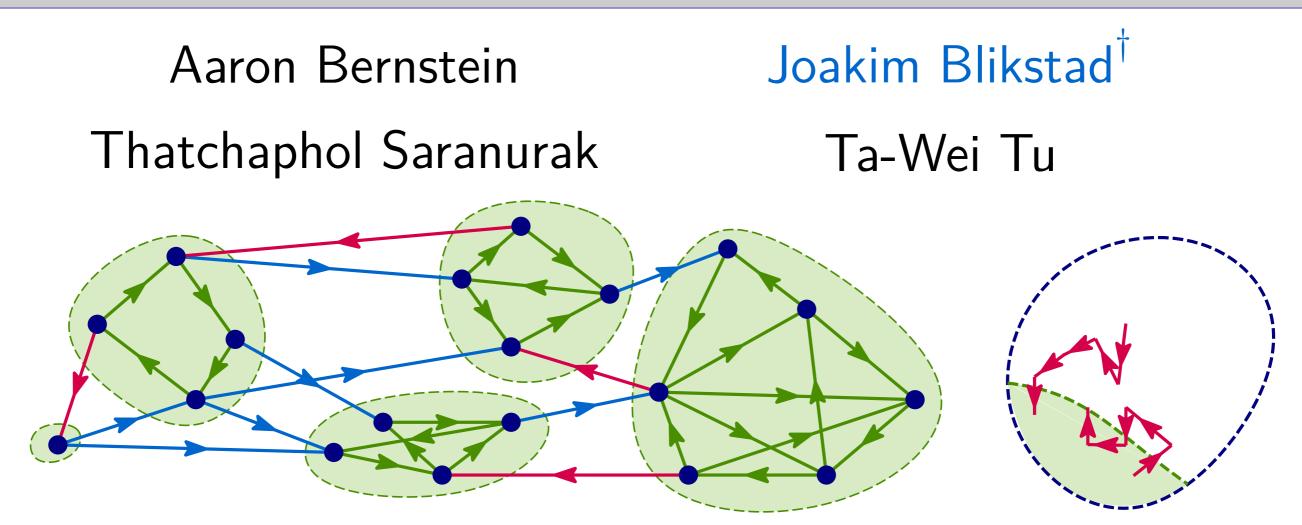
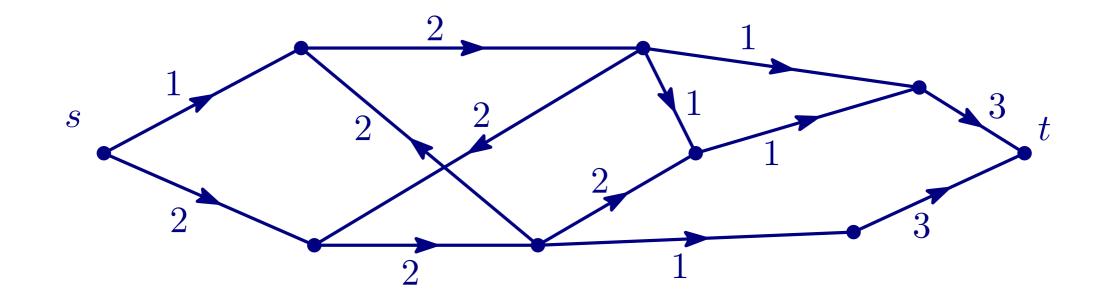
Combinatorial Maxflow in $n^{2+o(1)}$ **Time**



Algorithms & Complexity @ Warwick; Sep, 2024 [†]KTH Royal Institute of Technology

Maximum Flow

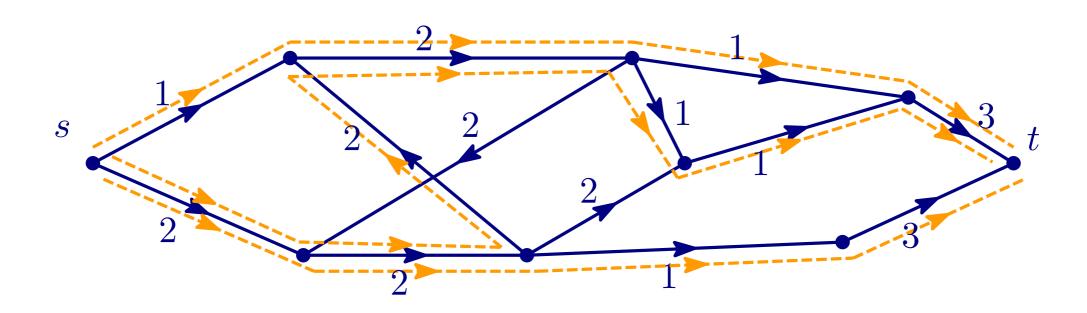
Given: Directed graph G = (V, E), edge capacities $c : E \to \mathbb{Z}_{\geq 1}$, source s, and sink t. **Goal:** Compute s, t-flow f of largest size.



Maximum Flow

Given: Directed graph G = (V, E), edge capacities $c : E \to \mathbb{Z}_{\geq 1}$, source s, and sink t. **Goal:** Compute s, t-flow f of largest size.

|f| = 3

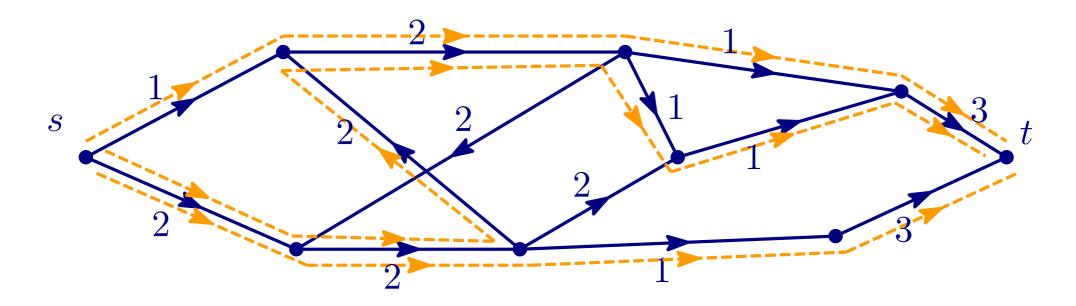


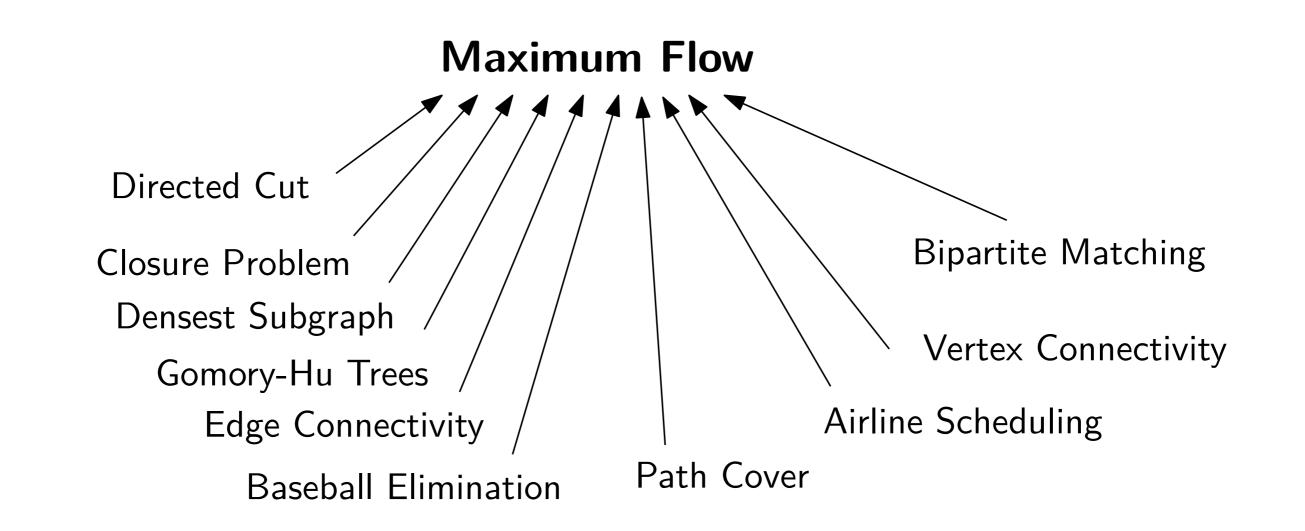
Maximum Flow

Given: Directed graph G = (V, E), edge capacities $c : E \to \mathbb{Z}_{\geq 1}$, source s, and sink t. **Goal:** Compute s, t-flow f of largest size.

Flow satisfies:

(1) Capacity constraints f(e) ≤ c(e)
(2) Conservation of flow "incoming = outgoing"





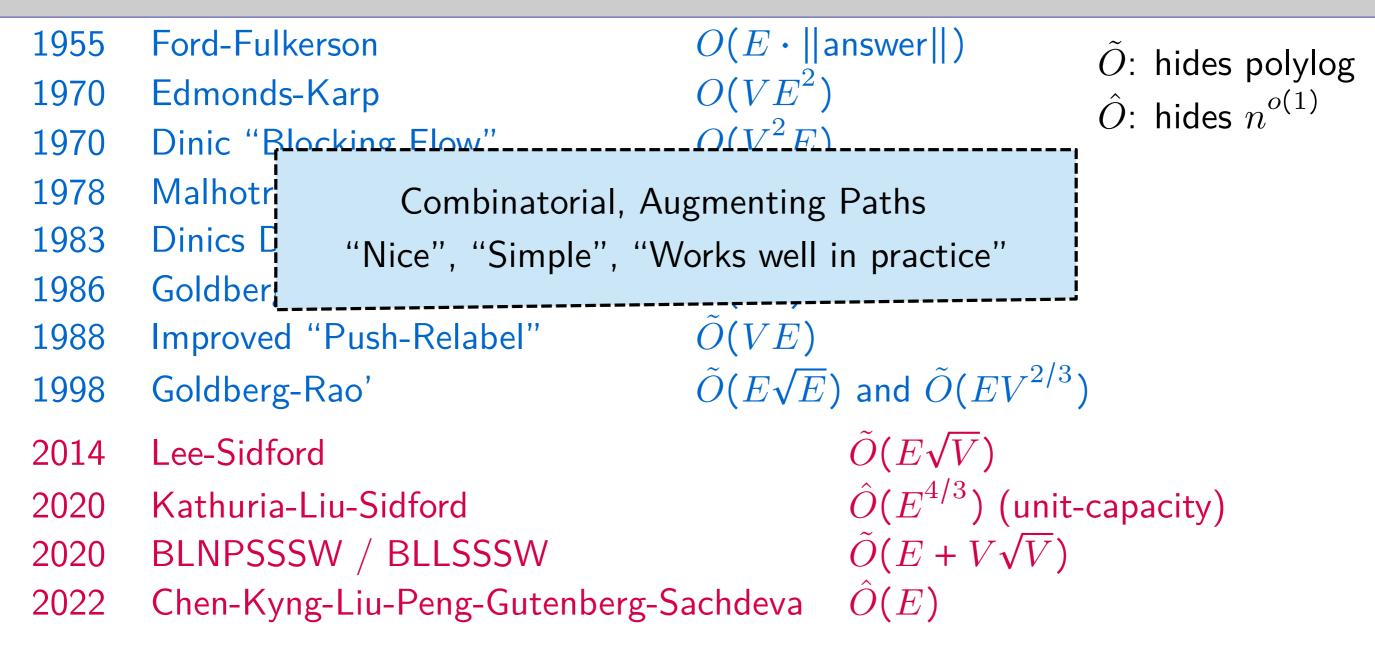
- 1955 Ford-Fulkerson
- 1970 Edmonds-Karp
- 1970 Dinic "Blocking Flow"
- 1978 Malhotra-Kumar-Maheshwari
- 1983 Dinics Dynamic Trees
- 1986 Goldberg-Tarjan "Push-Relabel"
- 1988 Improved "Push-Relabel"
- 1998 Goldberg-Rao'

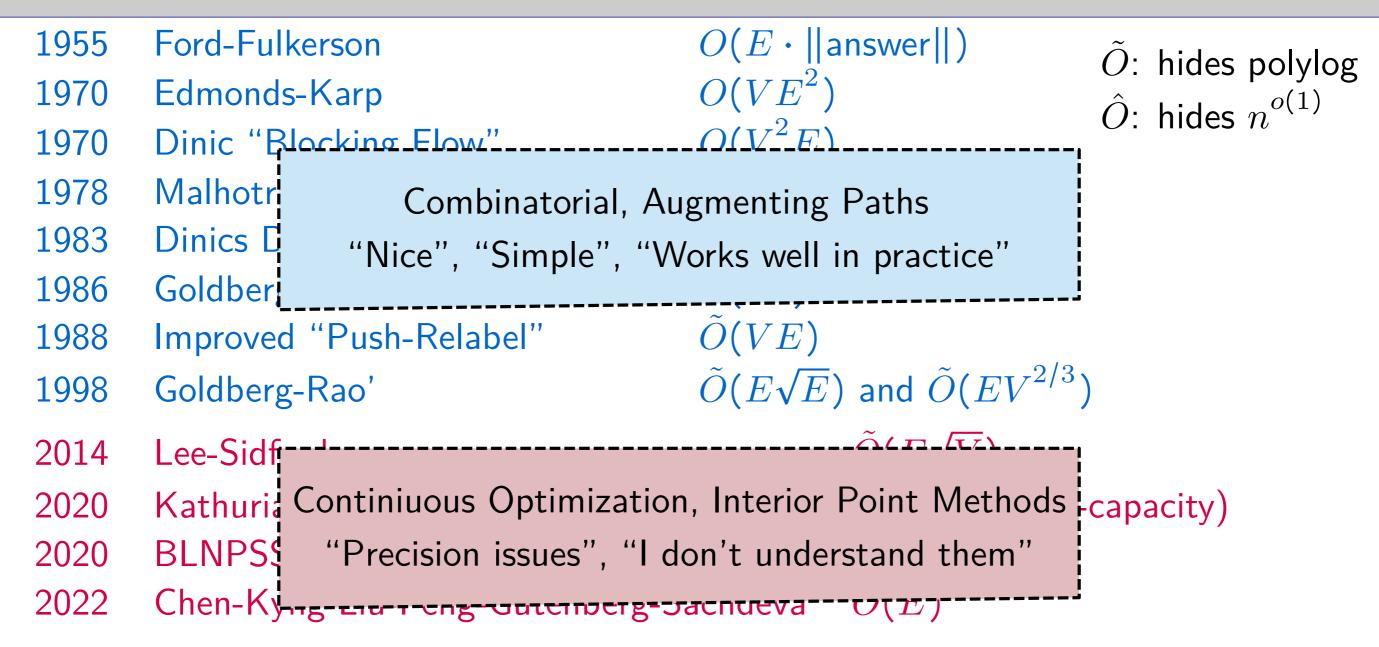
 $O(E \cdot || \text{answer} ||)$ $O(VE^{2})$ $O(V^{2}E)$ $O(V^{3})$ $\tilde{O}(VE)$ $\tilde{O}(VE)$ $\tilde{O}(VE)$ $\tilde{O}(VE)$ $\tilde{O}(VE)$ and $\tilde{O}(EV^{2/3})$

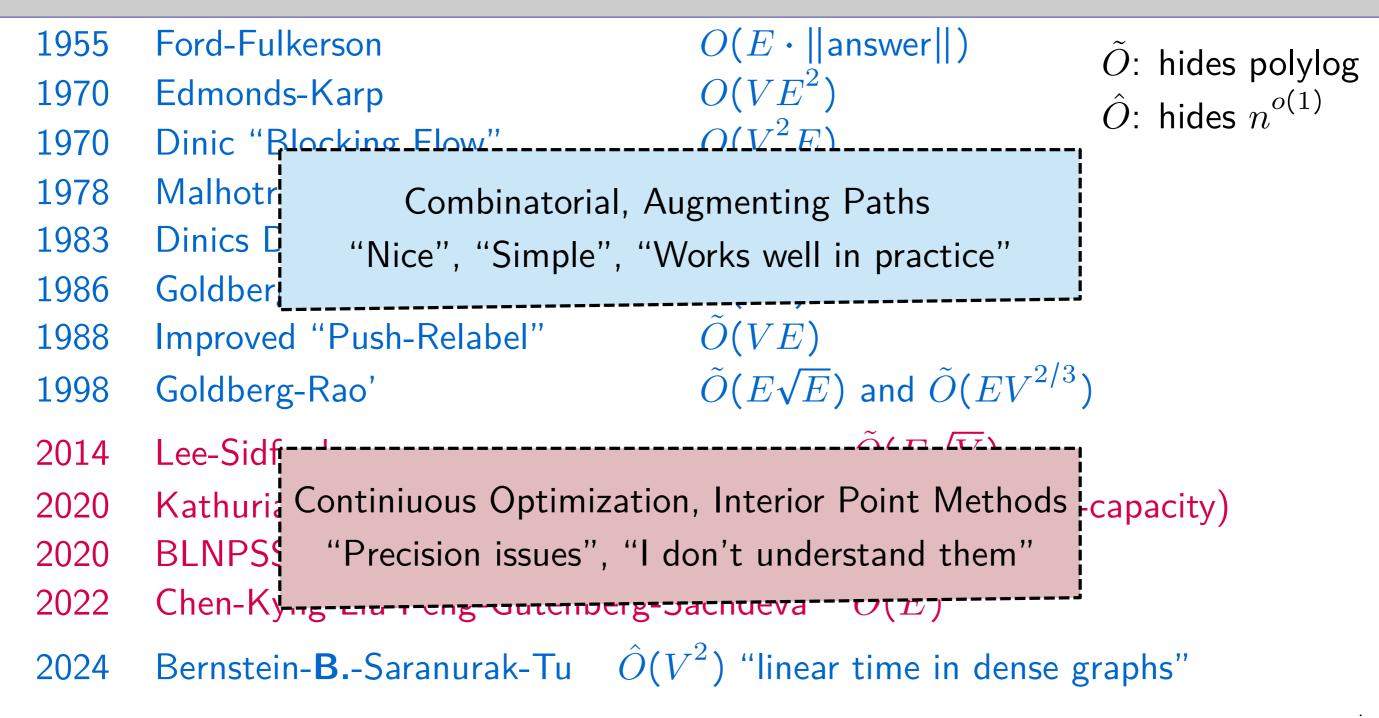
 \tilde{O} : hides polylog \hat{O} : hides $n^{o(1)}$

- 1955 Ford-Fulkerson
- 1970 Edmonds-Karp
- 1970 Dinic "Blocking Flow"
- 1978 Malhotra-Kumar-Maheshwari
- 1983 Dinics Dynamic Trees
- 1986 Goldberg-Tarjan "Push-Relabel"
- 1988 Improved "Push-Relabel"
- 1998 Goldberg-Rao'
- 2014 Lee-Sidford
- 2020 Kathuria-Liu-Sidford
- 2020 BLNPSSSW / BLLSSSW
- 2022 Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva $\hat{O}($

 $O(E \cdot ||answer||)$ *O*: hides polylog $O(VE^2)$ \hat{O} : hides $n^{o(1)}$ $O(V^2 E)$ $O(V^3)$ O(VE) $\tilde{O}(V^3)$ O(VE) $\tilde{O}(E\sqrt{E})$ and $\tilde{O}(EV^{2/3})$ $\tilde{O}(E\sqrt{V})$ $\hat{O}(E^{4/3})$ (unit-capacity) $\tilde{O}(E + V\sqrt{V})$ O(E)







2024 Bernstein-**B**.-Saranurak-Tu $\hat{O}(V^2)$ "linear time in dense graphs"

Main Result: Maximum flow in on *n*-vertex graphs in $n^{2+o(1)}$ time.

2024 Bernstein-**B**.-Saranurak-Tu $\hat{O}(V^2)$ "linear time in dense graphs"

Main Result: Maximum flow in on *n*-vertex graphs in $n^{2+o(1)}$ time.

Independent Work: $n^{2+o(1)}$ combinatorial bipartite matching [Chuzhoy-Khanna'24]

2024 Bernstein-**B**.-Saranurak-Tu $\hat{O}(V^2)$ "linear time in dense graphs"

Main Result: Maximum flow in on *n*-vertex graphs in $n^{2+o(1)}$ time.

Techniques:

Augmenting Paths (new version of Push-Relabel) Directed Expander Hierarchy Independent Work: $n^{2+o(1)}$ combinatorial bipartite matching [Chuzhoy-Khanna'24]

2024 Bernstein-**B**.-Saranurak-Tu $\hat{O}(V^2)$ "linear time in dense graphs"

Main Result: Maximum flow in on *n*-vertex graphs in
$$n^{2+o(1)}$$
 time.

