in n2+0(1) Time

Aaron Bernstein Joakim Blikstad'

Thatchaphol Saranurak Ta-Wei Tu

Algorithms & Complexity @ Warwick; Sep, 2024 "KTH Royal Institute of Technology

Maximum Flow

Given: Directed graph G = (V, E), edge capacities ¢ : E — Z, source s, and sink ¢.
Goal: Compute s, t-flow f of largest size.

Maximum Flow

Given: Directed graph G = (V, E), edge capacities ¢ : E — Z, source s, and sink ¢.
Goal: Compute s, t-flow f of largest size.

Maximum Flow

Given: Directed graph G = (V, E), edge capacities ¢ : E — Z, source s, and sink ¢.
Goal: Compute s, t-flow f of largest size.

Flow satisfies:
(1) Capacity constraints f(e) < c(e)
(2) Conservation of flow “incoming = outgoing”

Reductions

Maximum Flow

Directed Cut //(\
Closure Problem Bipartite Matching
Densest Subgraph
Vertex Connectivity
Gomory-Hu Trees

Edge Connectivity Airline Scheduling

Baseball Elimination Path Cover

Maximum Flow — A Brief History

1955 Ford-Fulkerson O(FE - ||answer||) O: hides polylog
1970 Edmonds-Karp O(VEZ) O hid o(1)
1970 Dinic “Blocking Flow" O(V’E) e

1978 Malhotra-Kumar-Maheshwari O(VB)

1983 Dinics Dynamic Trees O(VE)

1986 Goldberg-Tarjan “Push-Relabel” O(V?)

1988 Improved “Push-Relabel” O(VE)

1998 Goldberg-Rao’ O(EVE) and O(EV*?)

Maximum Flow — A Brief History

1955
1970
1970
1978
1983
1986
1983

1998

2014
2020
2020
2022

Ford-Fulkerson
Edmonds-Karp

Dinic “Blocking Flow”
Malhotra-Kumar-Maheshwari
Dinics Dynamic Trees

Goldberg-Tarjan “Push-Relabel”

Improved “Push-Relabel”
Goldberg-Rao’

Lee-Sidford

Kathuria-Liu-Sidford
BLNPSSSW / BLLSSSW

Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva

O(FE - ||answer||) O
O(VE?) o
O(V’E) |
O(V?)

O(VE)

O(V?)

O(VE)

O(EVE) and O(EV??)

O(EVV)

O:(E4/3) (unit-capacity)
O(E + VVV)

O(E)

hides n

hides polylog

o(1)

Maximum Flow — A Brief History

1955 Ford-Fulkerson O(FE - ||answer||) O hi
5 . hides polylog
1970 Edmonds-Karp O(VE") O hides n°W)
1970 Dinic “Blockine Elow —————ooo__ OB S
1978 Malhotrn Combinatorial, Augmenting Paths E
1983 Dinics E'; “Nice”, “Simple”, “Works well in practice”
1986 Goldber]______________________________N_,___,__________________.'
1088 Improved “Push-Relabel” O(VE)
1998 Goldberg-Rao’ O(EVE) and O(EV??)
2014 Lee-Sidford O(EVV)
2020 Kathuria-Liu-Sidford O(E4/3) (unit-capacity)
2020 BLNPSSSW / BLLSSSW O(E + VVV)

2022 Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva O(E)

Maximum Flow — A Brief History

1955 Ford-Fulkerson O(FE - ||answer||)

5 O: hides polylog
1970 Edmonds-Karp O(VE") O hides n°W)
1970 Dinic “Rlocking Elow e OB e e "
1978 Malhotn Combinatorial, Augmenting Paths E
1983 Dinics E'; “Nice”, “Simple”, “Works well in practice”
19686 Goldber} B
1088 Improved “Push-Relabel” O(VE)
1998 Goldberg-Rao’ O(EVE) and O(EV2/3)
2014 Lee-Sidfimm#zmmmmmmmmmmmsmsosmmcosoooocoooooooos CrdRobE T ney

2020 Kathurié Continiuous Optimization, Interior Point Methods Ercapacity)
2020 BLNPSS “Precision issues”, “l don't understand them”

2022 Chen-Kympg-ememrmcnpmmsomernoer g=oracntreva---t7 117

Maximum Flow — A Brief History

1955
1970
1970
1978
1983
1986
1983

1998

2014

2020
2020
2022

2024

Ford-Fulkerson O(FE - ||answer]|)

