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Maximum Flow

s t

Given: Directed graph G = (V,E), edge capacities c ∶ E → Z≥1, source s, and sink t.
Goal: Compute s, t-flow f of largest size.
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Flow satisfies:
(1) Capacity constraints f(e) ≤ c(e)
(2) Conservation of flow ∣f∣ = 3“incoming = outgoing”
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New Era? — Comeback of Combinatorial Algorithms

2024 Bernstein-B.-Saranurak-Tu Ô(V 2) “linear time in dense graphs”

Main Result: Maximum flow in on n-vertex graphs in n
2+o(1) time.

Techniques:
Augmenting Paths (new version of Push-Relabel)
Directed Expander Hierarchy

My Hope: (in a few years)
“Simple”, “Combinatorial” Õ(E) Maximum Flow?
Non-bipartite Maximum Matching in Õ(V 2) or Õ(E) time?

Independent Work:

[Chuzhoy-Khanna’24]

n
2+o(1) combinatorial

bipartite matching
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Augmenting Paths

s t

Remainder of this talk: unit-capacities c(e) = 1

Augmenting Path

Reverse it
s t

Maximum Flow f , ∣f∣ = 2

[Ford-Fulkerson 1955]
[Jacobi 1836]
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Approximate Flow ⟹ Exact Flow
Proof. Recurse on residual graph.

(does not work in undirected graphs)

Goal in rest of talk: constant- or 1

no(1) -approx flow.
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Outline

Push Relabel

Graph G

Max FlowApproximate

Weighted

“Good” edge lengths

1. Recap: Push-Relabel
2. Weighted PR
3. “Good”

“hint”
4. Edge Lenghts in DAGs
5. General Graphs:

Directed Expander Hierarchy

Directed Expander Hierarchy
Weighted Push Relabel



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s

Reverse it



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s

Reverse it
Update ℓ?

Only increases!



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s

Reverse it
Update ℓ?

Only increases!

Relabel(v)
ℓ(v) ← ℓ(v) + 1

If no admissible out-edge:



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s

Reverse it
Update ℓ?

Only increases!

Relabel(v)
ℓ(v) ← ℓ(v) + 1

If no admissible out-edge:



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s

Reverse it
Update ℓ?

Only increases!

Relabel(v)
ℓ(v) ← ℓ(v) + 1

If no admissible out-edge:



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s

Reverse it
Update ℓ?

Only increases!

Relabel(v)
ℓ(v) ← ℓ(v) + 1

If no admissible out-edge:



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s

Reverse it
Update ℓ?

Only increases!

Relabel(v)
ℓ(v) ← ℓ(v) + 1

If no admissible out-edge:



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s

Reverse it
Update ℓ?

Only increases!

Relabel(v)
ℓ(v) ← ℓ(v) + 1

If no admissible out-edge:



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s
t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s

Reverse it
Update ℓ?

Only increases!

Relabel(v)
ℓ(v) ← ℓ(v) + 1

If no admissible out-edge:

ℓ = 5ℓ = 6



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88]

s
t

ℓ = 0

ℓ(v) = dist(v, t)

ℓ = 1ℓ = 2ℓ = 3ℓ = 4

edge e = (u, v) admissible iff ℓ(u) = ℓ(v) + 1

Shortest Augmenting Path: follow admissible edges from s

Reverse it
Update ℓ?

Only increases!

Relabel(v)
ℓ(v) ← ℓ(v) + 1

If no admissible out-edge:

ℓ = 5ℓ = 6



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88] —Analysis

Relabel O(n2) (n vertices, n layers)



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88] —Analysis

Relabel

Keeping track of admissible edges:

O(n2) (n vertices, n layers)

O(nm) (after relabel: recheck incident edges)



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88] —Analysis

Relabel

Keeping track of admissible edges:

O(n2) (n vertices, n layers)

O(nm) (after relabel: recheck incident edges)
Augmentations O(nm) (n per edge)



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88] —Analysis

Relabel

Keeping track of admissible edges:

O(n2) (n vertices, n layers)

O(nm) (after relabel: recheck incident edges)
Augmentations O(nm) (n per edge)



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88] —Analysis

Relabel

Keeping track of admissible edges:

O(n2) (n vertices, n layers)

O(nm) (after relabel: recheck incident edges)
Augmentations O(nm) (n per edge)



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88] —Analysis

Relabel

Keeping track of admissible edges:

O(n2) (n vertices, n layers)

O(nm) (after relabel: recheck incident edges)
Augmentations O(nm) (n per edge)

O(nm log n) (capacitated graphs:
Link-Cut trees of admissible edges)



⋅

Push-Relabel / Augment-Relabel [Goldberg-Tarjan’88] —Analysis

Relabel

Keeping track of admissible edges:

O(n2) (n vertices, n layers)

O(nm) (after relabel: recheck incident edges)
Augmentations O(nm) (n per edge)

O(nm log n) (capacitated graphs:
Link-Cut trees of admissible edges)

Total: Õ(nm)



How to speed it up?