Techniques:

Augmenting Paths (new version of Push-Relabel)

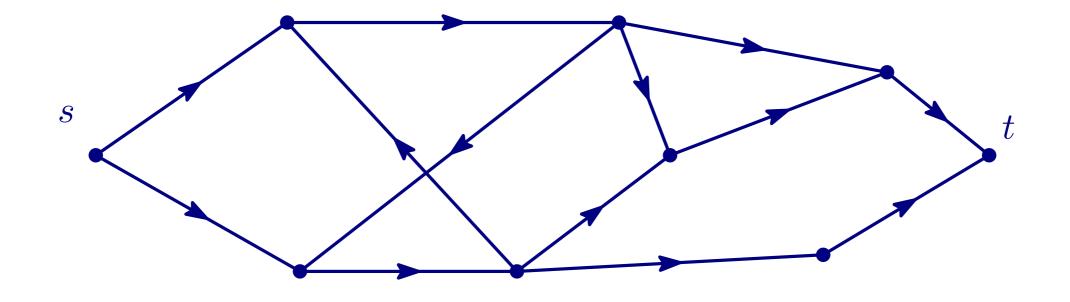
Directed Expander Hierarchy

My Hope: (in a few years)

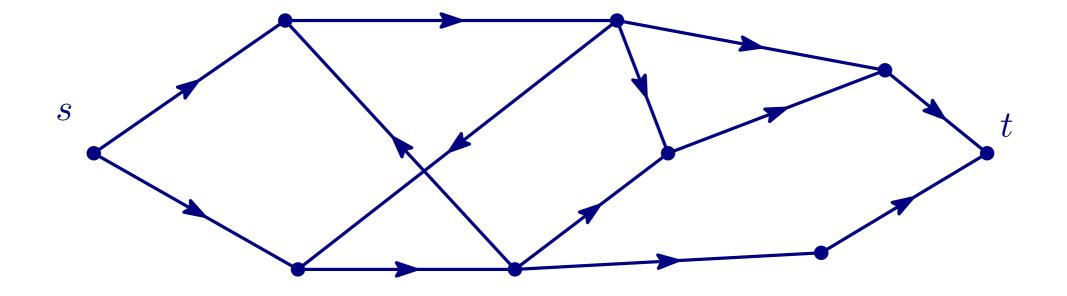
"Simple", "Combinatorial" $\tilde{O}(E)$ Maximum Flow? Non-bipartite Maximum Matching in $\tilde{O}(V^2)$ or $\tilde{O}(E)$ time? Independent Work: $n^{2+o(1)}$ combinatorial bipartite matching [Chuzhoy-Khanna'24]

[Ford-Fulkerson 1955] [Jacobi 1836]

•



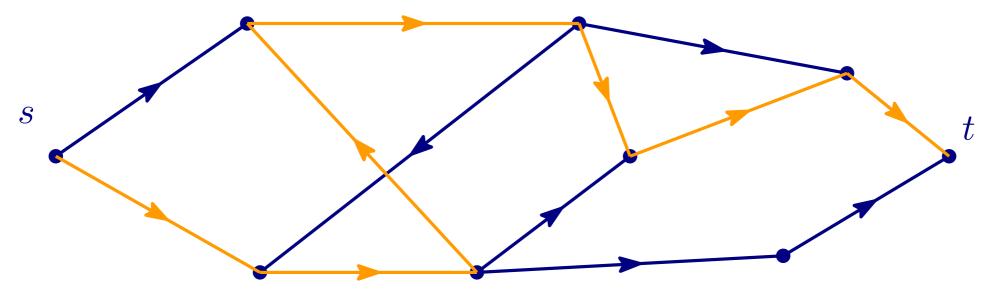
[Ford-Fulkerson 1955] [Jacobi 1836]



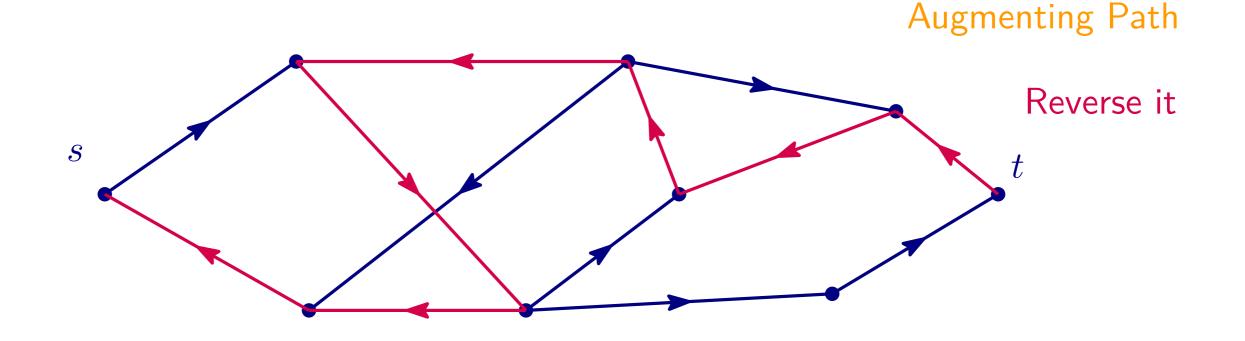
[Ford-Fulkerson 1955] [Jacobi 1836]

Remainder of this talk: unit-capacities c(e) = 1

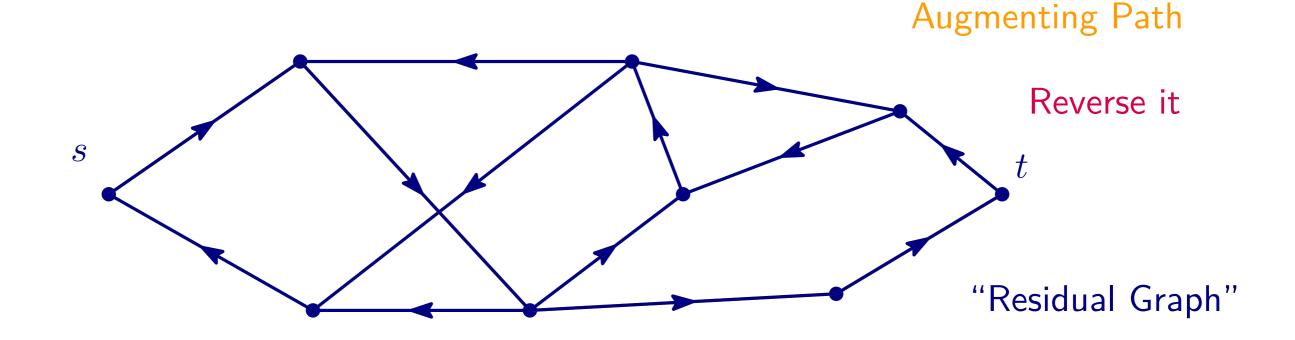
Augmenting Path



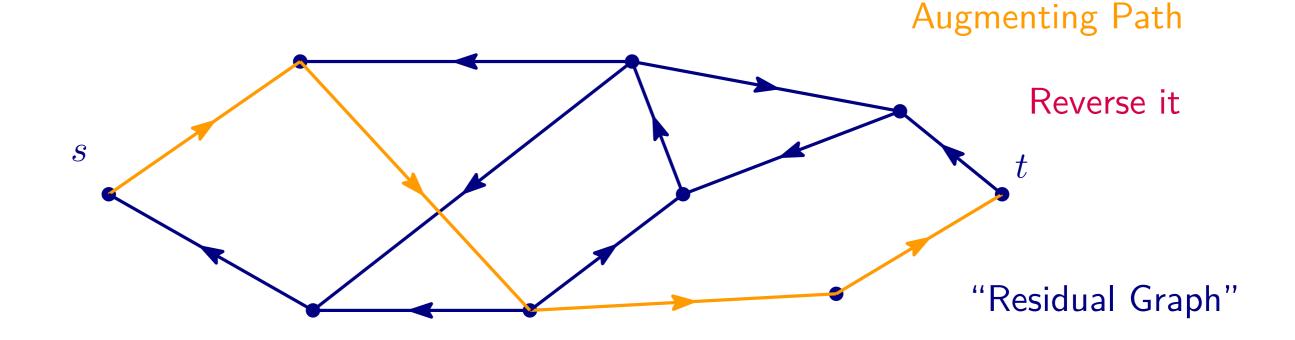
[Ford-Fulkerson 1955] [Jacobi 1836]



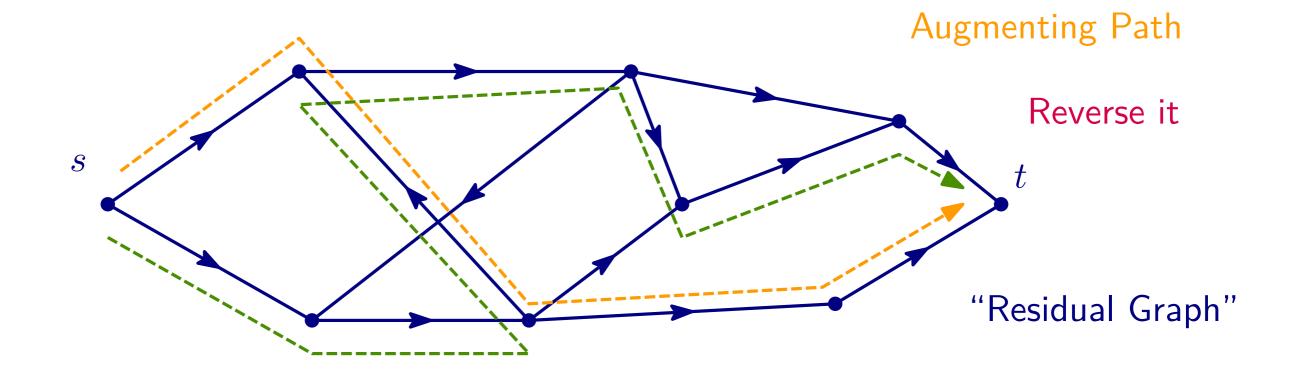
[Ford-Fulkerson 1955] [Jacobi 1836]



[Ford-Fulkerson 1955] [Jacobi 1836]

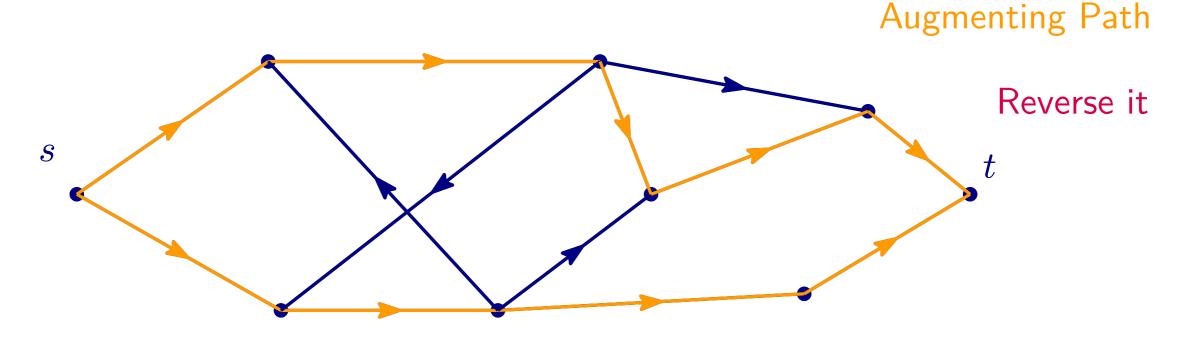


[Ford-Fulkerson 1955] [Jacobi 1836]



[Ford-Fulkerson 1955] [Jacobi 1836]

Remainder of this talk: unit-capacities c(e) = 1



Maximum Flow f, |f| = 2

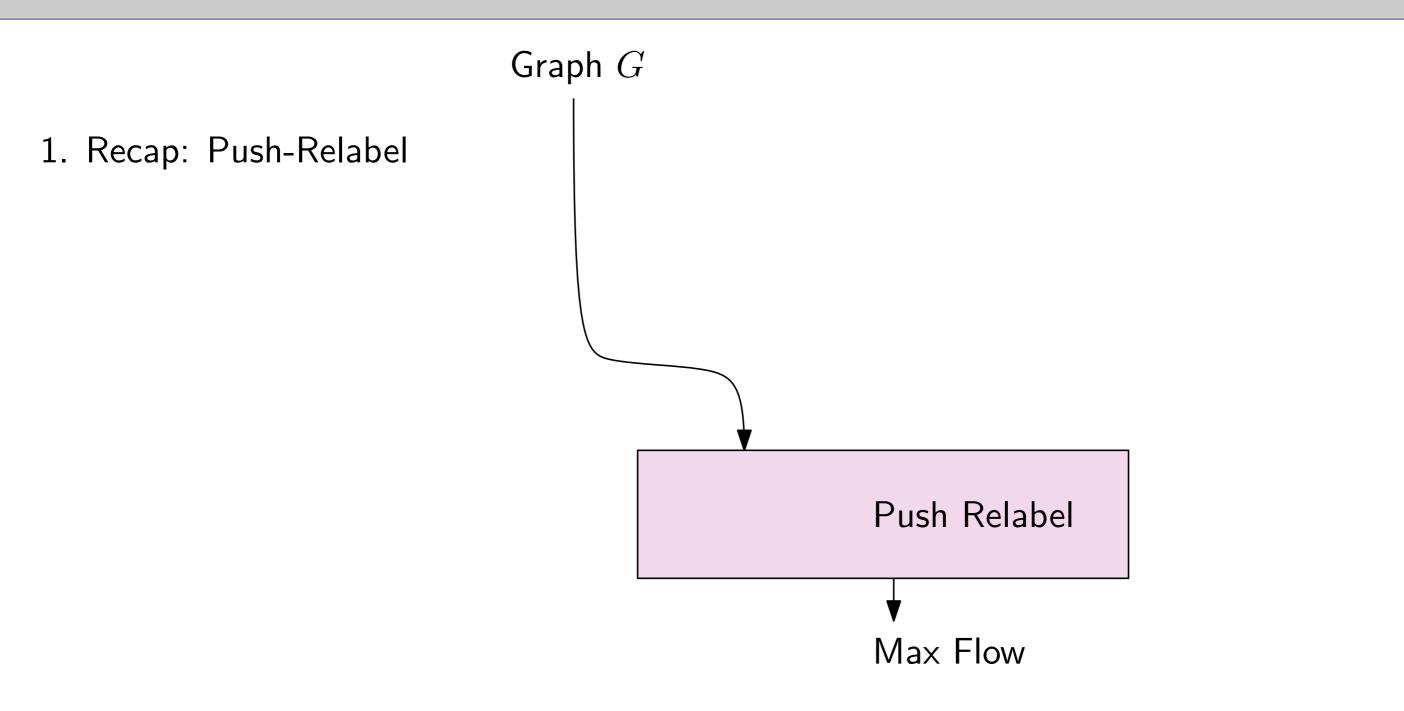
Approximate Flow \implies Exact Flow

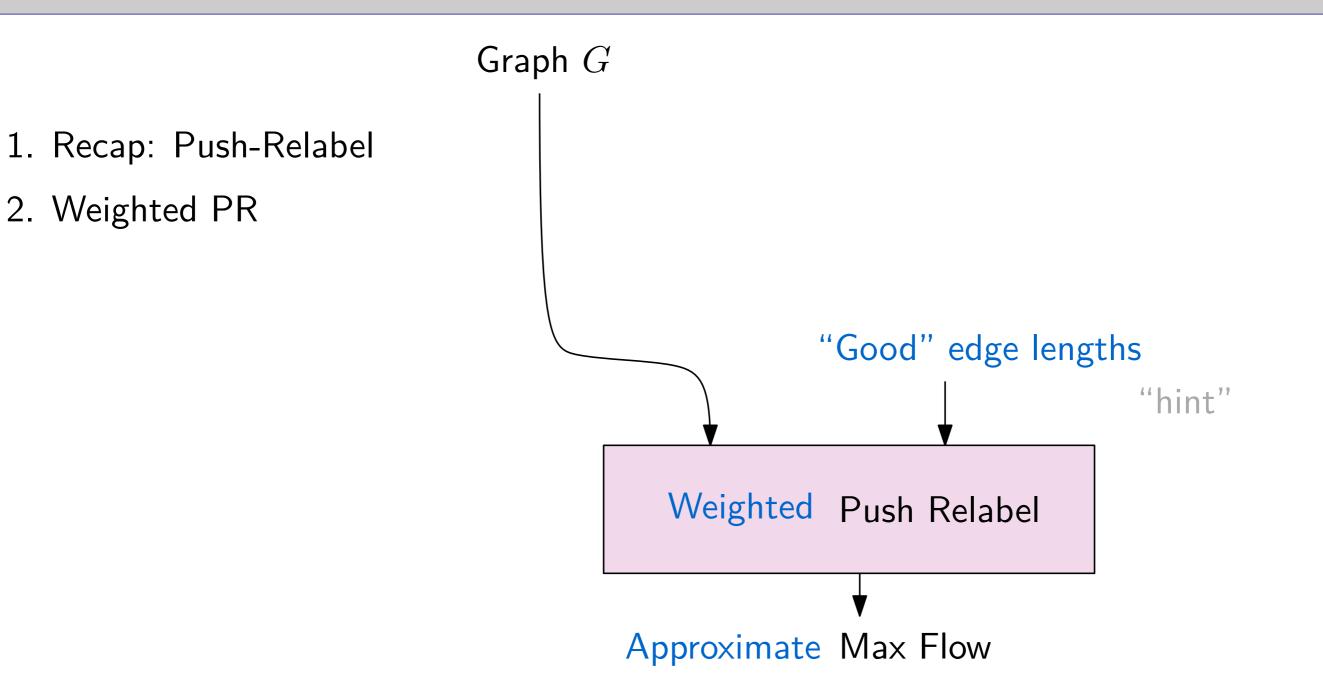
Approximate Flow ⇒ Exact Flow

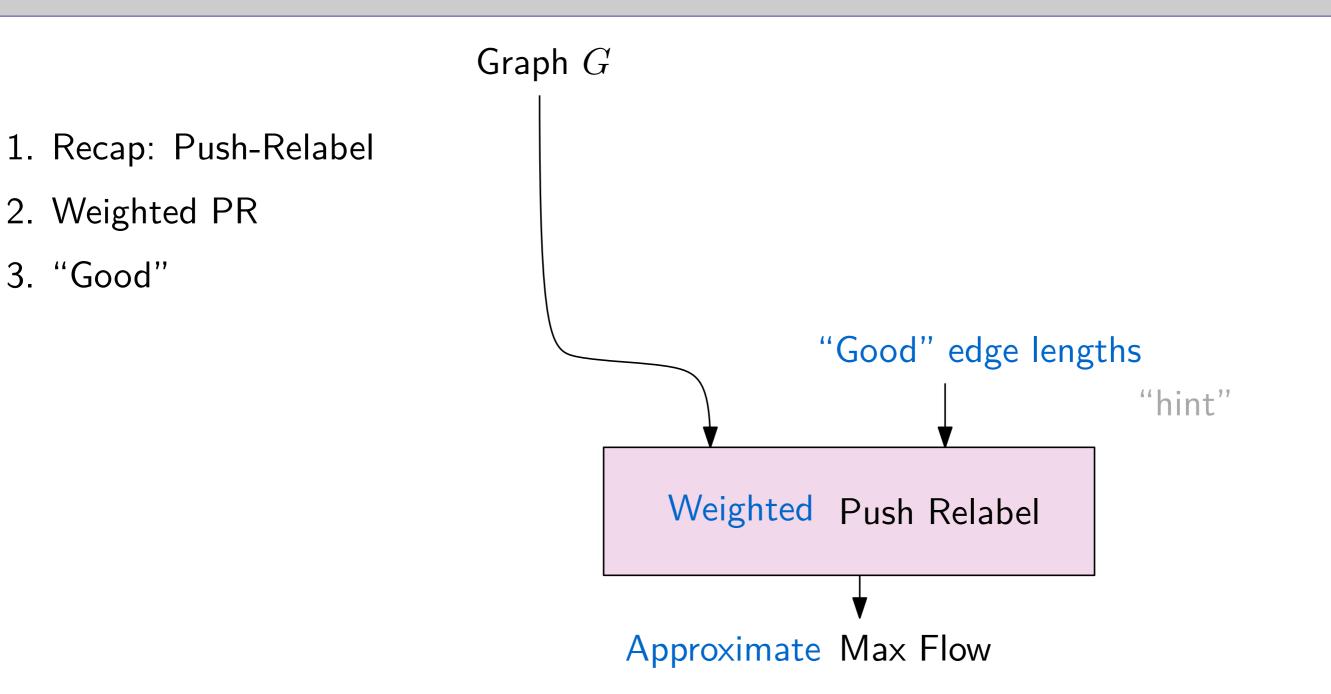
Proof. Recurse on residual graph.