5 O: hides polylog
Edmonds-Karp O(VE") O hides 1o
Dinic “Rlocking Elow oo OLVEEY oo o
Malhotr Combinatorial, Augmenting Paths |
Dinics E'; “Nice”, “Simple”, “Works well in practice” i
Goldber} e]
Improved “Push-Relabel” O(VE)
Goldberg-Rao’ O(EVE) and O(EV2/3)
Lee-Sidfindmmmmmmmmmmmmnmmmm s n o m s e n o n oo e GBS :
Kathuri“; Continiuous Optimization, Interior Point Methods Ercapacity)

BLNPSS “| don’t understand them”

i
Chen— Kgﬁ'rs—'r_'ltl‘T'\Tﬁ'B“UCI‘L‘CTTUCTg_—:Td'CﬂUE\Ta-__U'(E_)

“Precision issues’,

Bernstein-B.-Saranurak-Tu O(V?) “linear time in dense graphs”

New Era? — Comeback of Combinatorial Algorithms

2024 Bernstein-B.-Saranurak-Tu ~ O(V?) “linear time in dense graphs”

2+0(1)

Main Result: Maximum flow in on n-vertex graphs in n time.

New Era? — Comeback of Combinatorial Algorithms

2024 Bernstein-B.-Saranurak-Tu ~ O(V?) “linear time in dense graphs”

2+0(1)

Main Result: Maximum flow in on n-vertex graphs in n time.

Independent Work:

2+o(1 . .
n (1) combinatorial

bipartite matching
[Chuzhoy-Khanna'24]

New Era? — Comeback of Combinatorial Algorithms

2024 Bernstein-B.-Saranurak-Tu ~ O(V?) “linear time in dense graphs”

2+0(1)

Main Result: Maximum flow in on n-vertex graphs in n time.

Independent Work:

Techniques: 2+o(1)
n

Augmenting Paths (new version of Push-Relabel) combinatorial

bipartite matching

Directed Expander Hierarchy [Chuzhoy-Khanna'24]

New Era? — Comeback of Combinatorial Algorithms

2024 Bernstein-B.-Saranurak-Tu ~ O(V?) “linear time in dense graphs”

2+0(1)

Main Result: Maximum flow in on n-vertex graphs in n time.

Techniques: In2c!re0|(31e)ndent Work:

Augmenting Paths (new version of Push-Relabel) combinatorial

bipartite matching

Directed Expander Hierarchy [Chuzhoy-Khanna'24]

My Hope: (in a few years)
“Simple”, “Combinatorial” O(E) Maximum Flow?
Non-bipartite Maximum Matching in O(V?) or O(E) time?

Augmenting Paths

[Ford-Fulkerson 1955]
[Jacobi 1836]

Augmenting Paths

[Ford-Fulkerson 1955]
Remainder of this talk: unit-capacities c(e) =1 [Jacobi 1836]

Augmenting Paths

[Ford-Fulkerson 1955]
Remainder of this talk: unit-capacities c(e) =1 [Jacobi 1836]

Augmenting Paths

[Ford-Fulkerson 1955]
Remainder of this talk: unit-capacities c(e) =1 [Jacobi 1836]

Reverse it

5 ¢

Augmenting Paths

[Ford-Fulkerson 1955]
Remainder of this talk: unit-capacities c(e) =1 [Jacobi 1836]

Reverse it

t

“Residual Graph”

Augmenting Paths

[Ford-Fulkerson 1955]
Remainder of this talk: unit-capacities c(e) =1 [Jacobi 1836]

9

Reverse it

\\/< \ < “Residual Graph”

Augmenting Paths

[Ford-Fulkerson 1955]
Remainder of this talk: unit-capacities c(e) =1 [Jacobi 1836]

Reverse it

”
-
’f
-

“Residual Graph”

Augmenting Paths

[Ford-Fulkerson 1955]
Remainder of this talk: unit-capacities c(e) =1 [Jacobi 1836]

Reverse it

Approximate Flow — Exact Flow

Approximate Flow — Exact Flow

Proof. Recurse on residual graph.

Goal in rest of talk: constant- or ﬁ—approx flow.