⋅

New Idea: Edge Lengths

w(e) = 10

w(e) = 2



⋅

New Idea: Edge Lengths

w(e) = 10

w(e) = 2
“short” = “frequent”

“long” = “infrequent”



⋅

New Idea: Edge Lengths

w(e) = 10

w(e) = 2
“short” = “frequent”

“long” = “infrequent”

s

Path P in maxflow f
⋆

few long edges, potentially many short

Guarantee:



⋅

New Idea: Edge Lengths

w(e) = 10

w(e) = 2
“short” = “frequent”

“long” = “infrequent”

s

Path P in maxflow f
⋆

few long edges, potentially many short

w(P ) ≤ n
1+o(1)Guarantee:



⋅

New Idea: Edge Lengths

w(e) = 10

w(e) = 2
“short” = “frequent”

“long” = “infrequent”

s

Path P in maxflow f
⋆

few long edges, potentially many short

w(P ) ≤ n
1+o(1)

Potential Faster Algo:
look for short paths

Guarantee:
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Relabel

Keeping track of admissible edges:

O(n2) (n vertices, n layers)

O(nm) (after relabel: recheck incident edges)
Augmentations O(nm) (n per edge)

O(nm log n) (capacitated graphs:
Link-Cut trees of admissible edges)

Goal: Õ (∑e∈E
#layers
w(e) )

After relabel v: recheck only incident edges e where w(e) divides ℓ(v)(#layers = 100n, or n1+o(1))

Augmentations
ℓ(u) ≈ ℓ(v) +w(e)

ℓ(v) inc. by 2w(e)
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Pseudo-Code

Similar to normal
Augment-Relabel / Push-Relabel
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Good Edge Lengths

Good w:
∑e∈E

n
w(e) is small (≈ n

2+o(1), running-time)

“Optimal” flow f
⋆ which is short w.r.t. w

s t

(flow paths of length ≈ n
1+o(1))

Weighted Push-Relabel finds f

with ∣f ∣ ≥ 1
10
∣f⋆∣

Lemma.

Proof Sketch.
If not: ∣f ∣ < 1

10
∣f⋆∣

⟹ some flow path is still short in residual graph Gf



How to find good edge lengths?
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“Optimal” flow f

⋆

which is short w.r.t. w

Topological order τ
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w(u, v) = ∣τ (u) − τ (v)∣
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Directed Acyclic Graphs (DAG)

s t

Def: no directed cycles Good edge lenghts w?

∑e∈E
n

w(e) is small
“Optimal” flow f

⋆

which is short w.r.t. w

Topological order τ

1

2

3 4

6

5
7

8
9

w(u, v) = ∣τ (u) − τ (v)∣
1

2

1
1

1

2

2

2

1

3

4

w(P ) ≤ n

∑(u,v) n∣τ (u)−τ (v)∣ ≤ n∑v∈V ∑n−1
k=1

1
k
≤ n

2
log n

Theorem: “Simple” 1
6
-approx flow on n-vertex DAGs in O(n2

log
2
n) time.
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General Graphs — Attempt One
Good edge lenghts w?

∑e∈E
n

w(e) is small
“Optimal” flow f

⋆

which is short w.r.t. w

s ts t

1. Compute maxflow f
⋆

2. Look at graph induced by f
⋆

3. Edge lengths w from topological order

DAG!

4. Use weighted push-relabel to solve approx maxflow :)

←Cheating!
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General Graphs
Good edge lenghts w?

∑e∈E
n

w(e) is small
“Optimal” flow f

⋆

which is short w.r.t. w

“Pseudo-Topological” order τ
w(u, v) = ∣τ (u) − τ (v)∣

Directed Expander Hierarchy
Can build using n

o(1) many maximum flow calls!
(Cheating!)

Instead:
Build Bottom Up
Bootstrap Weighted P.R.
(solve “easier” flow instances)

Technically Complicated :(
(bad guy: nestedness) (half of our 99 page paper)
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(Directed) Expanders

Def: G is ϕ-expander if E(S, V \ S) ≥ ϕ ⋅min{vol(S), vol(V \ S)} ∀S

(vol(S) = ∑v∈S deg(v), ϕ ≈ 1/no(1))
V \ S

S

G

Examples:
Cliques

Random
Bidirected Stars

Why?

Easy to route (short) flow in
Low diameter log(n)

ϕ

Well-connected

Robust to small changes
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Technique Highlight: Path-Reversal Expander Pruning

Expander X

Small “pruned” part P

P

X \ P
X \ P is still expander

vol(P ) ≤ 6∣D∣/ϕ
reverse D paths

Theorem: Path-Reversal Expander Pruning

Directed Expander Hierarchy is robust under flow augmentation



Bottleneck towards Õ(m):
Approximate Max Flow in DAGs



Summary & Open Problems
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Summary

Main Result: Maximum flow in on n-vertex graphs in n
2+o(1) time.

First combinatorial / augmenting-path improvement since O(m ⋅min{√m,n
2/3})

[Karzanov’73]
[Even-Tarjan’75]

[Goldberg-Rao’98]
Techniques:

Augmenting Paths (new version of Push-Relabel)
Directed Expander Hierarchy

Open Questions:
“Simple”, “Combinatorial”, “Implementable”: E

1+o(1) or Õ(E) Maximum Flow?

Minimum Cost Maximum Flow, General Matching, Matroid Intersection, . . .

Thanks!Mostly Self-Contained

(bottleneck: apx. maxflow on DAG)
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Comparision

[Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’22]Ours

Maximum Flow Minimum Cost Maximum Flow

n
2+o(1)

m
1+o(1)

Combinatorial
Augmenting Paths

Continuous Optimization
Dynamic Data Structures

Implementable? Tricky to implement