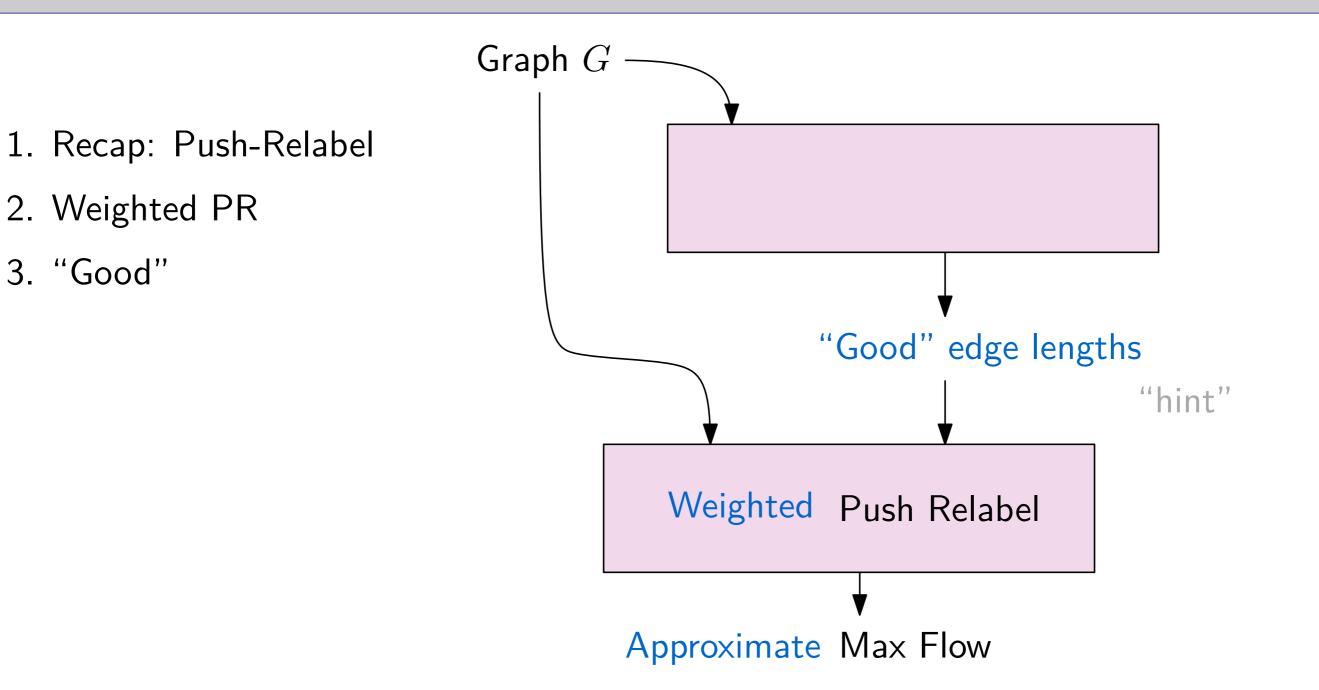
Goal in rest of talk: constant- or $\frac{1}{n^{o(1)}}$ -approx flow.

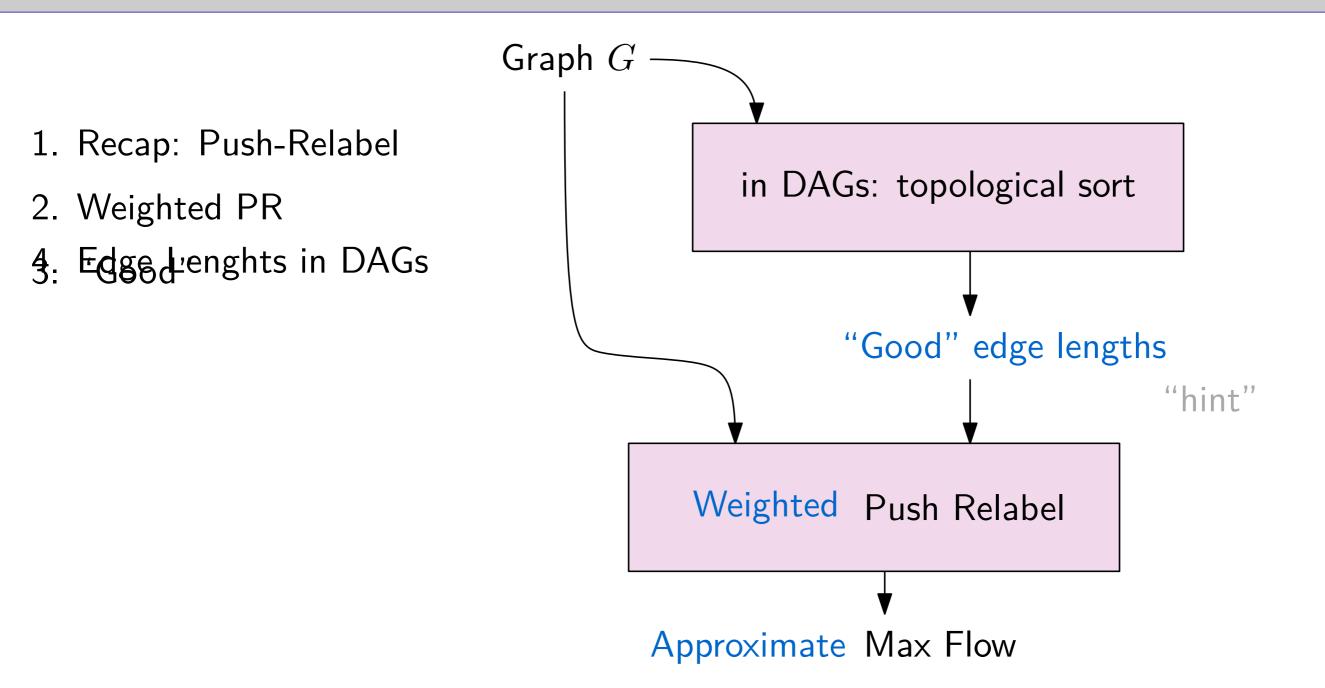
(does not work in undirected graphs)

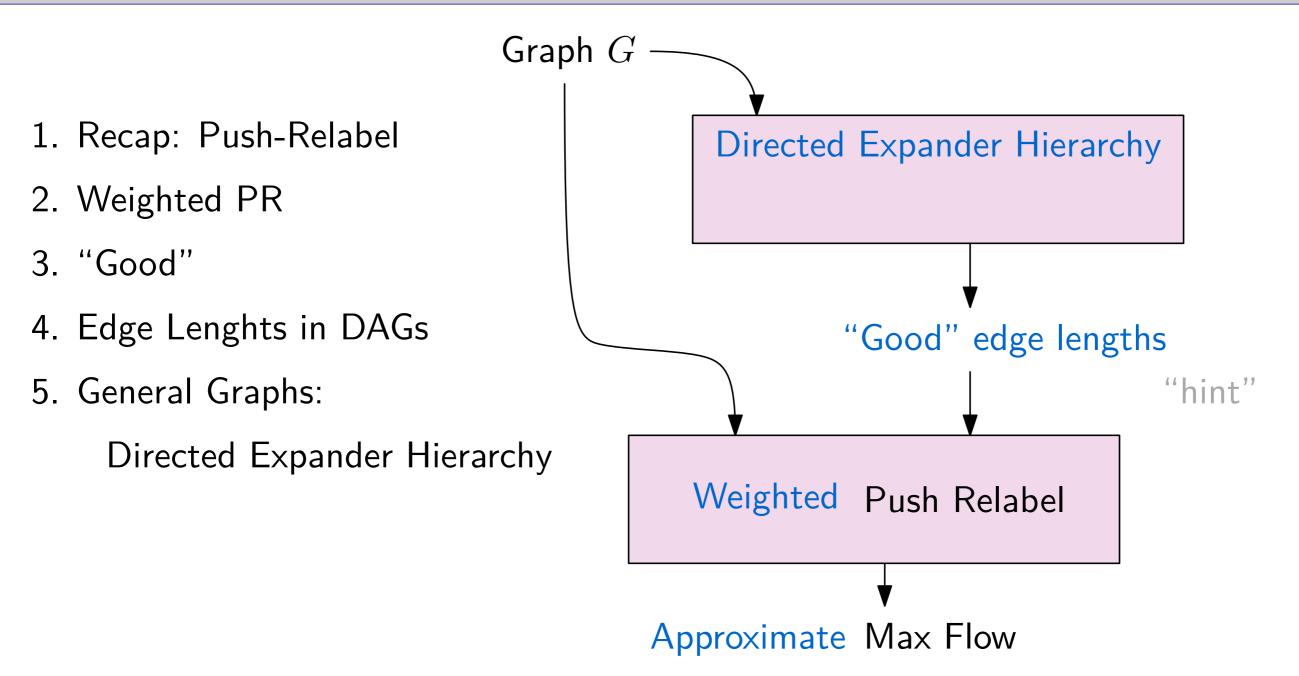


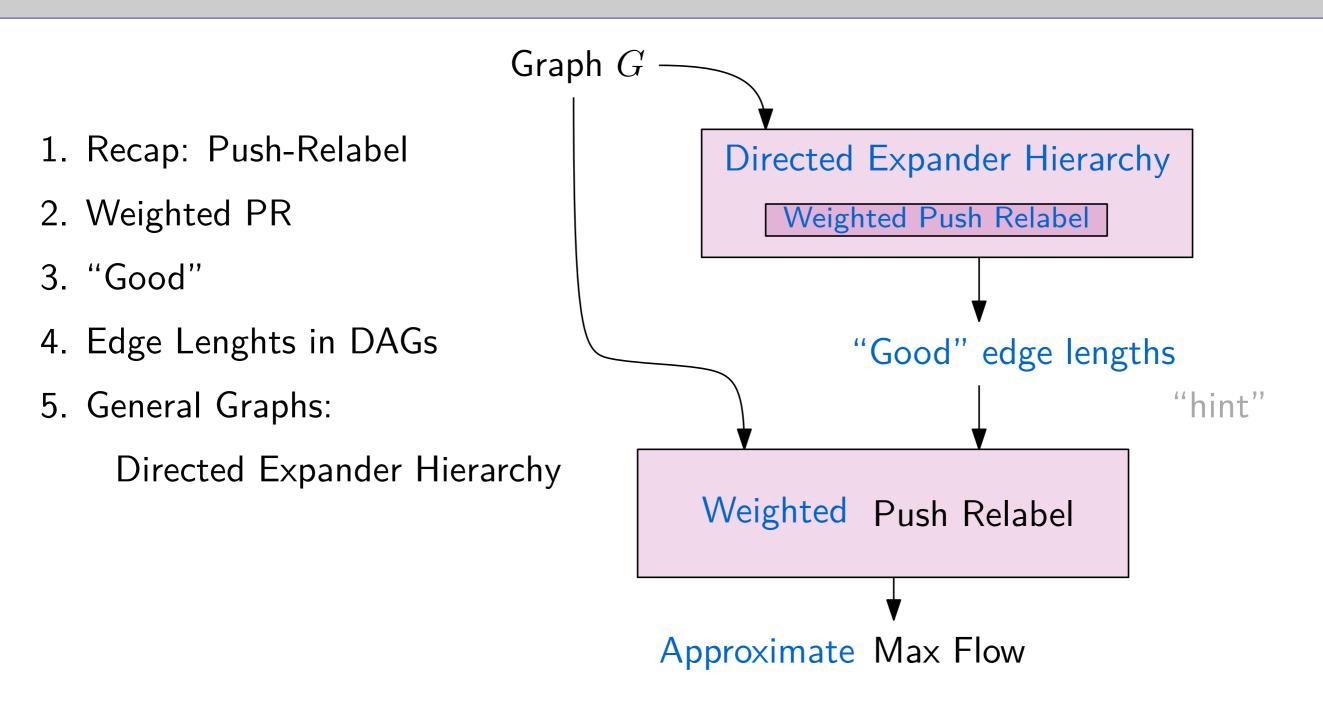


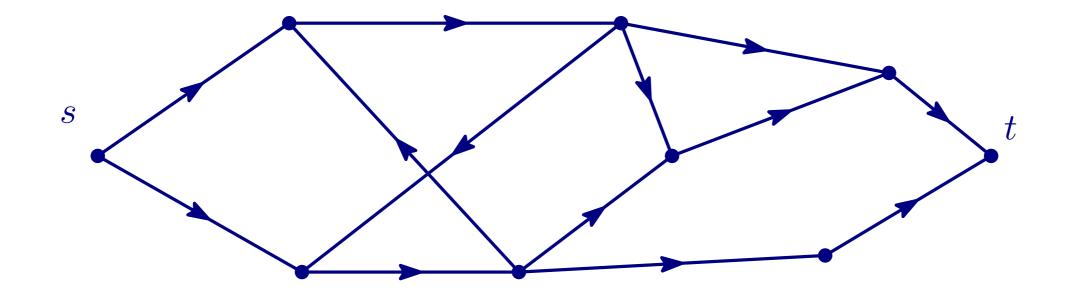




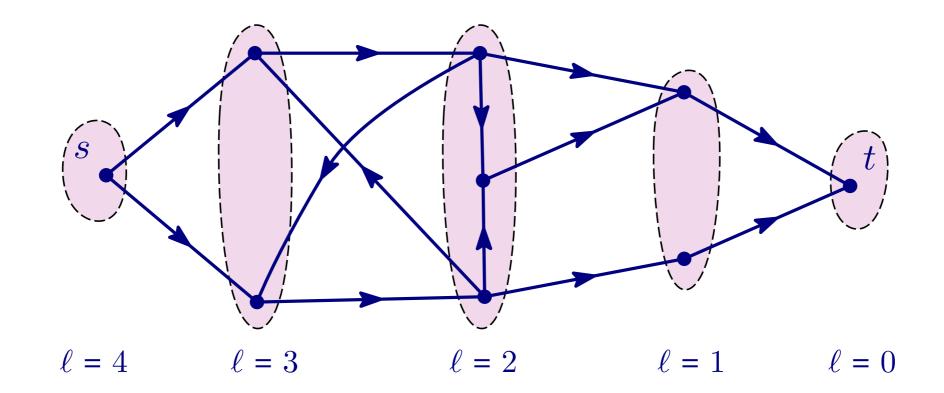








 $\ell(v) = \operatorname{dist}(v, t)$



٠

 $\ell(v) = \operatorname{dist}(v, t)$

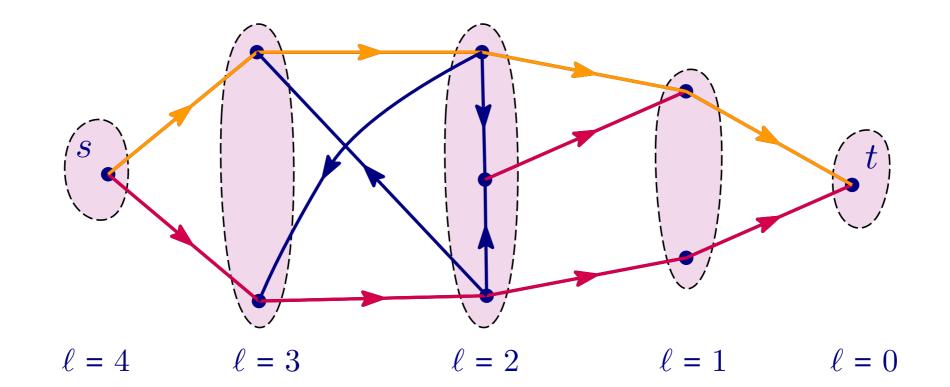
edge e = (u, v) admissible iff $\ell(u) = \ell(v) + 1$

•

 $\ell = 4 \qquad \ell = 3 \qquad \ell = 2 \qquad \ell = 1 \qquad \ell = 0$

 $\ell(v) = \operatorname{dist}(v, t)$

edge e = (u, v) admissible iff $\ell(u) = \ell(v) + 1$



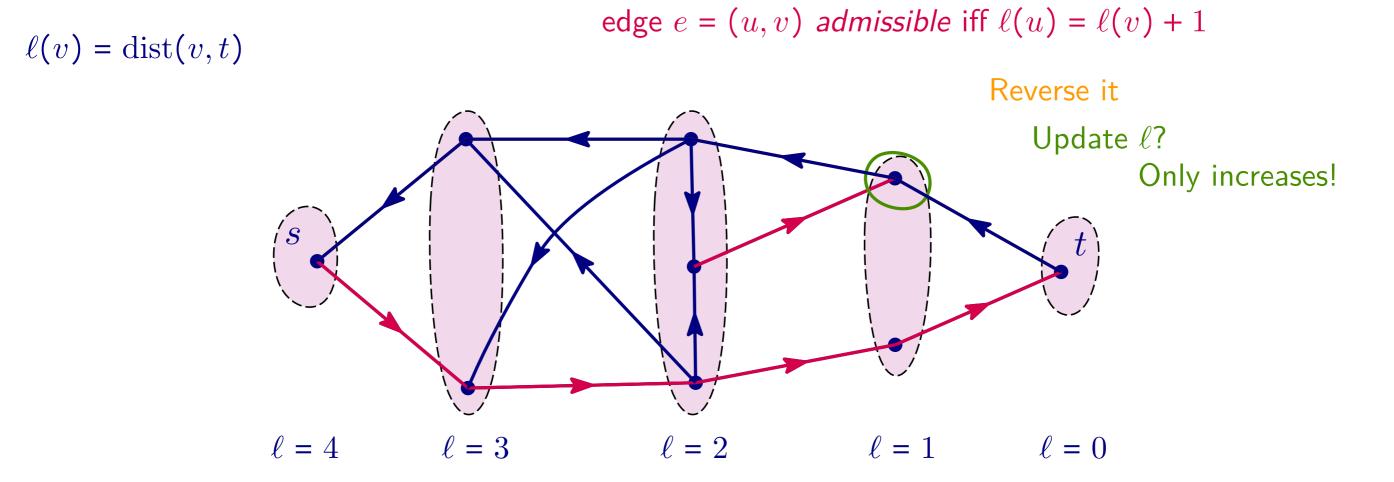
Shortest Augmenting Path: follow admissible edges from s