(does not work in undirected graphs)

Outline

1. Recap: Push-Relabel

Graph G

Push Relabel

Y

Max Flow

Outline

Graph G

1. Recap: Push-Relabel
2. Weighted PR

“Good" edge lengths

;

Weighted Push Relabel

Y

Approximate Max Flow

Outline

Graph G

1. Recap: Push-Relabel
2. Weighted PR
3. “Good”

“Good" edge lengths

;

Weighted Push Relabel

Y

Approximate Max Flow

Outline

1. Recap: Push-Relabel
2. Weighted PR
3. “Good”

Graph G \'

l

“Good" edge lengths

;

Weighted Push Relabel

Y

Approximate Max Flow

Outline

Graph G \'

1. Recap: Push-Relabel

2. Weighted PR in DAGs: topological sort

4. Edggdrenghts in DAGs l

“Good" edge lengths

;

Weighted Push Relabel

Y

Approximate Max Flow

Outline

Graph G \'

1. Recap: Push-Relabel Directed Expander Hierarchy
2. Weighted PR

3. “Good” l

4. Edge Lenghts in DAGs “Good" edge lengths
5. General Graphs: l

Directed Expander Hierarchy
Weighted Push Relabel

Y

Approximate Max Flow

Outline

Graph G \'

1. Recap: Push-Relabel Directed Expander Hierarchy
2. Weighted PR Weighted Push Relabel

3. “Good” l

4. Edge Lenghts in DAGs “Good" edge lengths
5. General Graphs: l

Directed Expander Hierarchy
Weighted Push Relabel

Y

Approximate Max Flow

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

¢(v) = dist(v,t)

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1
¢(v) = dist(v,t) © (u 0) (u) = £(v)

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1
¢(v) = dist(v,t) © (u 0) (u) = £(v)

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1
¢(v) = dist(v,t) © (u 0) (u) = £(v)

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1
¢(v) = dist(v,t) © (u 0) (u) = £(v)

Update £7
Only increases!

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

¢(v) = dist(v,t)

edge e = (u,v) admissible iff {(u) = ¢(v) + 1

Update £7
Only increases!

-,
t

|
|
/

RELABEL(v)
If no admissible out-edge:

((v) « £(v) +1

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1
¢(v) = dist(v,t) © (u 0) (u) = £(v)

Update £7
Only increases!

RELABEL(v)
If no admissible out-edge:

((v) « £(v) +1

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1
¢(v) = dist(v,t) © (u 0) (u) = £(v)

Update £7
Only increases!

RELABEL(v)
If no admissible out-edge:

((v) « £(v) +1

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1
¢(v) = dist(v,t) © (u 0) (u) = £(v)

Update £7
Only increases!

RELABEL(v)
If no admissible out-edge:

((v) « £(v) +1

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1
¢(v) = dist(v,t) © (u 0) (u) = £(v)

Update £7
Only increases!

RELABEL(v)
If no admissible out-edge:

((v) « £(v) +1

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1
¢(v) = dist(v,t) © (u 0) (u) = £(v)

Update £7
Only increases!

RELABEL(v)
If no admissible out-edge:

((v) « £(v) +1

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1

¢(v) = dist(v,t)

_ Update /7
I/ N Only increases!
|
' | -~
| ! /7~
. na
| | /
L T \ /
| | \ /
\ | =~
\
/
\\//
(=1 ¢ =0
RELABEL(v)

If no admissible out-edge:
((v) « £(v) +1

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’'88]

edge e = (u,v) admissible iff {(u) = ¢(v) + 1
¢(v) = dist(v,t) © (u 0) (u) = £(v)

/7N /7N 77N ,"‘\\ ,"‘\\
\ r N J A Update £7
\ ,I \ [\ I \ I ! 7D I |
\ , ’ \ : \ , \ /o Only increases!
\ ! \ \ \ i \
l l I | l l l | , \
| | | | | | | | l l AN
! | | I | | | /N
L e] . "3
|
= | Il ;\::::;!}\ | | | |l | : |
| l S l‘\::;5 | | | | T \ /
| [I | | : | I N/
| | \ | \ ,l Vo
| - - I \ 1
' \] \ \ [‘-\'»5 /
/ \ — / ! j /
/ \ I / \ -/ : - N~
\ \ S \ 7/
_/ _/ kA _/ _/
RELABEL(v)