 $\ell(v) = \operatorname{dist}(v, t)$

Reverse it $\ell = 4$ $\ell = 3$ $\ell = 2$ $\ell = 1$ $\ell = 0$

edge e = (u, v) admissible iff $\ell(u) = \ell(v) + 1$

Shortest Augmenting Path: follow admissible edges from s

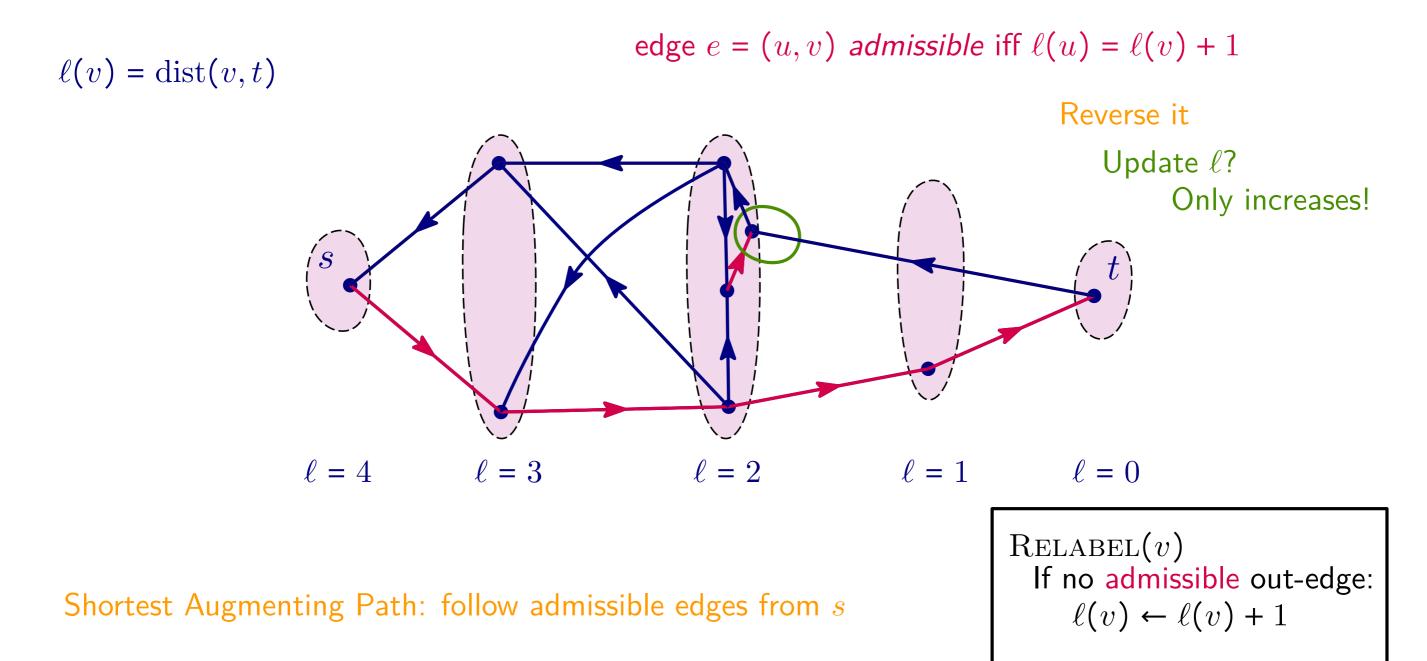


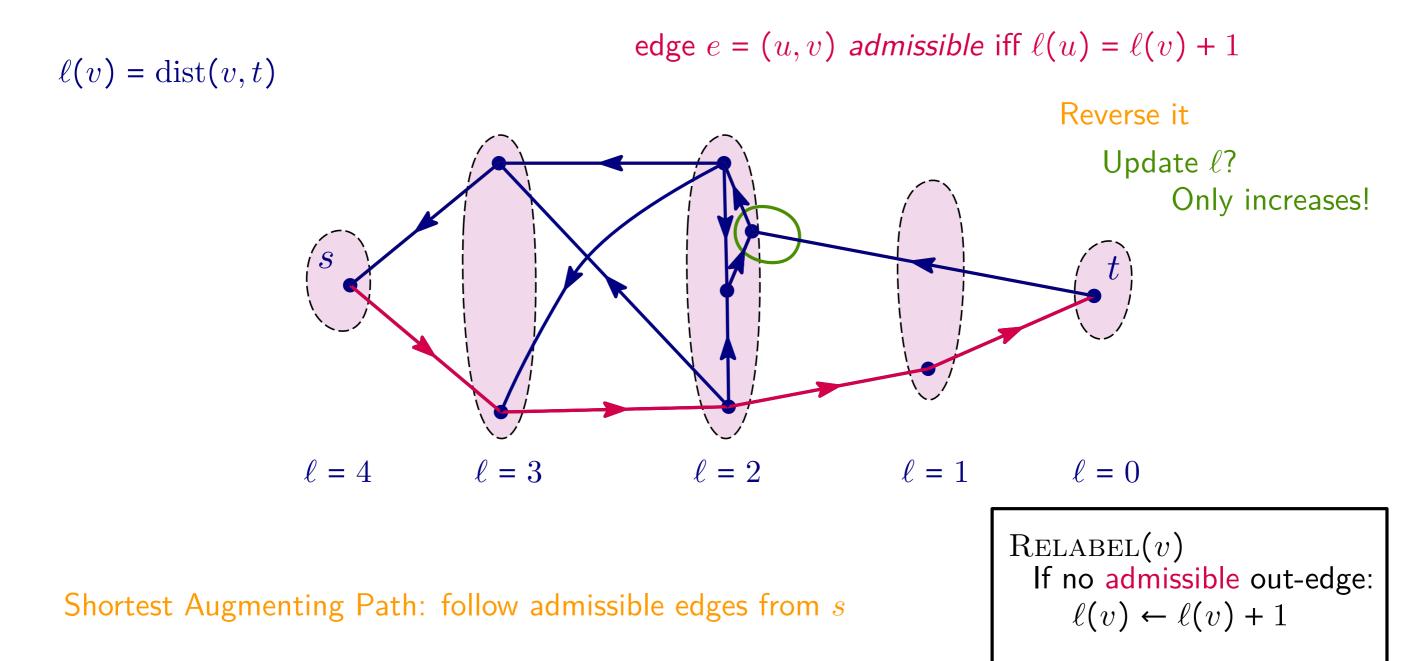
Shortest Augmenting Path: follow admissible edges from s

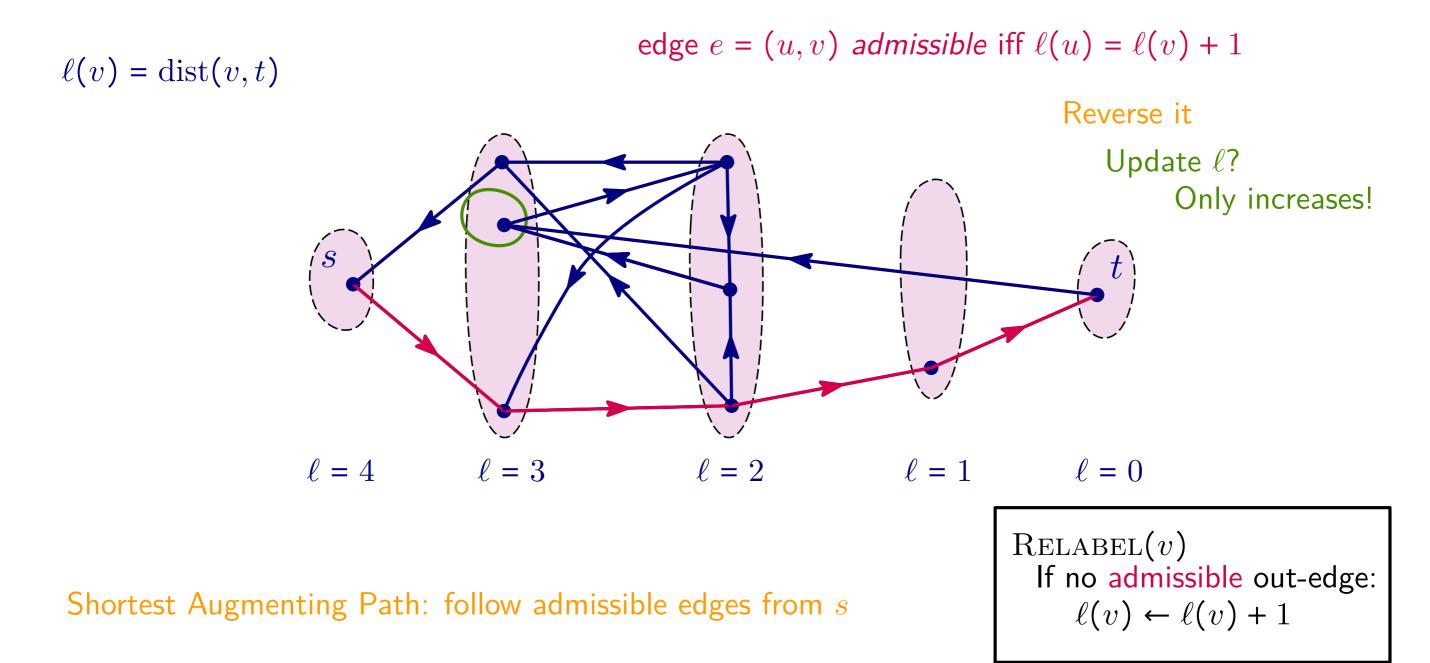
edge e = (u, v) admissible iff $\ell(u) = \ell(v) + 1$ $\ell(v) = \operatorname{dist}(v, t)$ Reverse it Update ℓ ? Only increases! $\ell = 3$ $\ell = 2$ $\ell = 4$ $\ell = 1 \qquad \qquad \ell = 0$

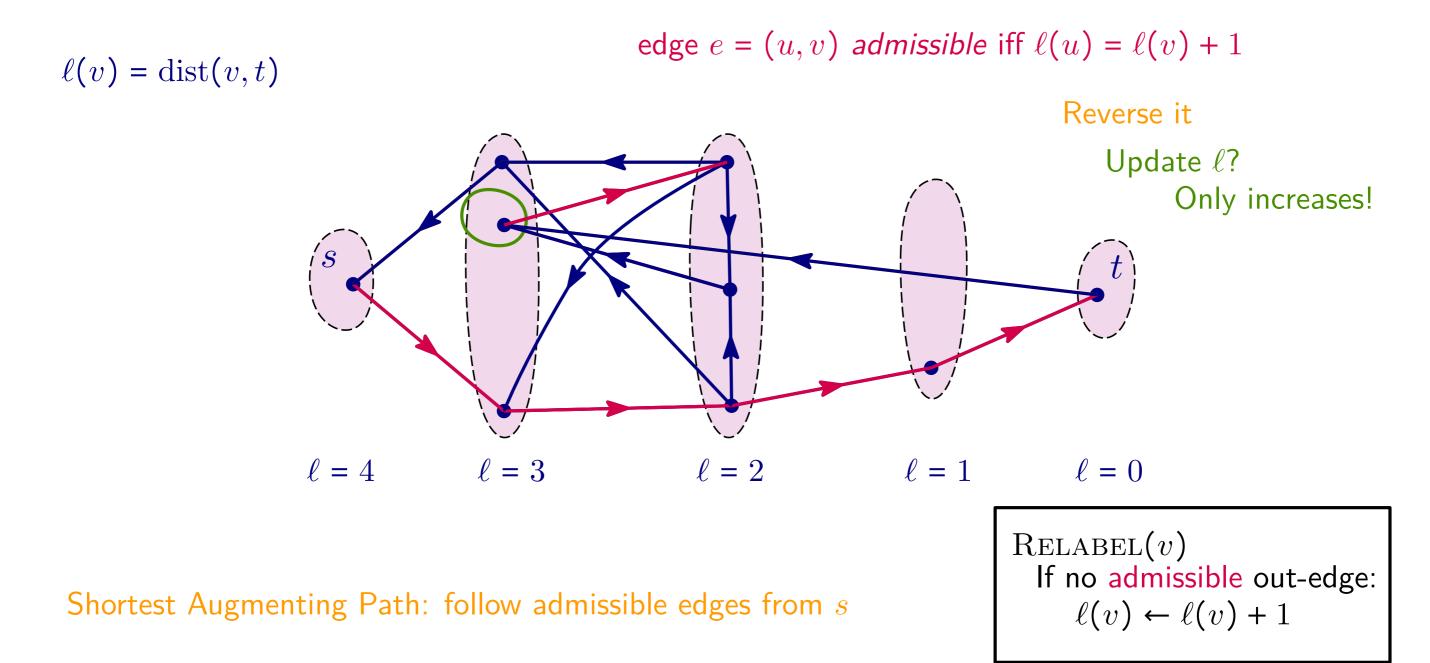
Shortest Augmenting Path: follow admissible edges from s

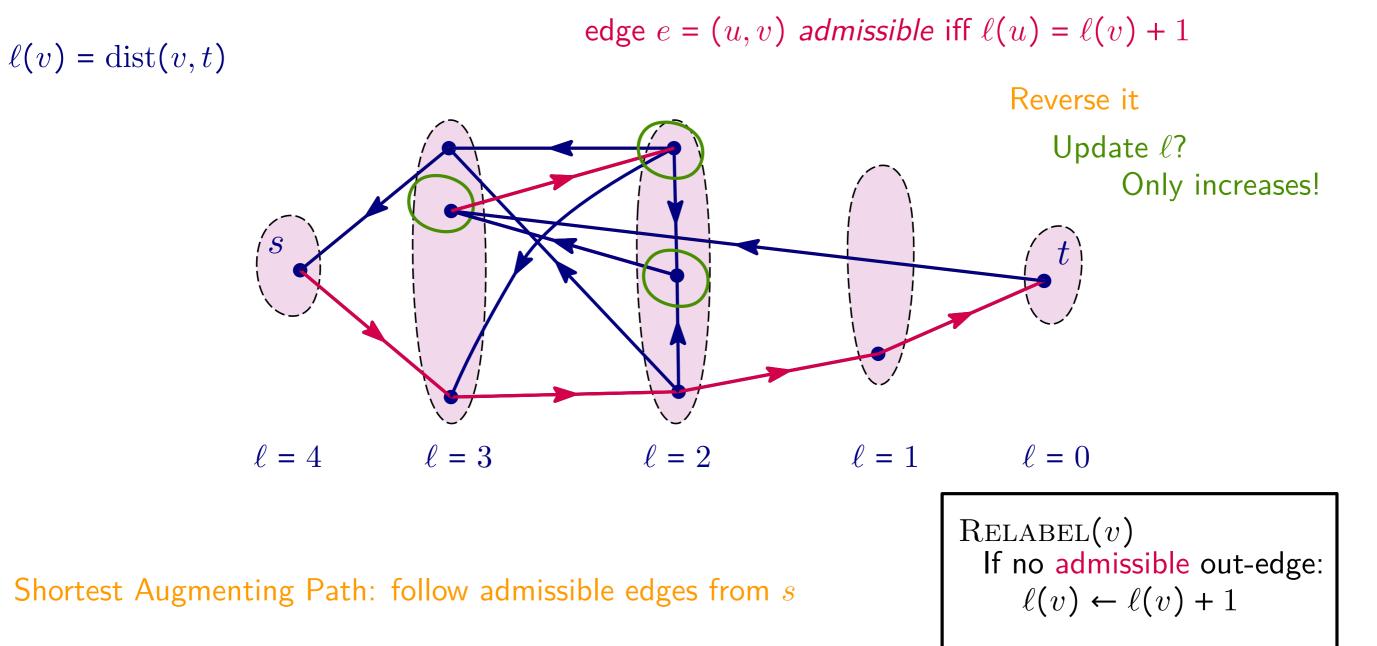
RELABEL(v) If no admissible out-edge: $\ell(v) \leftarrow \ell(v) + 1$

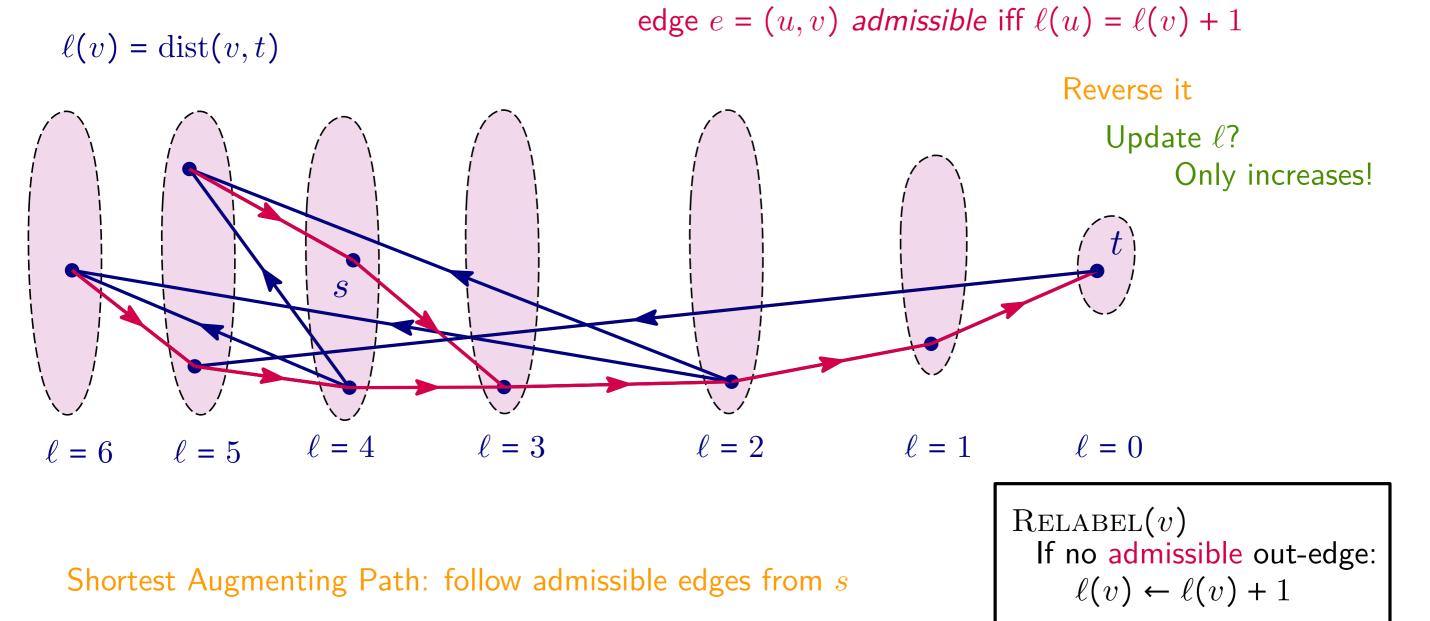


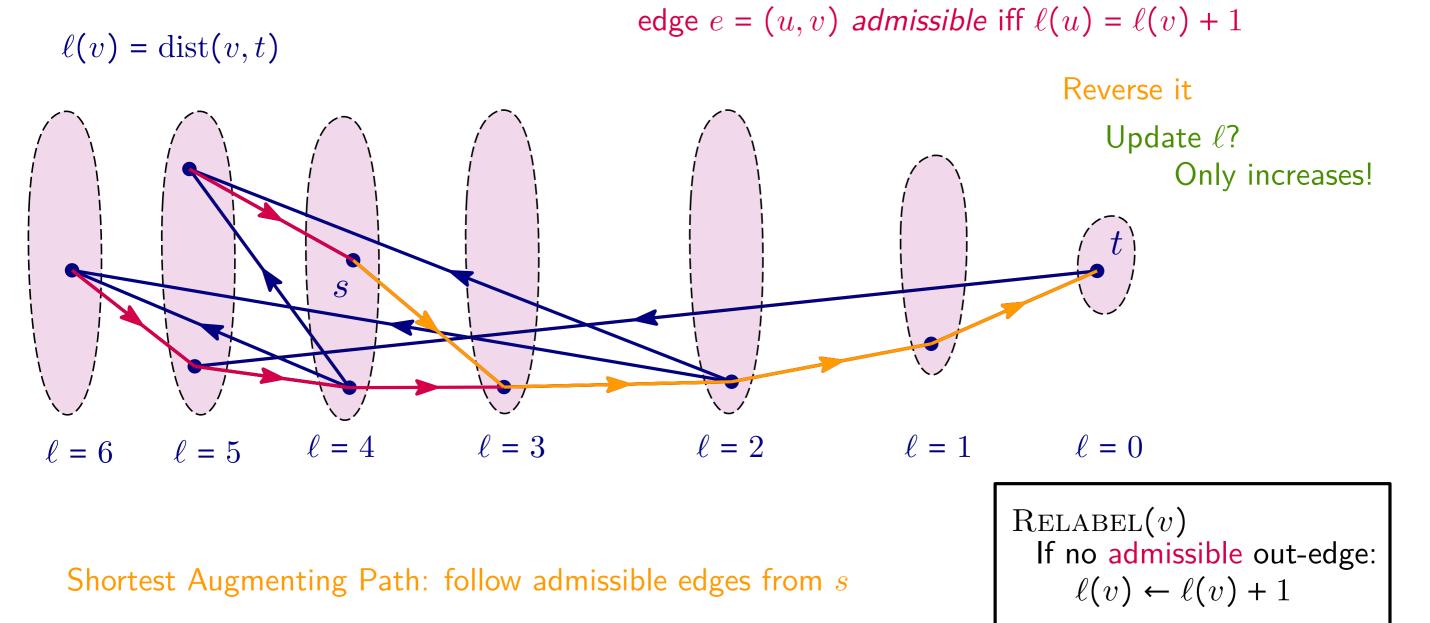












Relabel

 $O(n^2)$ (*n* vertices, *n* layers)

Relabel

 $O(n^2)$ (*n* vertices, *n* layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Relabel

 $O(n^2)$ (*n* vertices, *n* layers)

Keeping track of admissible edges:O(nm)(after relabel: recheck incident edges)AugmentationsO(nm)(n per edge)

Relabel

Keeping track of admissible edges:O(nm)AugmentationsO(nm)

 $O(n^2)$ (*n* vertices, *n* layers)

O(nm) (after relabel: recheck incident edges) O(nm) (*n* per edge)

Relabel

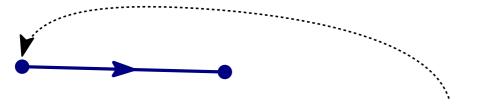
Keeping track of admissible edges:

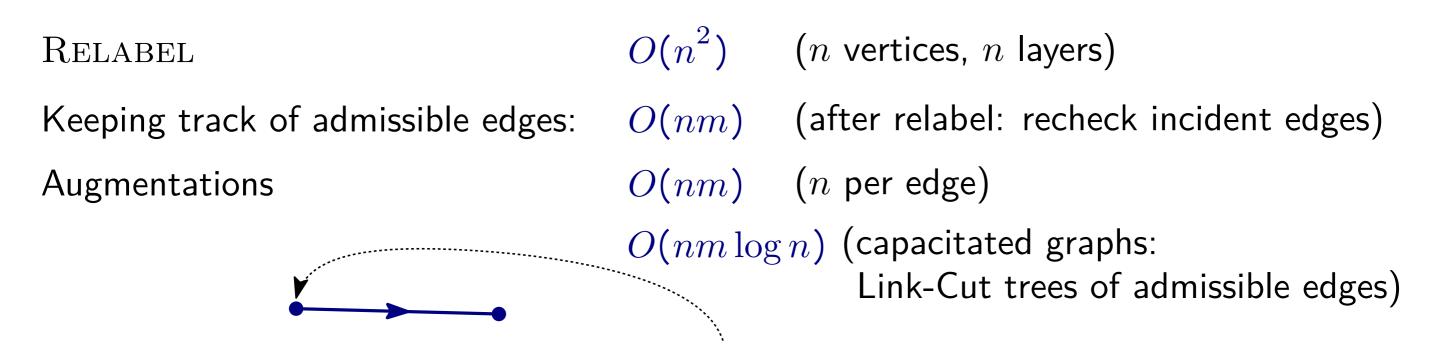
Augmentations

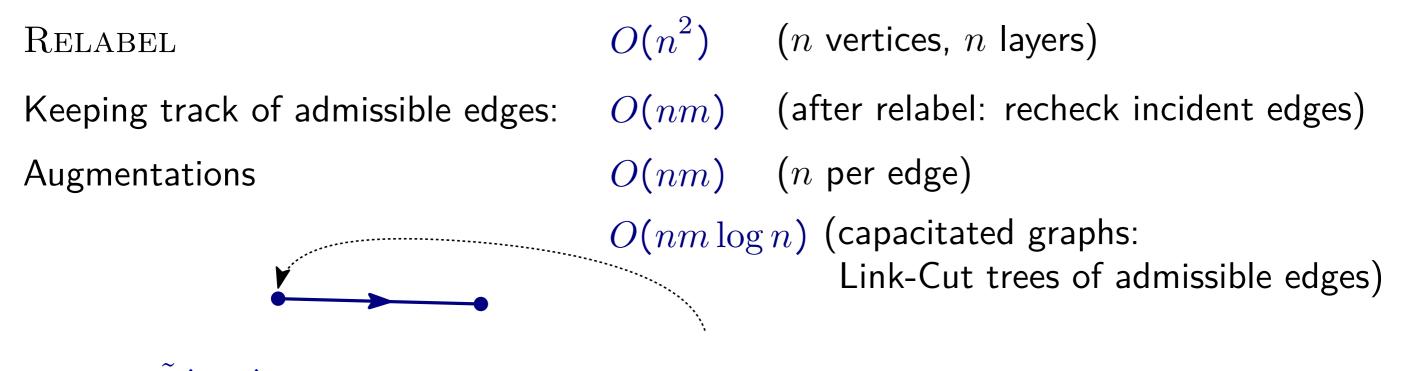
 $O(n^2)$ O(nm)O(nm)

 $O(n^2)$ (*n* vertices, *n* layers)

O(nm) (after relabel: recheck incident edges) O(nm) (*n* per edge)

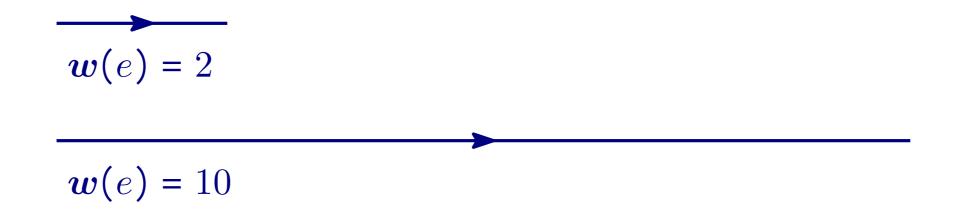


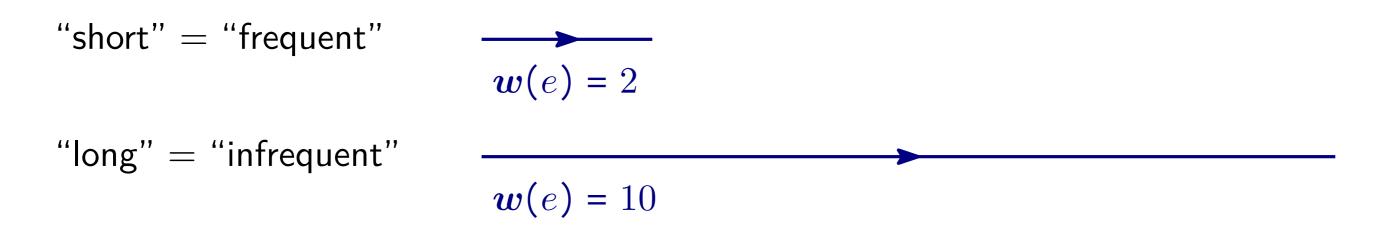


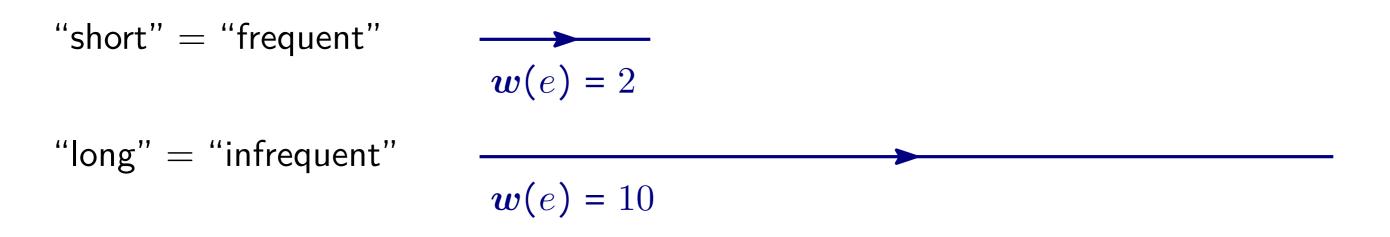


Total: $\tilde{O}(nm)$

How to speed it up?

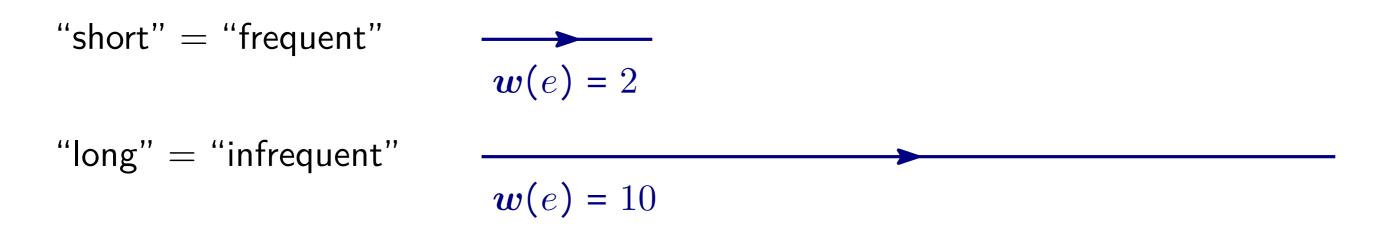






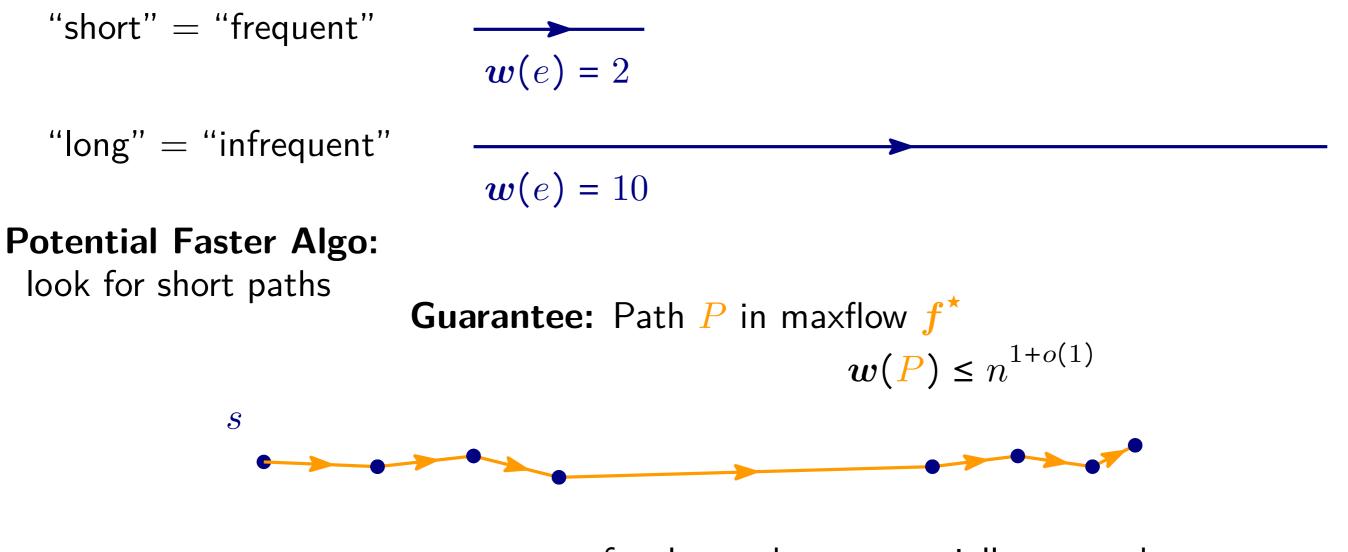
Guarantee: Path P in maxflow f^{\star}

few long edges, potentially many short



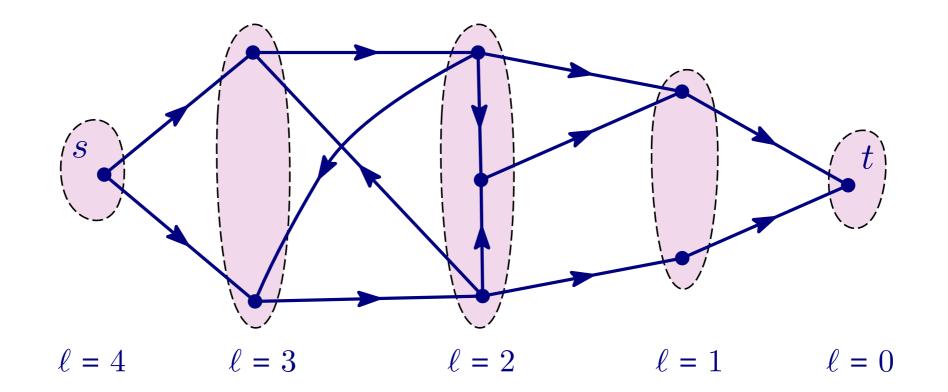


few long edges, potentially many short

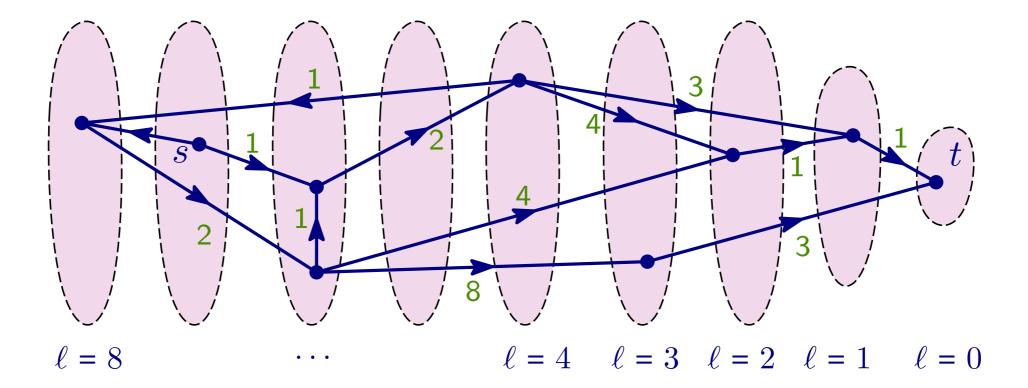


few long edges, potentially many short

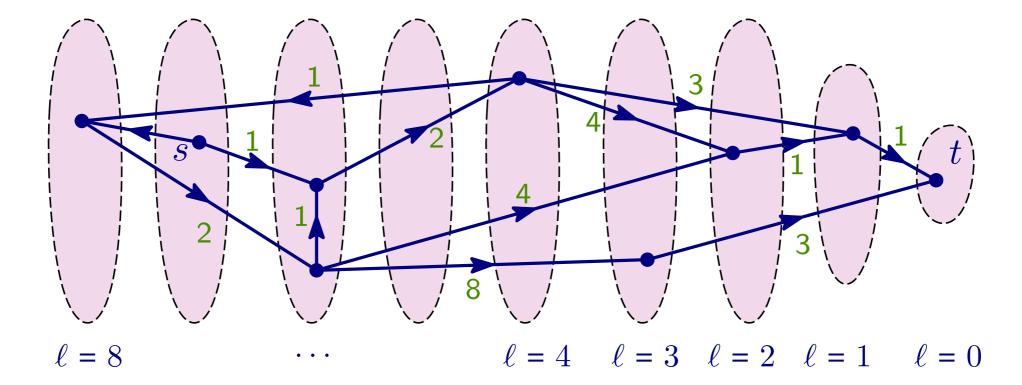
 $\ell(v) = \operatorname{dist}(v, t)$



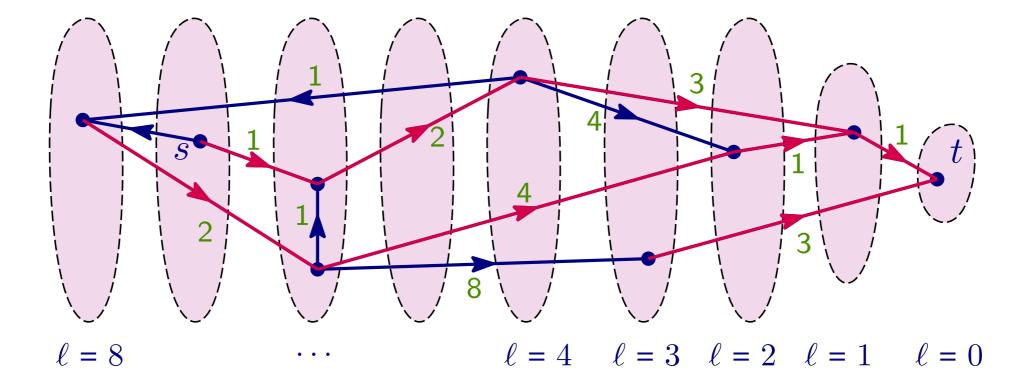
 $\ell(v) = \text{dist}_{\boldsymbol{w}}(v,t)$



 $\ell(v) = \operatorname{dist}_{w}(v, t)$ edge e = (u, v) admissible iff $\ell(u) = \ell(v) + 1$



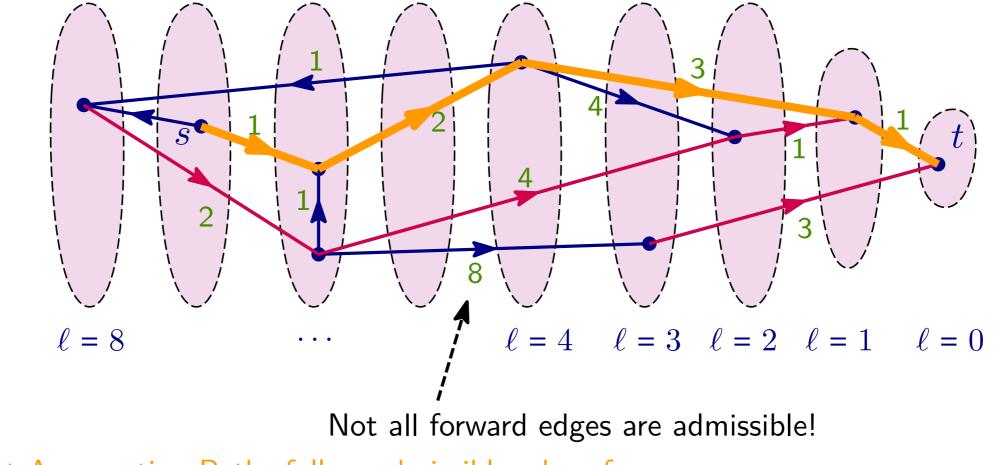
 $\ell(v) = \operatorname{dist}_{w}(v, t) \qquad \text{edge } e = (u, v) \text{ admissible iff } \ell(u) = \ell(v) + w(e)$



 $\ell(v) = \text{dist}_{\boldsymbol{w}}(v,t)$ edge e = (u, v) admissible iff $\ell(u) = \ell(v) + w(e)$ 3 2 $\ell = 4 \quad \ell = 3 \quad \ell = 2 \quad \ell = 1 \quad \ell = 0$ $\ell = 8$. . .

Not all forward edges are admissible!

 $\ell(v) = \operatorname{dist}_{w}(v, t) \qquad \text{edge } e = (u, v) \text{ admissible iff } \ell(u) = \ell(v) + w(e)$



w-Shortest Augmenting Path: follow admissible edges from s

 $\ell(v) \approx \operatorname{dist}_{w}(v,t)$ edge e = (u, v) admissible iff $\ell(u) \approx \ell(v) + w(e)$ 31 2 $\ell = 4 \quad \ell = 3 \quad \ell = 2 \quad \ell = 1 \quad \ell = 0$ $\ell = 8$. . . Not all forward edges are admissible!

 $\approx w$ -Shortest Augmenting Path: follow admissible edges from s

Relabel

Keeping track of admissible edges: Augmentations

 $O(n^2)$ (*n* vertices, *n* layers) O(nm) (after relabel: recheck incident edges) O(nm) (*n* per edge) $O(nm \log n)$ (capacitated graphs: Link-Cut trees of admissible edges)

Relabel

Keeping track of admissible edges:

Augmentations

 $O(n^2)$ (*n* vertices, *n* layers) O(nm) (after relabel: recheck incident edges) O(nm) (*n* per edge) $O(nm \log n)$ (capacitated graphs: Link-Cut trees of admissible edges)

Relabel

Keeping track of admissible edges:

Augmentations

 $O(n^2)$ (*n* vertices, *n* layers) Q(nm) (after relabel: recheck incident edges) O(nm) (*n* per edge) $O(nm \log n)$ (capacitated graphs: Link-Cut trees of admissible edges)

(#layers = 100n, or $n^{1+o(1)}$)

Goal: $\tilde{O}\left(\sum_{e \in E} \frac{\# \text{layers}}{w(e)}\right)$

Relabel

Keeping track of admissible edges:

Augmentations

 $O(n^2)$ (*n* vertices, *n* layers) s: O(nm) (after relabel: recheck incident edges) O(nm) (*n* per edge) $O(nm \log n)$ (capacitated graphs: Link-Cut trees of admissible edges) $1\pm o(1)$

Goal: $\tilde{O}\left(\sum_{e \in E} \frac{\# \text{layers}}{w(e)}\right)$

 $(\# \text{layers} = 100n, \text{ or } n^{1+o(1)})$

After relabel v: recheck only incident edges e where w(e) divides $\ell(v)$

Relabel

Keeping track of admissible edges: Augmentations

Goal: $\tilde{O}\left(\sum_{e \in E} \frac{\# \text{layers}}{w(e)}\right)$

 $O(n^2)$ (*n* vertices, *n* layers) O(nm) (after relabel: recheck incident edges) O(nm) (*n* per edge) $O(nm \log n)$ (capacitated graphs: Link-Cut trees of admissible edges)

$$(\# \text{layers} = 100n, \text{ or } n^{1+o(1)})$$

After relabel v: recheck only incident edges e where w(e) divides $\ell(v)$

Augmentations

Relabel

Keeping track of admissible edges:

Goal: $\tilde{O}\left(\sum_{e \in E} \frac{\# \text{layers}}{w(e)}\right)$

Augmentations

 $O(n^2)$ (*n* vertices, *n* layers) O(nm) (after relabel: recheck incident edges) O(nm) (*n* per edge) $O(nm \log n)$ (capacitated graphs: Link-Cut trees of admissible edges)

$$(\# \text{layers} = 100n, \text{ or } n^{1+o(1)})$$

After relabel v: recheck only incident edges e where w(e) divides $\ell(v)$

Augmentations

Relabel

Keeping track of admissible edges: Augmentations

Goal: $\tilde{O}\left(\sum_{e \in E} \frac{\# \text{layers}}{w(e)}\right)$

 $O(n^2)$ (*n* vertices, *n* layers) O(nm) (after relabel: recheck incident edges) O(nm) (*n* per edge) $O(nm \log n)$ (capacitated graphs: Link-Cut trees of admissible edges)

$$(\# \text{layers} = 100n, \text{ or } n^{1+o(1)})$$

After relabel v: recheck only incident edges e where w(e) divides $\ell(v)$

Augmentations

$$\ell(u) \approx \ell(v) + w(e)$$

$$\ell(v) \text{ inc. by } 2w(e)$$

Pseudo-Code

Algorithm 1: PUSHRELABEL $(G, c, \Delta, \nabla, w, h)$ 1 Initialize f as the empty flow. 2 Let $\ell(v) = 0$ for all $v \in V$. // levels 3 Mark each edge $e \in \vec{E} \cup \overleftarrow{E}$ as *inadmissible* and all vertices as *alive*. 4 function Relabel(v)Set $\ell(v) \leftarrow \ell(v) + 1$. 5 if $\ell(v) > 9h$ then 6 mark v as *dead* and **return**. 7 for each edge $e \ni v$ where w(e) divides $\ell(v)$ do 8 Let (x, y) = e. 9 if $\ell(x) - \ell(y) \ge 2w(e)$ and $c_f(e) > 0$ then mark e as admissible. 10else mark *e* as *inadmissible*. 11 12 main loop while there is an alive vertex v with $\nabla_f(v) = 0$ and without an admissible out-edge do 13RELABEL(v) $\mathbf{14}$ if there is some alive vertex s with $\Delta_f(s) > 0$ then 15// P is an "augmenting path" Trace a path P from s to some sink t, by arbitrarily following admissible out-edges. 16Let $c^{\text{augment}} \leftarrow \min\{\Delta_f(s), \nabla_f(t), \min_{e \in P} c_f(e)\}.$ 17 for $e \in P$ do // Augment f along P18 if e is a forward edge then $f(e) \leftarrow f(e) + c^{\text{augment}}$. 19else $f(e') \leftarrow f(e') - c^{\text{augment}}$, where e' is the corresponding forward edge to e. $\mathbf{20}$ Adjust residual capacities c_f of e and the corresponding reverse edge. $\mathbf{21}$ if $c_f(e) = 0$ then mark *e* as *inadmissible*. $\mathbf{22}$ // $\mathbf{\Delta}_{m{f}}(s)$ and $\mathbf{
abla}_{m{f}}(t)$ goes down by $c^{ ext{augment}}$ else return f $\mathbf{23}$

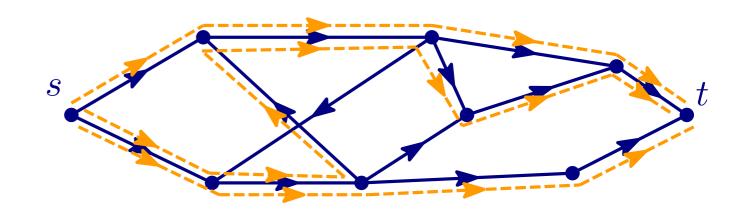
Similar to normal Augment-Relabel / Push-Relabel

Good Edge Lengths

• Good w:

• $\sum_{e \in E} \frac{n}{w(e)}$ is small

 $(\approx n^{2+o(1)}, \text{ running-time})$ (flow paths of length $\approx n^{1+o(1)}$) • "Optimal" flow f^{\star} which is short w.r.t. w



Good Edge Lengths

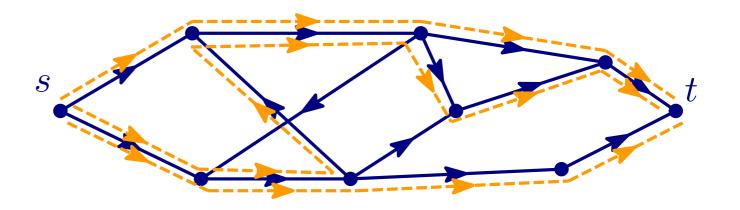
Good w:

•
$$\sum_{e \in E} \frac{n}{w(e)}$$
 is small

 $(\approx n^{2+o(1)}, \text{ running-time})$ (flow paths of length $\approx n^{1+o(1)}$) • "Optimal" flow f^{\star} which is short w.r.t. w

Lemma.

Weighted Push-Relabel finds fwith $|f| \ge \frac{1}{10}|f^{\star}|$



Good Edge Lengths

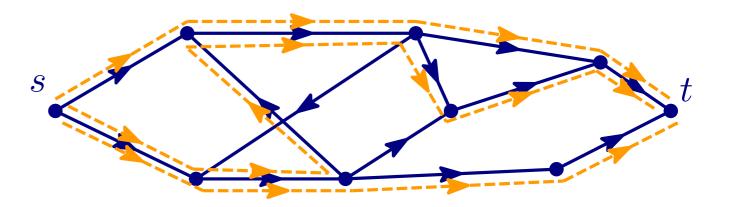
■ *Good w*:

•
$$\sum_{e \in E} \frac{n}{w(e)}$$
 is small

• "Optimal" flow f^{\star} which is short w.r.t. w (flow paths of length $\approx n^{1+o(1)}$)

Lemma.

Weighted Push-Relabel finds fwith $|f| \ge \frac{1}{10} |f^{\star}|$



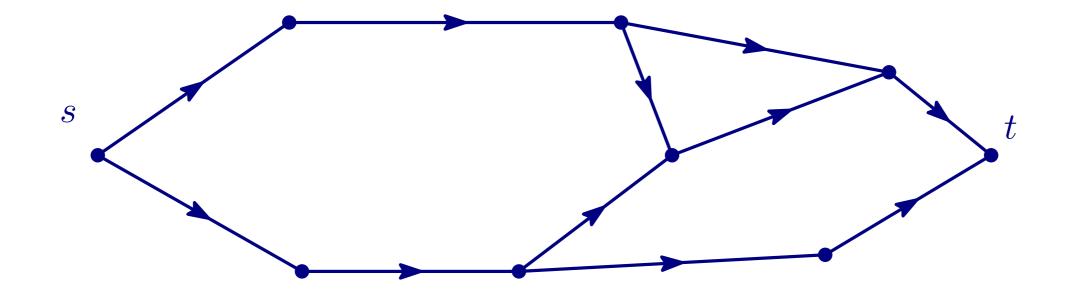
 $(\approx n^{2+o(1)}, \text{ running-time})$

Proof Sketch.

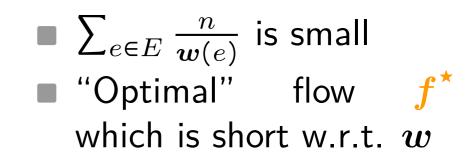
If not: $|f| < \frac{1}{10} |f^{\star}|$ \implies some flow path is still short in residual graph G_f

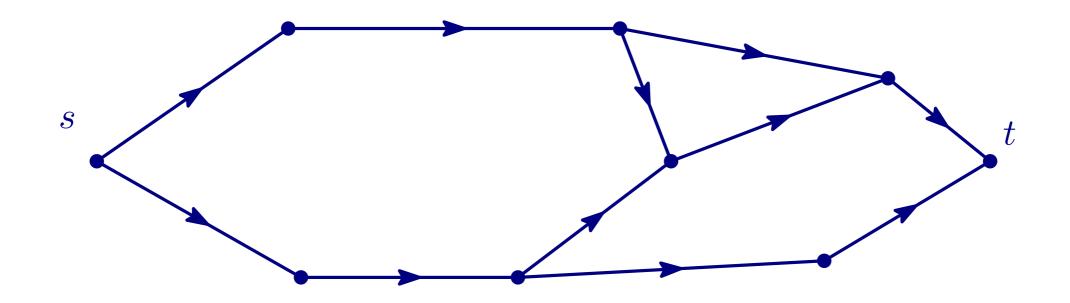
How to find good edge lengths?

Def: no directed cycles



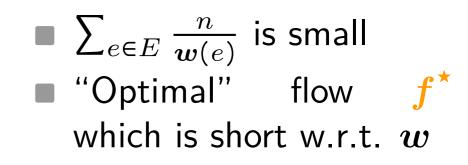
Def: no directed cycles

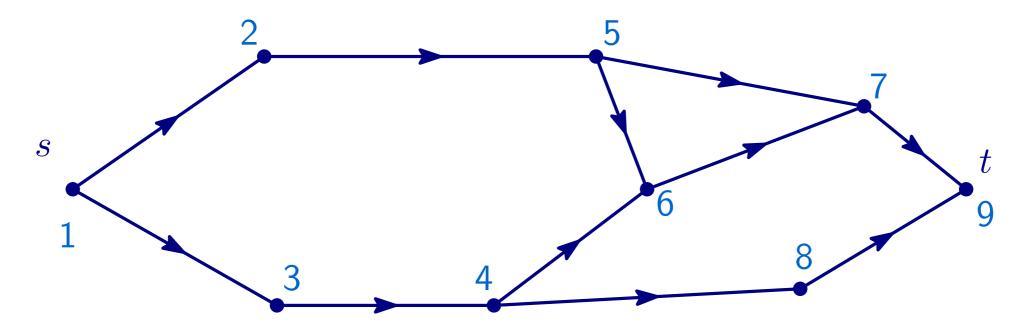




Def: no directed cycles

Topological order au

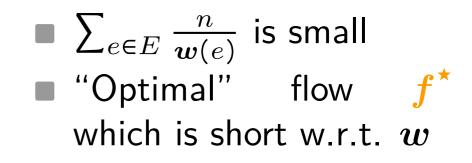


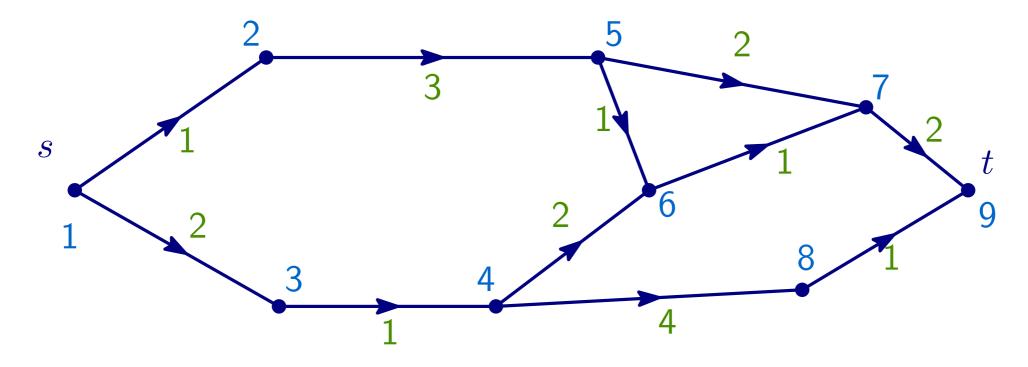


Def: no directed cycles

Topological order au

 $w(u,v) = |\tau(u) - \tau(v)|$



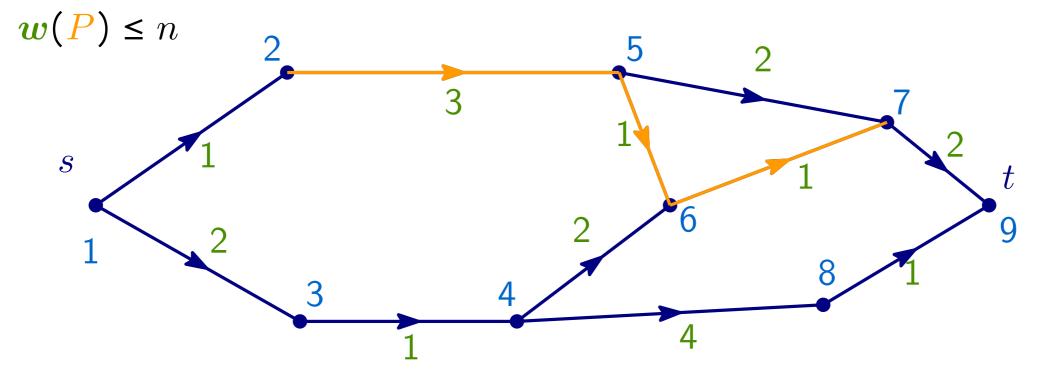


Def: no directed cycles

Topological order τ

 $w(u,v) = |\tau(u) - \tau(v)|$

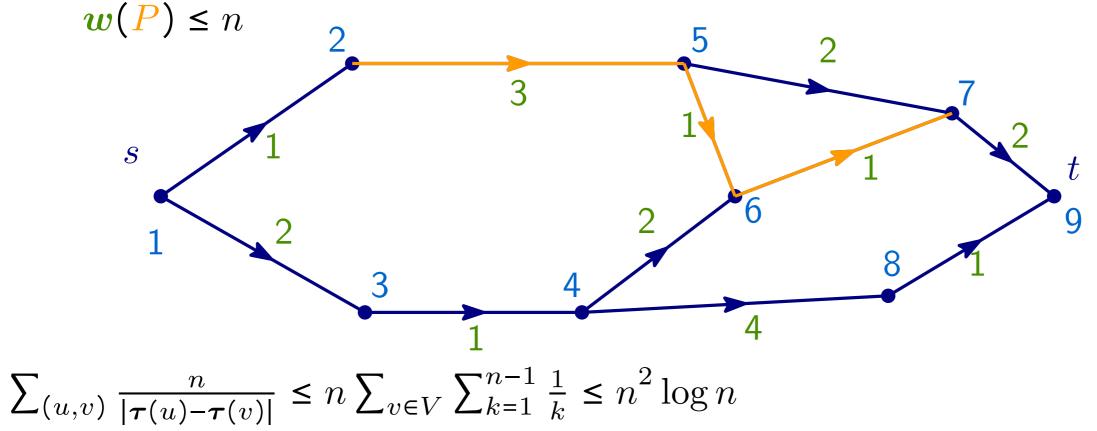
Good edge lenghts w? • $\sum_{e \in E} \frac{n}{w(e)}$ is small "Optimal" flow f which is short w.r.t. w f^{\star}

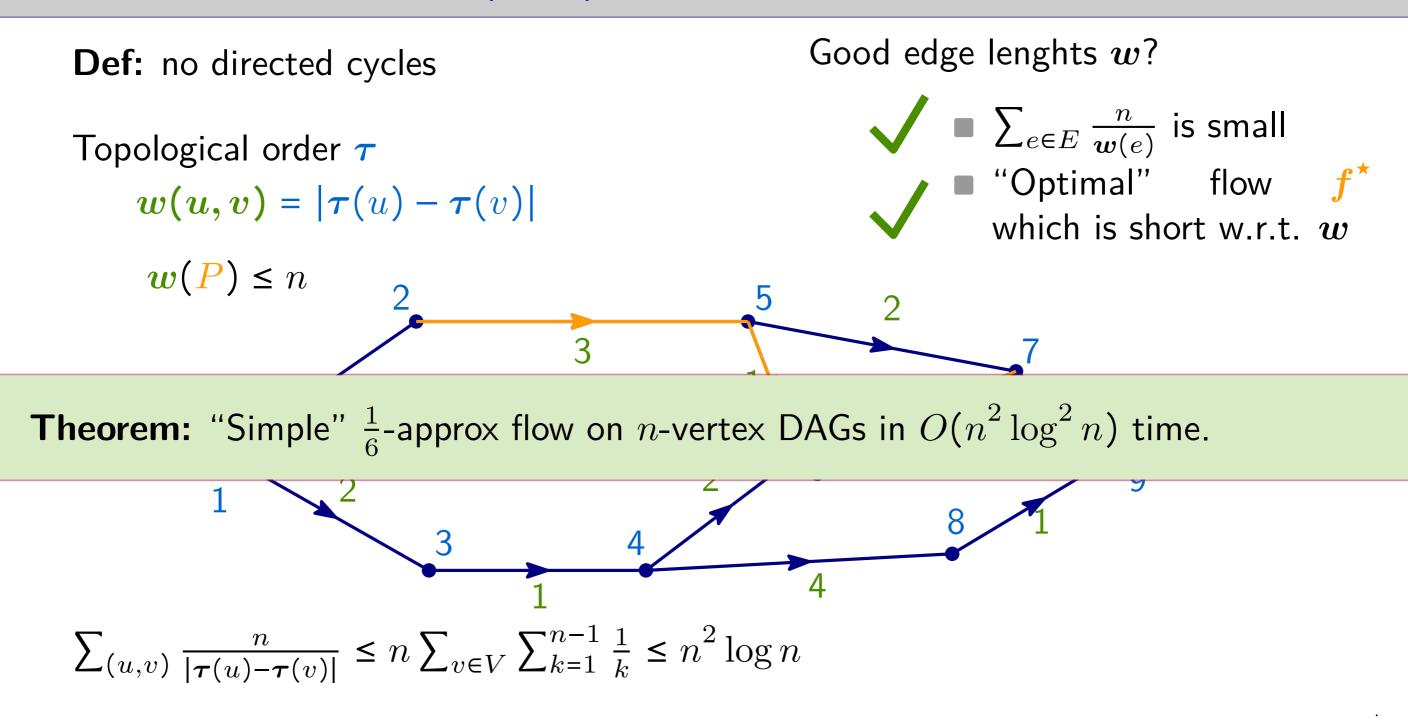


Def: no directed cycles

- Topological order au
 - $w(u,v) = |\tau(u) \tau(v)|$

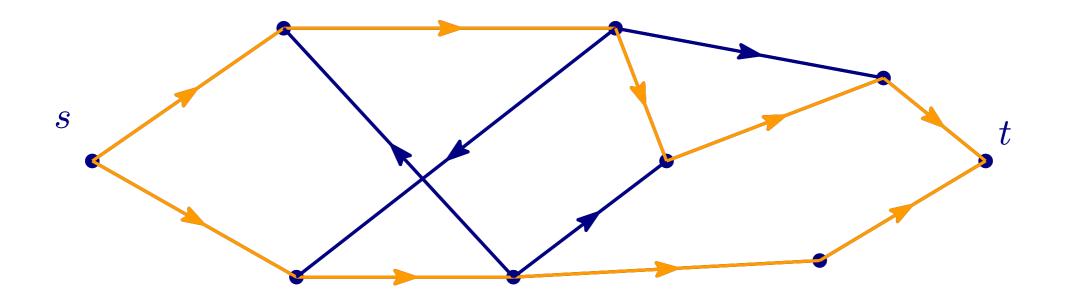
Good edge lenghts w? $\int \sum_{e \in E} \frac{n}{w(e)}$ is small "Optimal" flow f^* which is short w.r.t. w



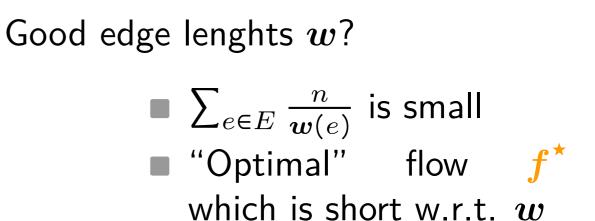


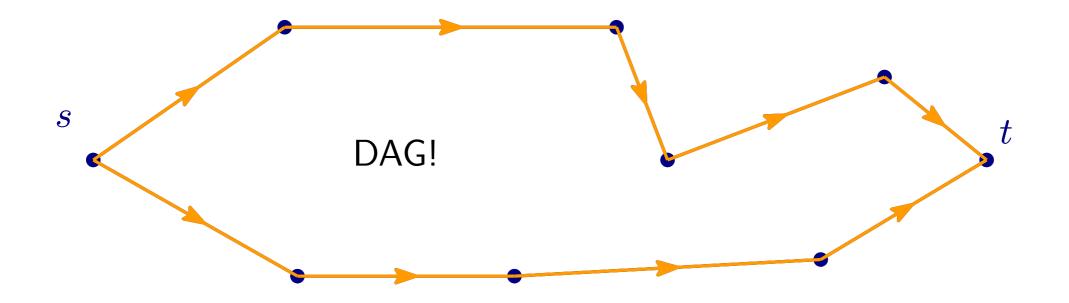
1. Compute maxflow f^{\star}

Good edge lenghts w? $\sum_{e \in E} \frac{n}{w(e)} \text{ is small}$ $\text{"Optimal" flow } f^{\star}$ which is short w.r.t. w

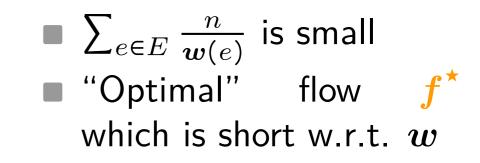


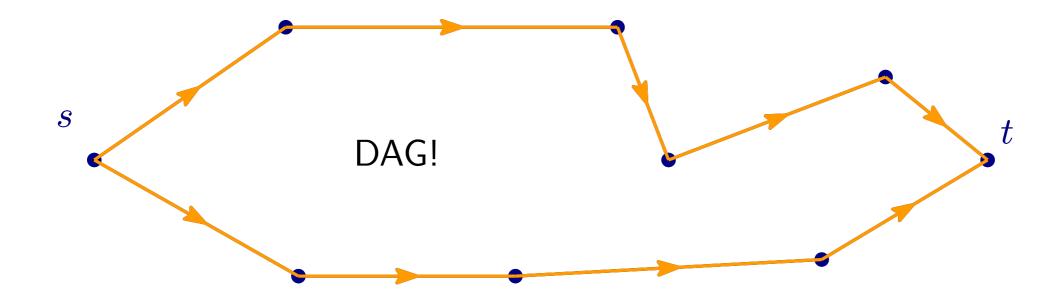
- 1. Compute maxflow f^{\star}
- 2. Look at graph induced by f^{\star}



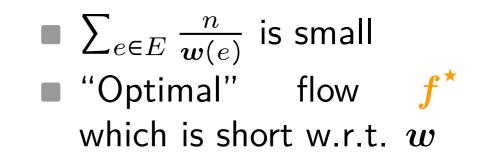


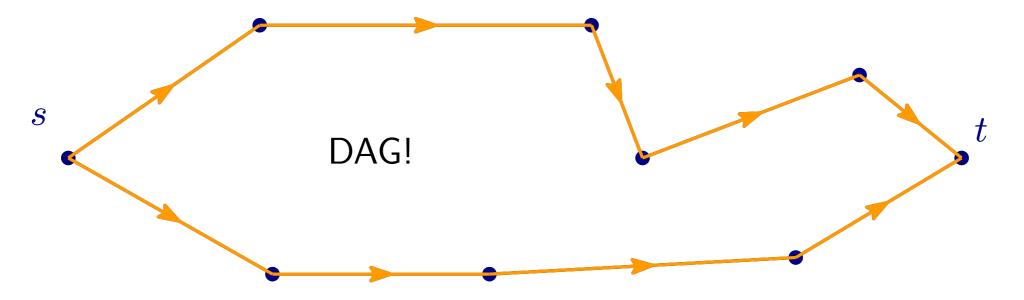
- 1. Compute maxflow f^{\star}
- 2. Look at graph induced by f^{\star}
- 3. Edge lengths \boldsymbol{w} from topological order