If no admissible out-edge:
((v) « £(v) +1

Push-Relabel / Augment-Relabel [Goldberg-Tarjan'88] —Analysis

RELABEL O(n?) (n vertices, n layers)

Push-Relabel / Augment-Relabel [Goldberg-Tarjan'88] —Analysis

RELABEL O(n?) (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Push-Relabel / Augment-Relabel [Goldberg-Tarjan'88] —Analysis

RELABEL O(n?) (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

) (n per edge)

<
S
3

Augmentations

\ ”——_}__

Push-Relabel / Augment-Relabel [Goldberg-Tarjan'88] —Analysis

.~
S
N

RELABEL) (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

) (n per edge)

<
S
3

Augmentations

Push-Relabel / Augment-Relabel [Goldberg-Tarjan'88] —Analysis

RELABEL O(n?) (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Augmentations O(nm) (n per edge)

- Ly
- .
~~
..
~.
~
~
~
~
e
~

Push-Relabel / Augment-Relabel [Goldberg-Tarjan'88] —Analysis

RELABEL O(n” (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Augmentations O(nm) (n per edge)
-- O(nmlogn) (capacitated graphs:

y T Link-Cut trees of admissible edges)

Push-Relabel / Augment-Relabel [Goldberg-Tarjan'88] —Analysis

RELABEL O(n” (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Augmentations O(nm) (n per edge)
-- O(nmlogn) (capacitated graphs:

y T Link-Cut trees of admissible edges)

Total: O(nm)

How to speed it up?

w(e) = 2

w(e) =10

New ldea: Edge Lengths

“short” = “frequent” =
w(e) = 2

“long” = “infrequent”
w(e) = 10

New ldea: Edge Lengths

“short” = “frequent” >
w(e) = 2

“long” = “infrequent” >
w(e) = 10

Guarantee: Path /7 in maxflow

few long edges, potentially many short

New ldea: Edge Lengths

“short” = “frequent” >
w(e) = 2

“long” = “infrequent” >
w(e) = 10

Guarantee: Path /7 in maxflow

w() < n1+0(1)

few long edges, potentially many short

New ldea: Edge Lengths

“short” = “frequent” >
w(e) = 2

“long” = “infrequent” >
w(e) = 10

Potential Faster Algo:

look for short paths
Guarantee: Path /7 in maxflow

w() < n1+0(1)

few long edges, potentially many short

Weighted Push-Relabel

¢(v) = dist(v,t)

Weighted Push-Relabel

¢(v) = disty, (v, t)

Weighted Push-Relabel

(u,v) admissible iff £(u) = £(v) + 1

edge e

¢(v) = disty, (v, t)

¢=0

(=3 (=2 (=1

¢ =4

Weighted Push-Relabel

(u,v) admissible iff £(u) = ¢(v) + w(e)

edge €

¢(v) = disty, (v, t)

¢=0

(=3 (=2 (=1

¢ =4

Weighted Push-Relabel

(u,v) admissible iff £(u) = ¢(v) + w(e)

edge €

¢(v) = disty, (v, t)

¢=0

(=3 (=2 (=1

Not all forward edges are admissible!

Weighted Push-Relabel

(u,v) admissible iff £(u) = ¢(v) + w(e)

edge €

¢(v) = disty, (v, t)

¢=0

(=3 (=2 (=1

Not all forward edges are admissible!

Weighted Push-Relabel

(u,v) admissible iff {(u)=l(v) + w(e)

edge €

¢(v) Rdist,, (v, t)

¢=0

(=3 (=2 (=1

Not all forward edges are admissible!

Running Time Analysis

RELABEL O(n” (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Augmentations O(nm) (n per edge)

O(nmlogn) (capacitated graphs:
Link-Cut trees of admissible edges)

Running Time Analysis

RELABEL O(n?) (n vertices, n layers)
Keeping track of admissible edges: (n (after relabel: recheck Mt edges)
Augmentations 0,) ()(per edge)

(nm10gn) (capacitated graphs:
Link-Cut trees of admissible edges)

Running Time Analysis

RELABEL O(n?) (n vertices, n layers)
Keeping track of admissible edges: (n (after relabel: recheck Mt edges)
Augmentations 0,) ()(per edge)

(nm10gn) (capacitated graphs:
Link-Cut trees of admissible edges)

~S

_ #layers
Goal: O (ZeEE w(e)) (#layers = 100n, or n1+0(1))

Running Time Analysis

RELABEL O(n?) (n vertices, n layers)
Keeping track of admissible edges: (n (after relabel: recheck Mt edges)
Augmentations 0,) ()(per edge)

(nm10gn) (capacitated graphs:
Link-Cut trees of admissible edges)

~S

_ #layers
Goal: O (ZeEE w(e)) (#layers = 100n, or n1+0(1))

After relabel v: recheck only incident edges e where w(e) divides ¢(v)

Running Time Analysis

RELABEL O(n?) (n vertices, n layers)
Keeping track of admissible edges: (n (after relabel: recheck Mt edges)
Augmentations 0,) ()(per edge)

(nm10gn) (capacitated graphs:
Link-Cut trees of admissible edges)

~S

_ #layers
Goal: O (ZeEE w(e)) (#layers = 100n, or n1+0(1))

After relabel v: recheck only incident edges e where w(e) divides ¢(v)

Augmentations o > o ((v)
((u) = £(v) + w(e)

Running Time Analysis

RELABEL O(n?) (n vertices, n layers)
Keeping track of admissible edges: (n (after relabel: recheck Mt edges)
Augmentations 0,) ()(per edge)

(nm10gn) (capacitated graphs:
Link-Cut trees of admissible edges)

~S

_ #layers
Goal: O (ZeEE w(e)) (#layers = 100n, or n1+0(1))

After relabel v: recheck only incident edges e where w(e) divides ¢(v)

Augmentations o < o ((v)
((u) = £(v) + w(e)

Running Time Analysis

RELABEL O(n?) (n vertices, n layers)
Keeping track of admissible edges: (n (after relabel: recheck Mt edges)
Augmentations 0,) ()(per edge)

(nm10gn) (capacitated graphs:
Link-Cut trees of admissible edges)

~S

_ #layers
Goal: O (ZeEE w(e)) (#layers = 100n, or n1+0(1))

After relabel v: recheck only incident edges e where w(e) divides ¢(v)

—— —
— ——
-— —
- _——
- ——
_——

Augmentations = = o
((u) = £(v) + w(e)
¢(v) inc. by 2w(e)

Pseudo-Code

Algorithm 1: PUSHRELABEL(G, ¢, A, V,w,h)

N

]

12
13
14

15

16
17
18
19
20
21
22

23

Initialize f as the empty flow.
Let £(v) =0for allv € V. // levels

Mark each edge e € ﬁ U % as inadmissible and all vertices as alive.

function RELABEL(v)
Set £(v) «+ £(v) + 1.
if £(v) > 9h then

L mark v as dead and return.

for each edge e 3 v where w(e) divides £(v) do
Let (z,y) = e.
if £(x) — £(y) > 2w(e) and cy(e) > 0 then mark e as admissible.
else mark e as inadmissible.

main loop
while there is an alive vertex v with V ¢(v) = 0 and without an admissible out-edge do
| RELABEL(v)

if there is some alive vertex s with Ag(s) > 0 then
// P is an "augmenting path"
Trace a path P from s to some sink ¢, by arbitrarily following admissible out-edges.
Let ¢®'&™ « min{A¢(s), V ¢(t), minecp cs(e)}.
for e € P do // Augment f along P
if e is a forward edge then f(e) < f(e) + c218™ent,
else f(e') « f(e') — c2uement where €’ is the corresponding forward edge to e.
Adjust residual capacities cs of e and the corresponding reverse edge.
if cy(e) = 0 then mark e as inadmissible.

| // Ag(s) and Vg(t) goes down by c*ement

else return f

Similar to normal
Augment-Relabel / Push-Relabel

Good Edge Lengths

Good w:

: 2+0(1 . .
ZeeE w?e) is small (= n ol), running-time)

1+O(1))

“Optimal” flow /' which is short w.r.t. w (flow paths of length = n

Good Edge Lengths

Good w:

n_ _ 2+40(1) : :
) ceE wle) > small (= n , running-time)

1+O(1))

“Optimal” flow /' which is short w.r.t. w (flow paths of length = n

Lemma.
Weighted Push-Relabel finds f

with | f] = &1 1

S

Good Edge Lengths

Good w:

: 2+0(1 . .
ZeeE w?e) is small (= n ol), running-time)

1+O(1))

“Optimal” flow /' which is short w.r.t. w (flow paths of length = n

Lemma.
Weighted Push-Relabel finds f

with | f] = &1 1

S

Proof Sketch.