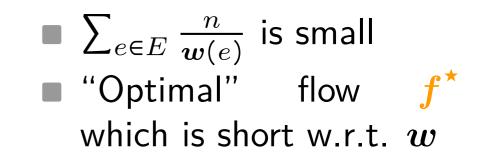


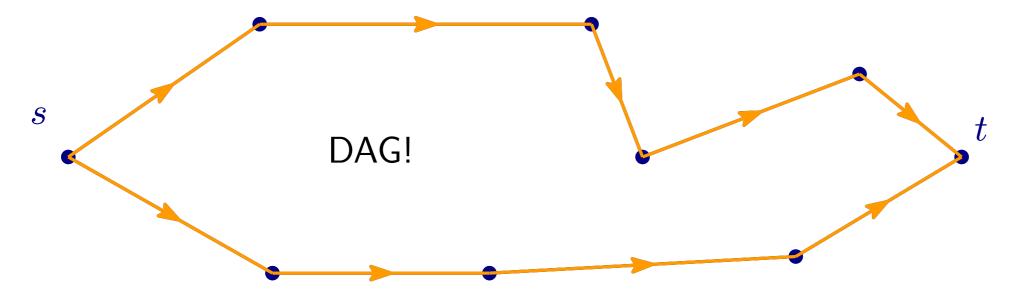
- 1. Compute maxflow f^{\star}
- 2. Look at graph induced by f^{\star}
- 3. Edge lengths \boldsymbol{w} from topological order
- 4. Use weighted push-relabel to solve approx maxflow :)

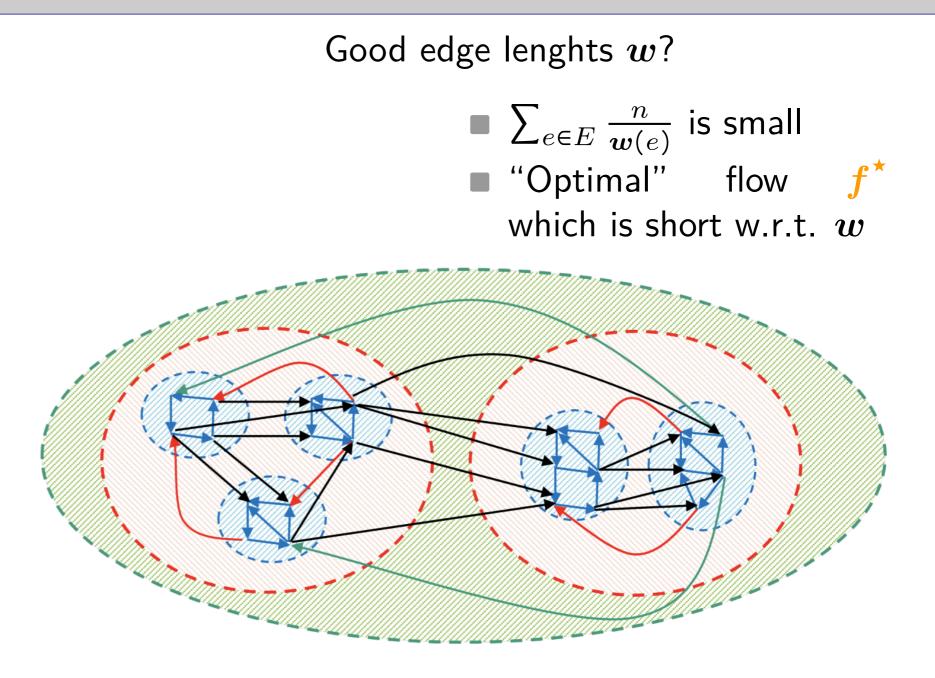




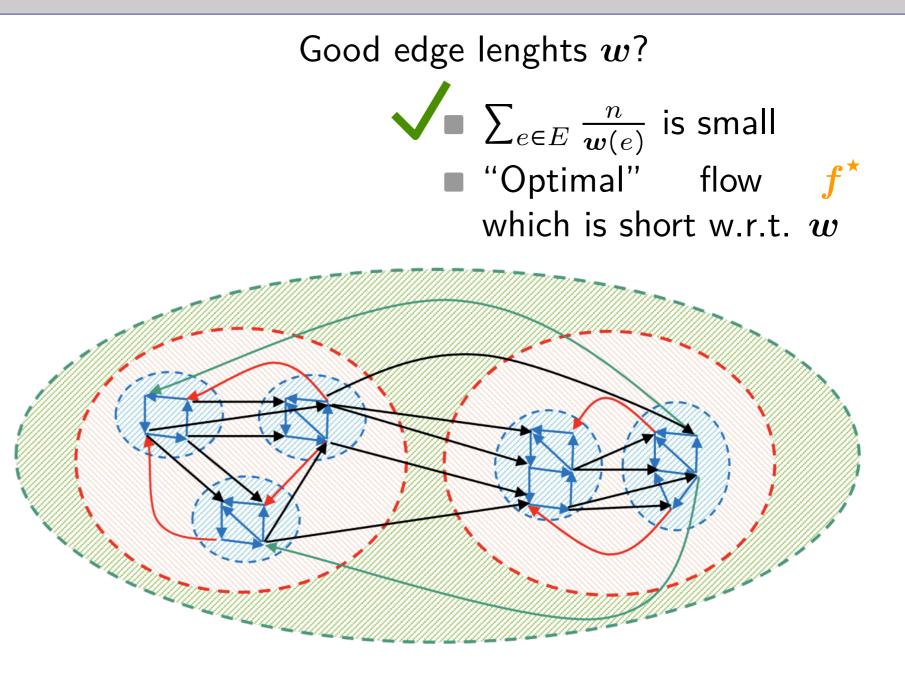
- 1. Compute maxflow $f^* \leftarrow Cheating!$
- 2. Look at graph induced by f^{\star}
- 3. Edge lengths \boldsymbol{w} from topological order
- 4. Use weighted push-relabel to solve approx maxflow :)





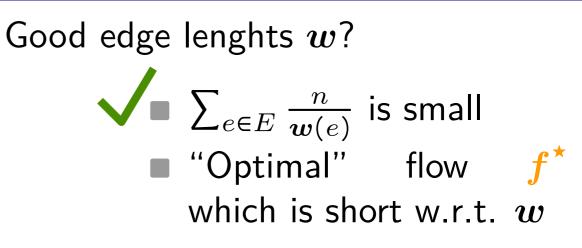


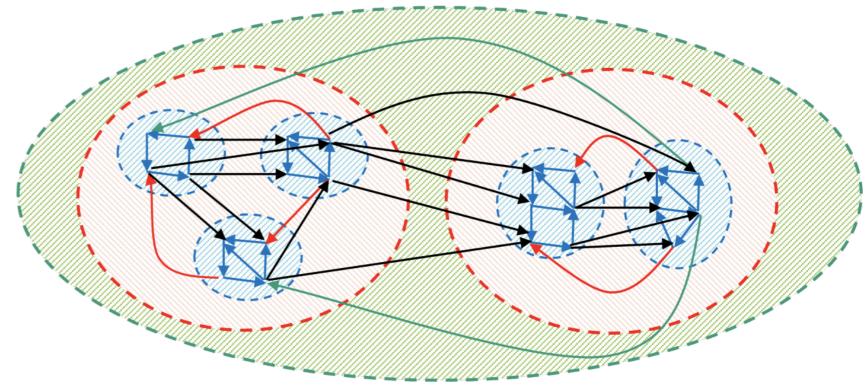
"Pseudo-Topological" order τ $w(u,v) = |\tau(u) - \tau(v)|$



"Pseudo-Topological" order τ $w(u,v) = |\tau(u) - \tau(v)|$

Directed Expander Hierarchy





Good edge lenghts w? "Pseudo-Topological" order au $\bigvee \sum_{e \in E} \frac{n}{w(e)}$ is small $w(u,v) = |\tau(u) - \tau(v)|$ "Optimal" flow **Directed Expander Hierarchy** which is short w.r.t. $m{w}$ Can build using $n^{o(1)}$ many maximum flow calls! (Cheating!)

"Pseudo-Topological" order τ $w(u,v) = |\tau(u) - \tau(v)|$ **Directed Expander Hierarchy** Can build using $n^{o(1)}$ many maximum flow calls! (Cheating!) **Instead**: **Build Bottom Up** Bootstrap Weighted P.R. (solve "easier" flow instances)

Good edge lenghts w? $\sum_{e \in E} \frac{n}{w(e)}$ is small "Optimal" flow which is short w.r.t. w

"Pseudo-Topological" order $\boldsymbol{\tau}$ $\boldsymbol{w(u,v)} = |\boldsymbol{\tau}(u) - \boldsymbol{\tau}(v)|$

Directed Expander Hierarchy Can build using $n^{o(1)}$ many maximum flow calls! (Cheating!)

Instead: Build Bottom Up Bootstrap Weighted P.R. (solve "easier" flow instances)

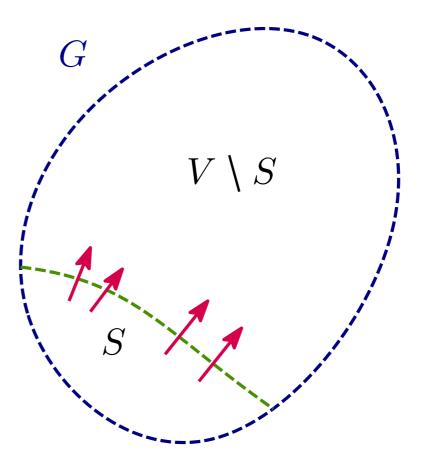
Technically Complicated :((bad guy: nestedness)

Good edge lenghts w? $\sum_{e \in E} \frac{n}{w(e)}$ is small "Optimal" flow which is short w.r.t. w(half of our 99 page paper)

(Directed) Expanders

Def: G is ϕ -expander if $E(S, V \setminus S) \ge \phi \cdot \min\{\operatorname{vol}(S), \operatorname{vol}(V \setminus S)\} \quad \forall S$

 $(\operatorname{vol}(S) = \sum_{v \in S} \operatorname{deg}(v), \phi \approx 1/n^{o(1)})$



(Directed) Expanders

Def: G is ϕ -expander if $E(S, V \setminus S) \ge \phi \cdot \min\{\operatorname{vol}(S), \operatorname{vol}(V \setminus S)\} \quad \forall S$

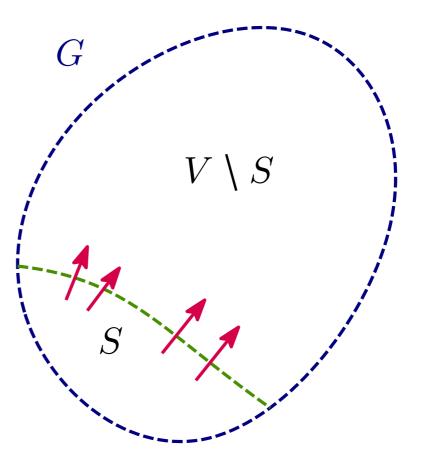
 $(\operatorname{vol}(S) = \sum_{v \in S} \deg(v), \phi \approx 1/n^{o(1)})$

Examples:

Cliques

Bidirected Stars

Random



(Directed) Expanders

Def: G is ϕ -expander if $E(S, V \setminus S) \ge \phi \cdot \min\{\operatorname{vol}(S), \operatorname{vol}(V \setminus S)\} \quad \forall S$

 $(\operatorname{vol}(S) = \sum_{v \in S} \deg(v), \phi \approx 1/n^{o(1)})$

Examples:

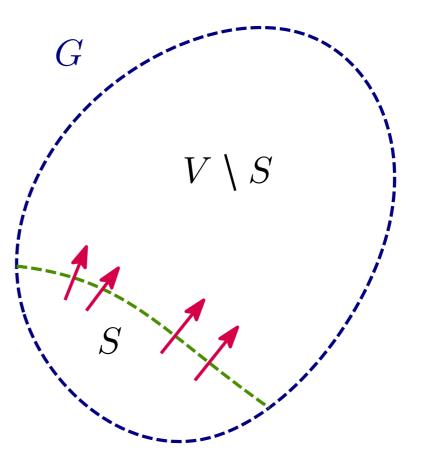
Cliques

Bidirected Stars

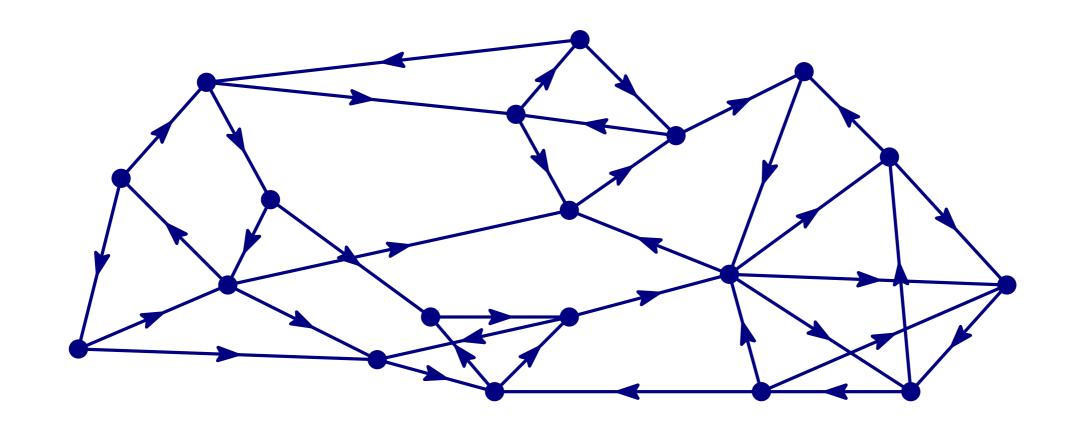
Random

Why?

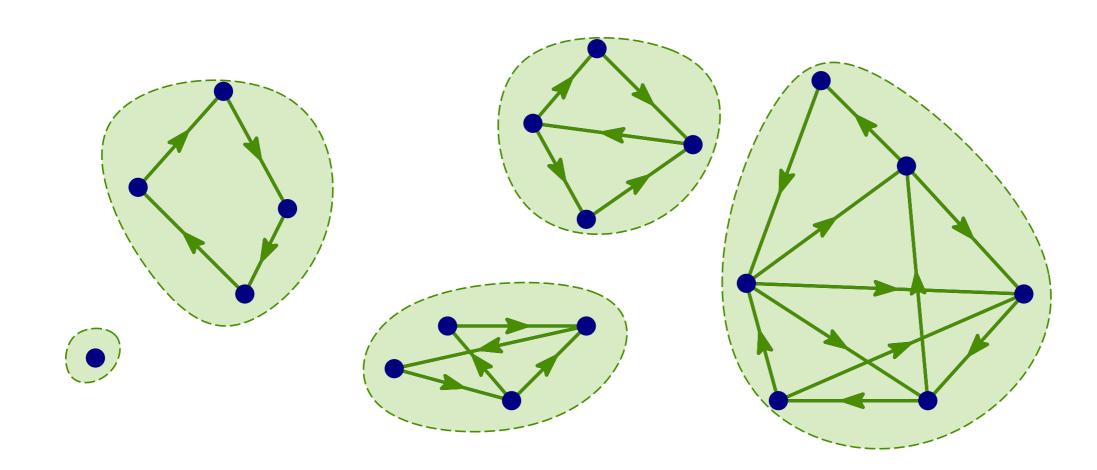
Well-connected Low diameter $\frac{\log(n)}{\phi}$ Easy to route (short) flow in Robust to small changes



- 1. 2.
- 3.



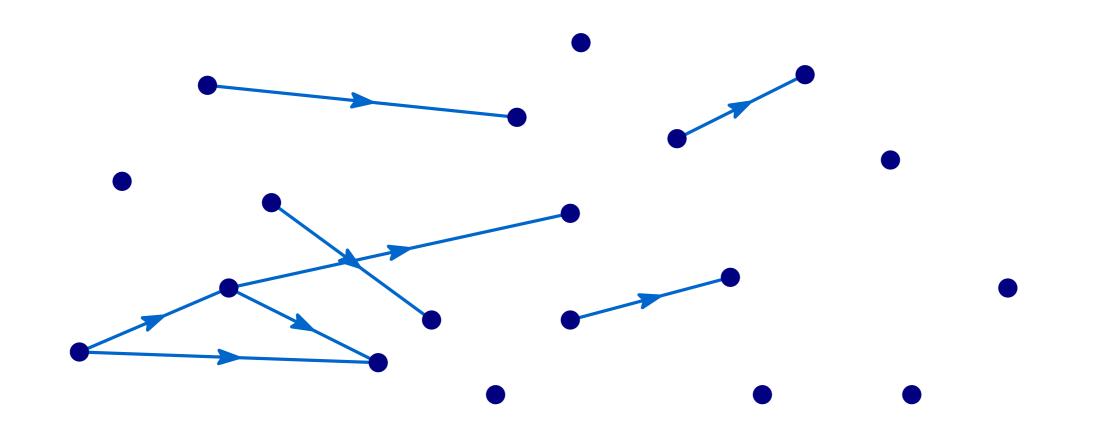
- 1. Expanders X_1, \ldots, X_k
- 2.
- 3.



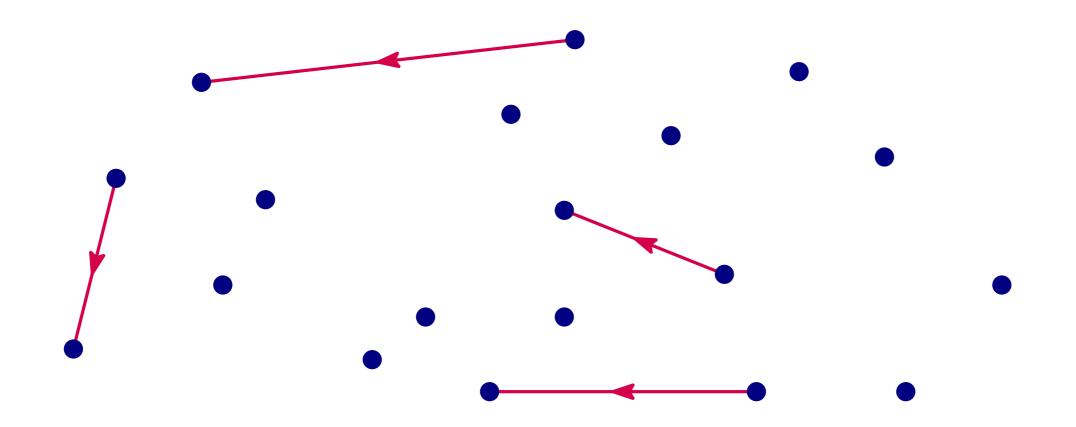
Every graph can be decomposed into:

- 1. Expanders X_1, \ldots, X_k
- 2. DAG edges D

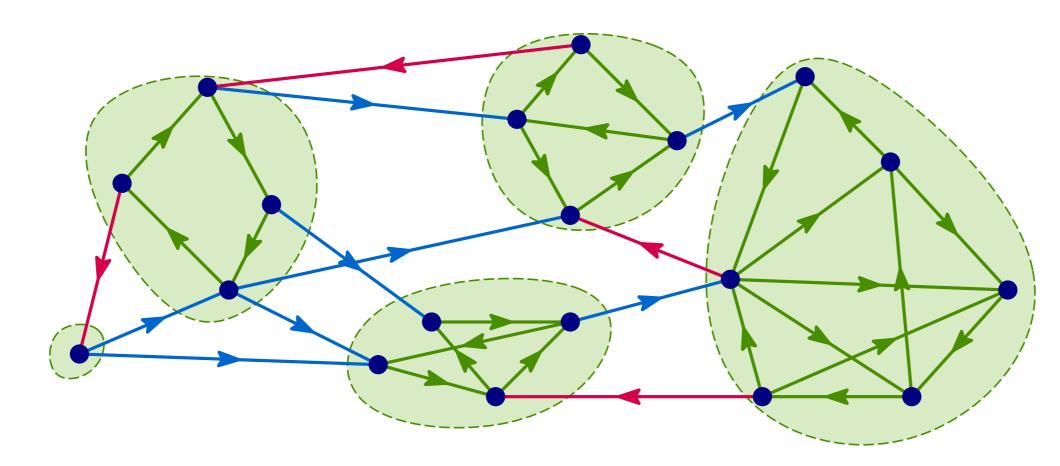
3.



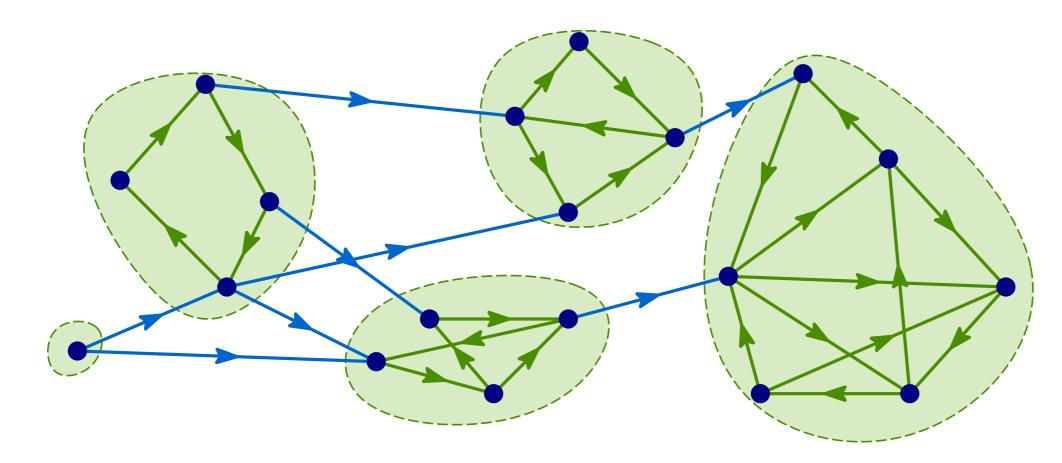
- 1. Expanders X_1, \ldots, X_k
- 2. DAG edges D
- 3. Few backward edges B



- 1. Expanders X_1, \ldots, X_k
- 2. DAG edges D
- 3. Few backward edges B



- 1. Expanders $X_1, \ldots, X_k = SCC(G \setminus B)$
- 2. DAG edges D
- 3. Few backward edges B

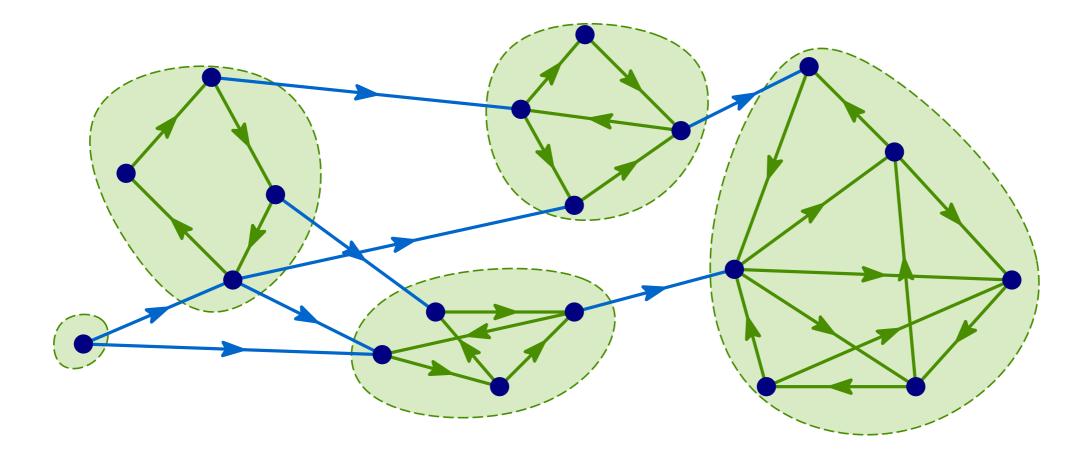


Every graph can be decomposed into:

- 1. Expanders $X_1, \ldots, X_k = SCC(G \setminus B)$
- 2. DAG edges D
- 3. Few backward edges ${\cal B}$

Good edge lengths in $G \setminus B$: $w(u, v) = |\tau(u) - \tau(v)|$

au respects DAG au contiguous in expanders

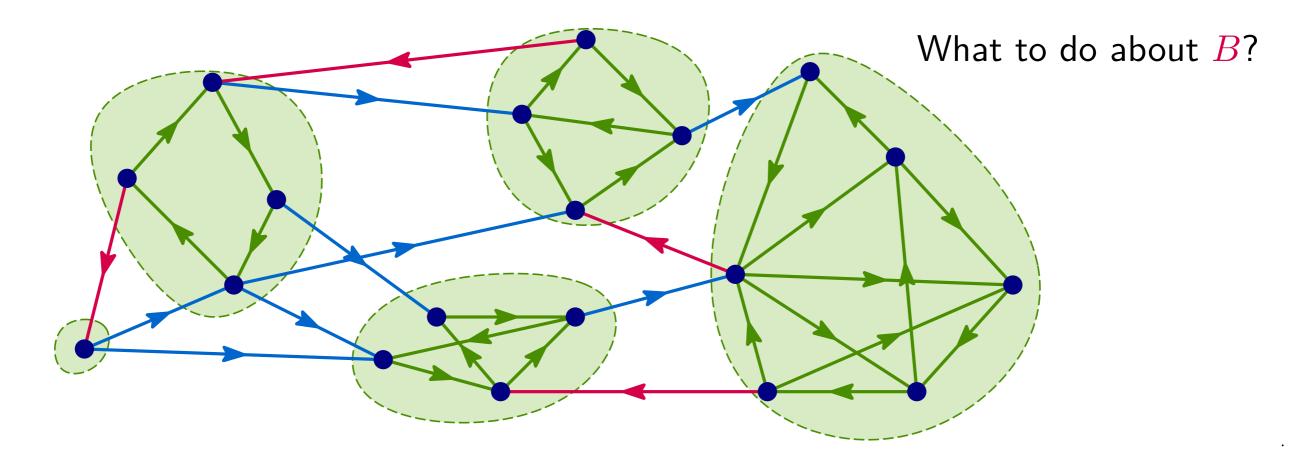


Every graph can be decomposed into:

- 1. Expanders $X_1, \ldots, X_k = SCC(G \setminus B)$
- 2. DAG edges D
- 3. Few backward edges ${\cal B}$

Good edge lengths in $G \setminus B$: $w(u, v) = |\tau(u) - \tau(v)|$

au respects DAG au contiguous in expanders

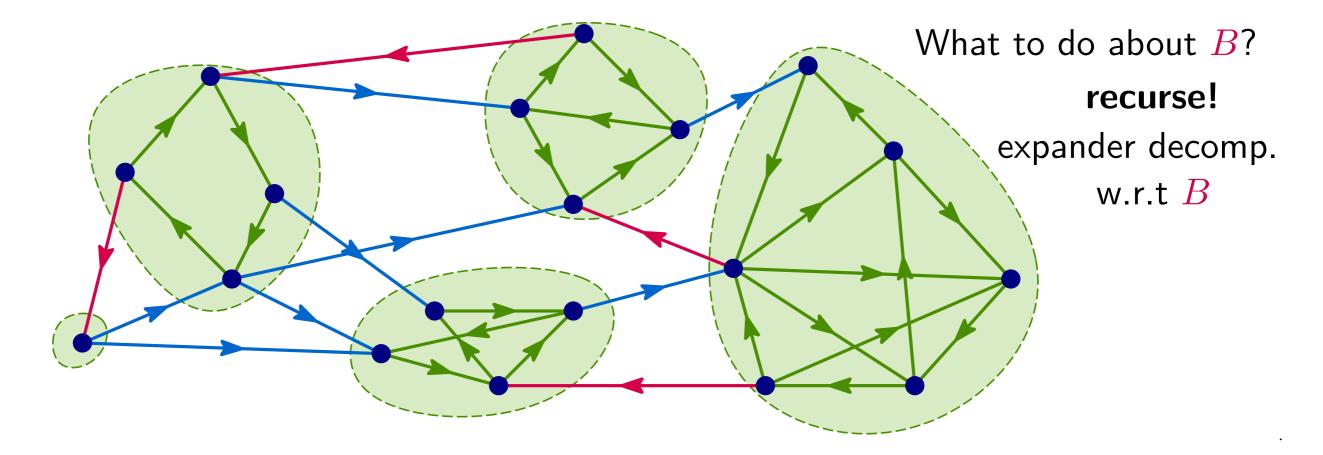


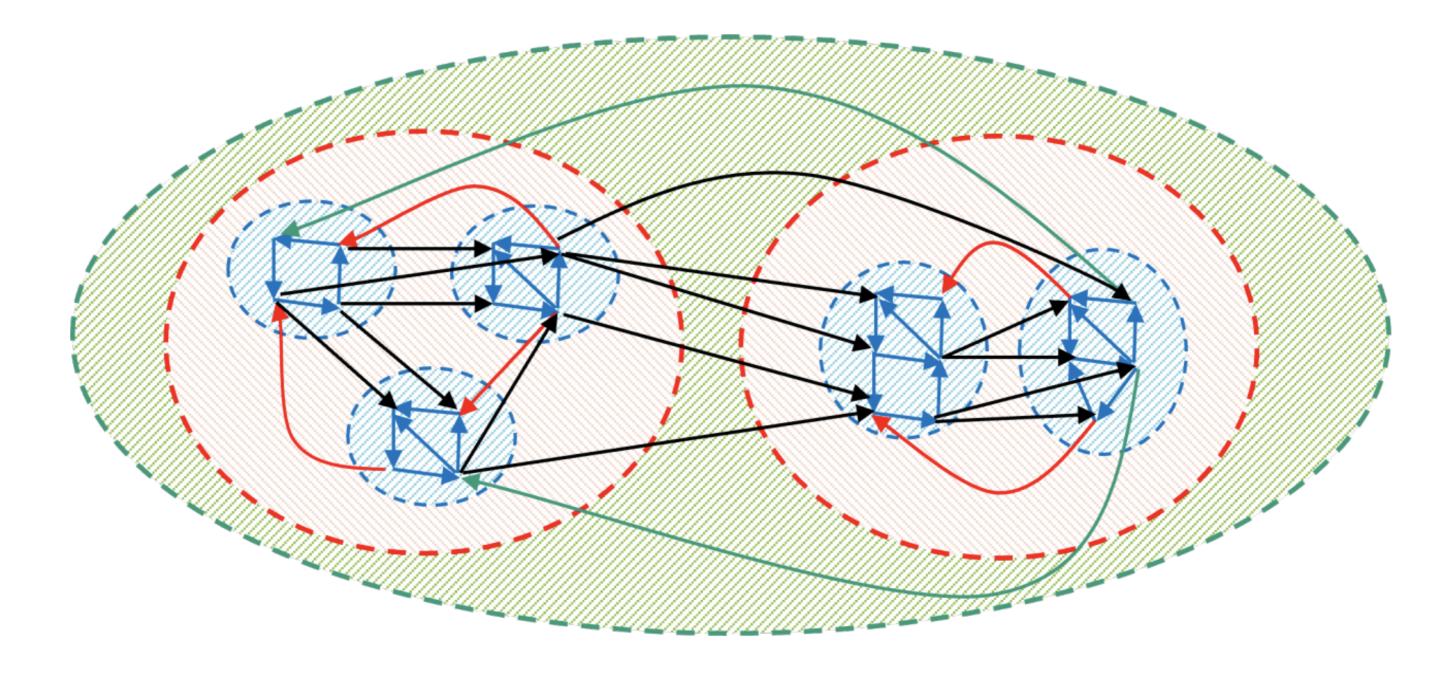
Every graph can be decomposed into:

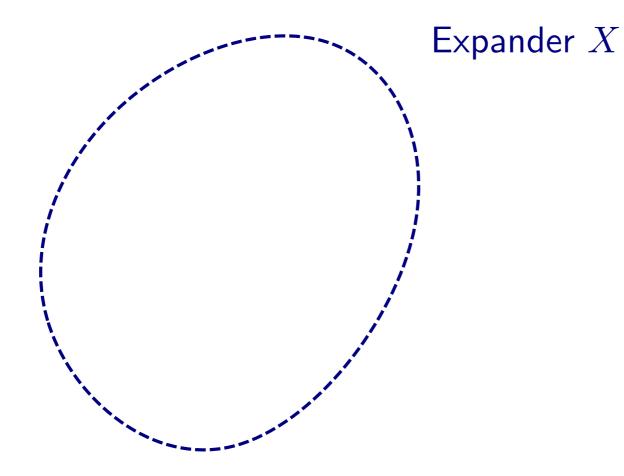
- 1. Expanders $X_1, \ldots, X_k = SCC(G \setminus B)$
- 2. DAG edges D
- 3. Few backward edges ${\cal B}$

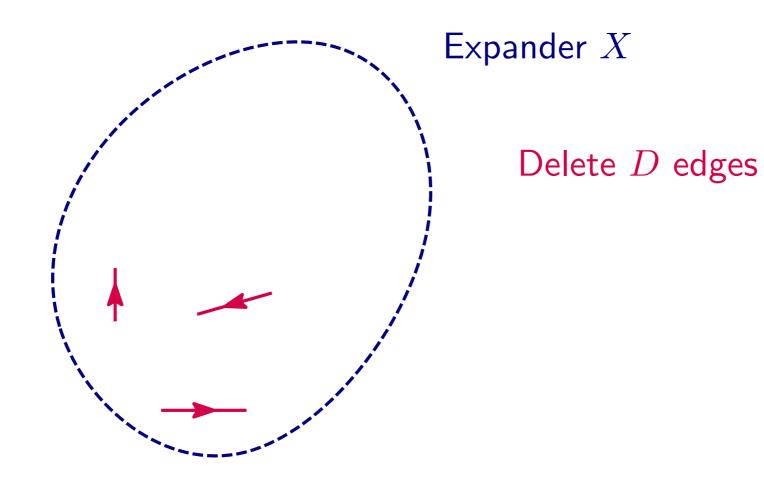
Good edge lengths in $G \setminus B$: $w(u, v) = |\tau(u) - \tau(v)|$

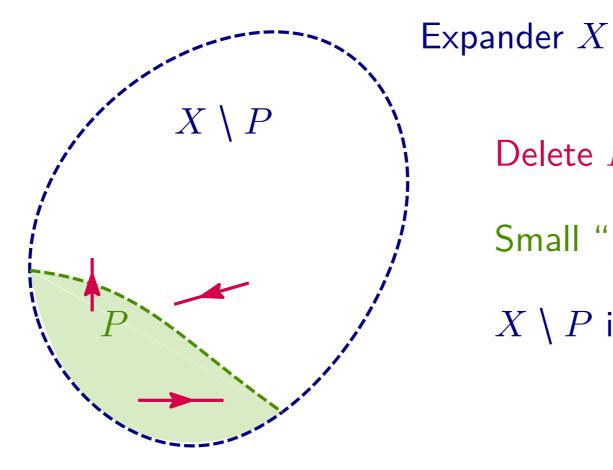
au respects DAG au contiguous in expanders



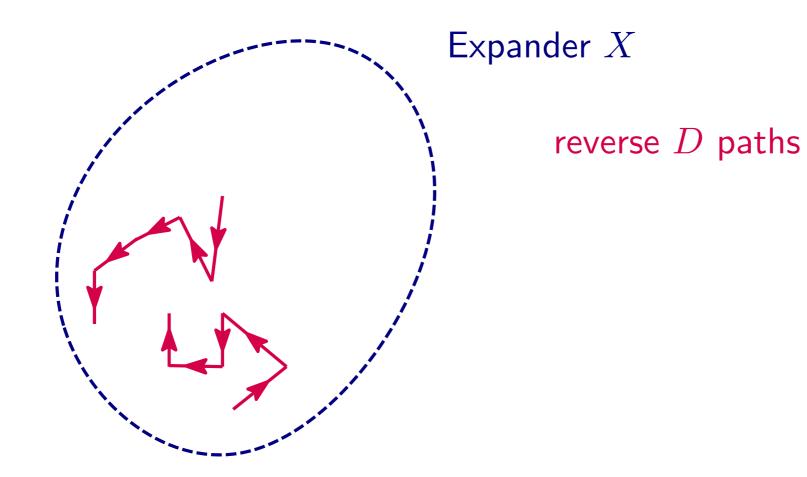


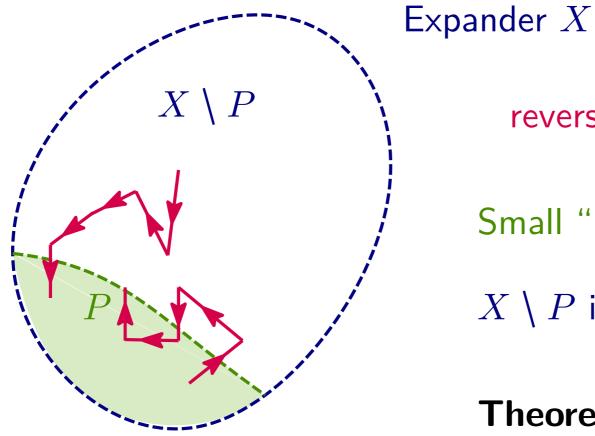






Delete D edges Small "pruned" part $P \quad vol(P) \le 6|D|/\phi$ $X \setminus P$ is still expander Known: "Expander Pruning"



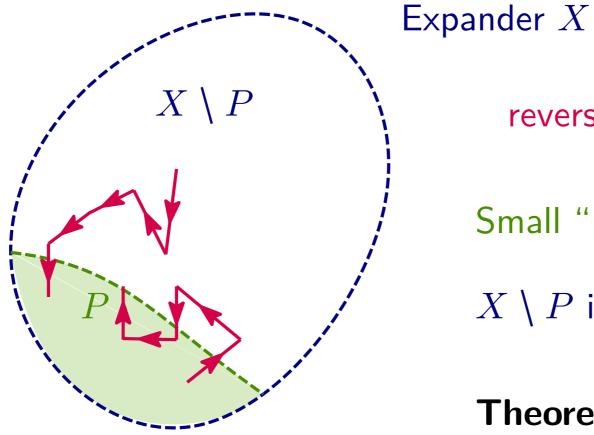


reverse D paths

Small "pruned" part $P = \operatorname{vol}(P) \le 6|D|/\phi$

 $X \setminus P$ is still expander

Theorem: Path-Reversal Expander Pruning



reverse D paths Small "pruned" part P $vol(P) \le 6|D|/\phi$ $X \setminus P$ is still expander

Theorem: Path-Reversal Expander Pruning

Directed Expander Hierarchy is robust under flow augmentation

Bottleneck towards $\tilde{O}(m)$: **Approximate Max Flow in DAGs**

Summary & Open Problems

٠

First combinatorial / augmenting-path improvement since

 $O(m \cdot \min\{\sqrt{m}, n^{2/3}\})$ [Karzanov'73] [Even-Tarjan'75] [Goldberg-Rao'98]

Summary

Main Result: Maximum flow in on *n*-vertex graphs in $n^{2+o(1)}$ time.

First combinatorial / augmenting-path improvement since

Techniques:

Augmenting Paths (new version of Push-Relabel)

Directed Expander Hierarchy

Mostly Self-Contained

 $O(m \cdot \min\{\sqrt{m}, n^{2/3}\})$ [Karzanov'73] [Even-Tarjan'75] [Goldberg-Rao'98]

First combinatorial / augmenting-path improvement since

Techniques:

Augmenting Paths (new version of Push-Relabel) Directed Expander Hierarchy Mostly Self-Contained

Open Questions:

"Simple", "Combinatorial", "Implementable": $E^{1+o(1)}$ or $\tilde{O}(E)$ Maximum Flow? (bottleneck: apx. maxflow on DAG)

Minimum Cost Maximum Flow, General Matching, Matroid Intersection, ...

 $O(m \cdot \min\{\sqrt{m}, n^{2/3}\})$ [Karzanov'73] [Even-Tarjan'75] [Goldberg-Rao'98]

First combinatorial / augmenting-path improvement since

Techniques:

Augmenting Paths (new version of Push-Relabel)

Directed Expander Hierarchy

Mostly Self-Contained

Open Questions:

"Simple", "Combinatorial", "Implementable": $E^{1+o(1)}$ or $\tilde{O}(E)$ Maximum Flow? (bottleneck: apx. maxflow on DAG)

Minimum Cost Maximum Flow, General Matching, Matroid Intersection, ...

 $O(m \cdot \min\{\sqrt{m}, n^{2/3}\})$ [Karzanov'73] [Even-Tarjan'75] [Goldberg-Rao'98]

Thanks!

Ours

[Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22]

Ours Maximum Flow [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22]

Minimum Cost Maximum Flow

Ours Maximum Flow $n^{2+o(1)}$

[Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22] Minimum Cost Maximum Flow $m^{1+o(1)}$

Ours Maximum Flow $n^{2+o(1)}$ Combinatorial Augmenting Paths Implementable? [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22] Minimum Cost Maximum Flow $m^{1+o(1)}$ Continuous Optimization Dynamic Data Structures Tricky to implement