If not: | f| < 1—10|f*|
= some flow path is still short in residual graph G

How to find good edge lengths?

Directed Acyclic Graphs (DAG)

Def: no directed cycles

>

>

Directed Acyclic Graphs (DAG)

Def: no directed cycles Good edge lenghts w?

n "
) eE w(oy s small

“Optimal” flow
which is short w.r.t. w

>

> >

Directed Acyclic Graphs (DAG)

Def: no directed cycles Good edge lenghts w?

n "
) eE w(oy s small

“Optimal” flow
which is short w.r.t. w

Topological order T

Directed Acyclic Graphs (DAG)

Def: no directed cycles Good edge lenghts w?

n .
) eE w(oy s small

“Optimal” flow
which is short w.r.t. w

Topological order T

w(u,v) = |7(u) - 7(v)]

2

wyY

— Y

Directed Acyclic Graphs (DAG)

Def: no directed cycles Good edge lenghts w?

i 1
Topological order T) cer w(e) 1> >Ma

w(u,v) = |7(u) — 7(v)] \/ “Optimal” flow

which is short w.r.t. w

Directed Acyclic Graphs (DAG)

Def: no directed cycles Good edge lenghts w?
Topological order T \/ ZoeeE wie) > ?mall
_ _ “Optimal” low
wlu,v) = |7(u) = 7(0)] \/ which is short w.r.t. w

Directed Acyclic Graphs (DAG)

Def: no directed cycles Good edge lenghts w?
Topological order T \/ zoeeE 'w(le) IS Tc‘lma”
_ _ “Optimal” oW
wlu,v) = |7(u) = 7(0)] \/ which is short w.r.t. w

w(/l’) <n 5 : ,

/ 3 \7

Theorem: “Simple” %—approx flow on n-vertex DAGs in O(n”log” n) time.

1 2 2 - j/ -
\3 , 4/+
1 4
n n—1 1 21
Z(Uﬂ)) |7 (u)—7(v)| =n Z’UEV Zkzl k =n logn

General Graphs — Attempt One

Good edge lenghts w?
) eE w(oy s small
“Optimal” flow
which is short w.r.t. w

1. Compute maxflow

General Graphs — Attempt One

Good edge lenghts w?
) eE w(oy s small
“Optimal” flow
which is short w.r.t. w

1. Compute maxflow

2. Look at graph induced by

()]
9

2

¢ DAG! c)

O
0
[\

General Graphs — Attempt One

Good edge lenghts w?

) eE w(oy s small
“Optimal” flow

which is short w.r.t. w

1. Compute maxflow

2. Look at graph induced by
3. Edge lengths w from topological order

()]
9

2]

¢ DAG! c)

O
0
[\

General Graphs — Attempt One

Good edge lenghts w?
) eE w(oy s small
“Optimal” flow
which is short w.r.t. w

1. Compute maxflow

2. Look at graph induced by
3. Edge lengths w from topological order

4. Use weighted push-relabel to solve approx maxflow :)

- D

2]

¢ DAG! c)

O
0
[\

General Graphs — Attempt One

Good edge lenghts w?
) eE w(oy s small
“Optimal” flow
which is short w.r.t. w

1. Compute maxflow «—Cheating!

2. Look at graph induced by
3. Edge lengths w from topological order

4. Use weighted push-relabel to solve approx maxflow :)

- D

2

¢ DAG! c)

O
0
[\

General Graphs

Good edge lenghts w?

n .
") w(oy 1s small

m “Optimal” flow
which is short w.r.t. w

General Graphs

?
“Pseudo-Topological” order 7 Good edge lenghts w:

w(uw,v) = |7(u) = 7(v)] \/l) oer —— is small

w(e)
m “Optimal” flow
which is short w.r.t. w

General Graphs

?
“Pseudo-Topological” order 7 Good edge lenghts w:

w(uw,v) = |7(u) = 7(v)] \/l) oer —— is small

w(e)
m “Optimal” flow
which is short w.r.t. w

Directed Expander Hierarchy

General Graphs

?
“Pseudo-Topological” order 7 Good edge lenghts w:

w(uw,v) = |r(u) — 7(v)] \/) oer —— is small

w(e)
“Optimal” flow
which is short w.r.t. w

Directed Expander Hierarchy
Can build using n°"
(Cheating!)

many maximum flow calls! __________

—
-

General Graphs

?
“Pseudo-Topological” order 7 Good edge lenghts w:

w(uw,v) = |r(u) — 7(v)] \/) oer —— is small

w(e)
“Optimal” flow

which is short w.r.t. w
many maximum flowcalls! ___________

p—

Directed Expander Hierarchy
Can build using n°"
(Cheating!)

""-

Instead:

Build Bottom Up
Bootstrap Weighted P.R. \
(solve “easier” flow instances) "< 7. _

~

General Graphs

?
“Pseudo-Topological” order 7 Good edge lenghts w:

w(uw,v) = |r(u) — 7(v)] \/) oer —— is small

w(e)
“Optimal” flow
which is short w.r.t. w

Directed Expander Hierarchy
Can build using n°"
(Cheating!)

p—
""—-

many maximum flowcalls! ___________

Instead: y ..
Build Bottom Up "
Bootstrap Weighted P.R. 9

N
(solve “easier” flow instances) "< s _

~

Technically Complicated :(
(bad guy: nestedness) (half of our 99 page paper)

(Directed) Expanders

Def: G is ¢-expander if E(S,V \S) = ¢ - min{vol(S),vol(V \ S)} VS

(vol(S) = ¥, .o deg(v), ¢ = 1/n°M) O T .

”‘—r—--
I
I
X
\/‘
/
\\\

~ ’
~ -
~~~~~~~



(Directed) Expanders

Def: G is ¢-expander if E(S,V \S) = ¢ - min{vol(S),vol(V \ S)} VS

(vol(S) = ¥ es deg(v), ¢ = 1/n" ") R .

Examples: ,/” \\‘
Cliques // V\S i
Bidirected Stars ,"

Random

’—‘—r—--

~ ’
~ -
~~~~~~~


(Directed) Expanders

Def: G is ¢-expander if E(S,V \S) = ¢ - min{vol(S),vol(V \ S)} VS

(vol(S) = ¥ es deg(v), ¢ = 1/n" ") G s

Examples: ,/’/ \\‘
Cliques // V\S i
Bidirected Stars I'

Random

”‘—r—--

Why? _ //
Well-connected K Sl
log(n) .~ . .
¢
Easy to route (short) flow in

Low diameter

Robust to small changes

(Directed) Expander Decomposition

Every graph can be decomposed into:
1.
2.
3.

(Directed) Expander Decomposition

Every graph can be decomposed into:
1. Expanders X;,..., X,
2.
3.

(Directed) Expander Decomposition

Every graph can be decomposed into:
1. Expanders X;,..., X,
2. DAG edges D
3.

(Directed) Expander Decomposition

Every graph can be decomposed into:
1. Expanders X;,..., X},

2. DAG edges D
3. Few backward edges B

(Directed) Expander Decomposition

Every graph can be decomposed into:
1. Expanders X;,..., X,

2. DAG edges D
3. Few backward edges B

(Directed) Expander Decomposition

Every graph can be decomposed into:
1. Expanders X,,.... X, =SCC(G\ B)
2. DAG edges D
3. Few backward edges B

(Directed) Expander Decomposition

Every graph can be decomposed into: Good edge lengths in G'\ B :
1. Expanders X,.... X, =58CC(G\ B) w(u,v) = |7(u) — 7(v)]
2. DAG edges D T respects DAG

3. Few backward edges B 7 contiguous in expanders

(Directed) Expander Decomposition

Every graph can be decomposed into: Good edge lengths in G'\ B :
1. Expanders X,.... X, =58CC(G\ B) w(u,v) = |7(u) — 7(v)]
2. DAG edges D T respects DAG
3. Few backward edges B 7 contiguous in expanders

—_—— —
- —~~

o ———— e
-
-

——
*

\\~——--—’/

(Directed) Expander Decomposition

Every graph can be decomposed into: Good edge lengths in G'\ B :
1. Expanders X,.... X, =58CC(G\ B) w(u,v) = |7(u) — 7(v)]
2. DAG edges D T respects DAG
3. Few backward edges B 7 contiguous in expanders

—_—— —
- —~~

What to do about B7
recurse!

o ———— e
-
-

——
*

*._expander decomp.
w.r.t B

\\~——--—’/

(Directed) Expander Decomposition

Technique Highlight: Path-Reversal Expander Pruning

=TT ~ Expander X

pall P,

Technique Highlight: Path-Reversal Expander Pruning

P ~ Expander X
Rl \\\
7 \
/’ \
/’ \
’ \‘
/
Y ‘. Delete D edges
/
II 'l
h I
I I
h I/
| /
‘\ + / /I
\ I,
\\ ,l
\\ , /!
\ ’
\\\ > ,,//

pall P,

Technique Highlight: Path-Reversal Expander Pruning

,,,,,,,,, .. Expander X
/,/’ \\
S X\ P
s ‘. Delete D edges
/ 1
/ I
/ I
/ / Small “pruned” part P vol(P) < 6|D|/¢
LT
I‘\ ~+\\‘~ - //I
\ . / X \ P is still expander
\ AN /
\ \\ /

. —— Known: “Expander Pruning”

~ -

Technique Highlight: Path-Reversal Expander Pruning

I < Expander X

reverse D paths

pall P,

Technique Highlight: Path-Reversal Expander Pruning

Expander X

reverse D paths

Small “pruned” part P vol(P) < 6|D|/¢

”_—r—--

X \ P is still expander

Theorem: Path-Reversal Expander Pruning

Technique Highlight: Path-Reversal Expander Pruning

Expander X

reverse D paths

Small “pruned” part P vol(P) < 6|D|/¢

”_—r—--

X \ P is still expander

Theorem: Path-Reversal Expander Pruning

Directed Expander Hierarchy is robust under flow augmentation

Bottleneck towards O(m):
Approximate Max Flow in DAGs

Summary & Open Problems

+0(1)

Main Result: Maximum flow in on n-vertex graphs in n’ time.

Summary

+0(1)

Main Result: Maximum flow in on n-vertex graphs in n’ time.

. 2/3
First combinatorial / augmenting-path improvement since O(m - min{y'm,n })
[Karzanov'73

[Even-Tarjan'75)]
[Goldberg-Rao'98

Summary

+0(1)

Main Result: Maximum flow in on n-vertex graphs in n’ time.

. 2/3

First combinatorial / augmenting-path improvement since O(m - min{y'm,n })
_ |[Karzanov'73

Techniques: [Even-Tarjan'75]

Augmenting Paths (new version of Push-Relabel) [Goldberg-Rao'98]

Directed Expander Hierarchy
Mostly Self-Contained

Summary

2+0(1) time.

O(m - min{y/m, n?31)
[Karzanov'73]
[Even-Tarjan'75)]
[Goldberg-Rao'98

Main Result: Maximum flow in on n-vertex graphs in n

First combinatorial / augmenting-path improvement since

Techniques:
Augmenting Paths (new version of Push-Relabel)

Directed Expander Hierarchy
Mostly Self-Contained

Open Questions:

“Simple”, “Combinatorial”, “Implementable”: gtrol) o O(E) Maximum Flow?
(bottleneck: apx. maxflow on DAG)

Minimum Cost Maximum Flow, General Matching, Matroid Intersection, ...

Summary

2+0(1) time.

O(m « min{y/m, n?31)
[Karzanov'73]
[Even-Tarjan'75)]
[Goldberg-Rao'98

Main Result: Maximum flow in on n-vertex graphs in n

First combinatorial / augmenting-path improvement since

Techniques:
Augmenting Paths (new version of Push-Relabel)

Directed Expander Hierarchy

Mostly Self-Contained
’ Thanks!
Open Questions:
“Simple”, “Combinatorial”, “Implementable”: gtrol) o O(E) Maximum Flow?

(bottleneck: apx. maxflow on DAG)

Minimum Cost Maximum Flow, General Matching, Matroid Intersection, ...

Ours [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’'22]

Comparision

Ours [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22]

Maximum Flow Minimum Cost Maximum Flow

Comparision

Ours [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22]

Maximum Flow Minimum Cost Maximum Flow

n2+0(1) m1+0(1)

Comparision

Ours

Maximum Flow

n2+o(1)

Combinatorial
Augmenting Paths

Implementable?

[Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22]

Minimum Cost Maximum Flow

m1+0(1)

Continuous Optimization
Dynamic Data Structures

Tricky to implement

