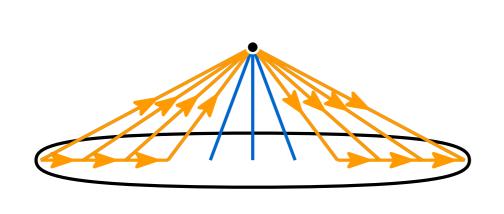
Combinatorial Maximum Flow via Weighted Push-Relabel on Shortcut Graphs

Aaron Bernstein Joakim Blikstad

Jason Li

Thatchaphol Saranurak

Ta-Wei Tu

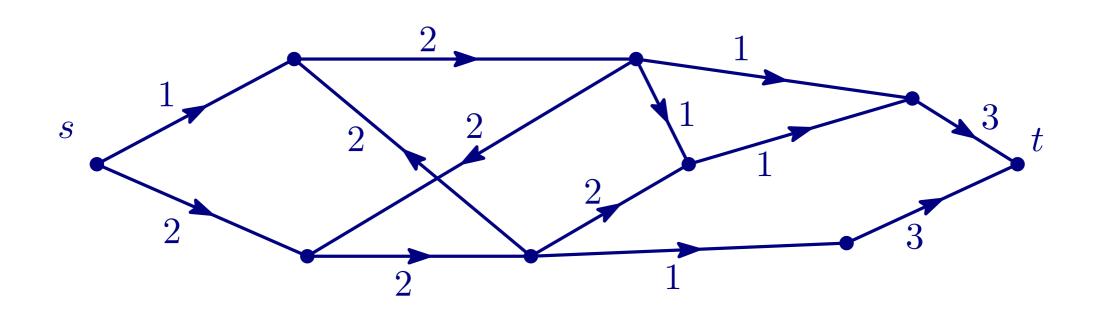




Maximum Flow

Given: Directed graph G = (V, E), edge capacities $c : E \to \mathbb{Z}_{\geq 1}$, source s, and sink t.

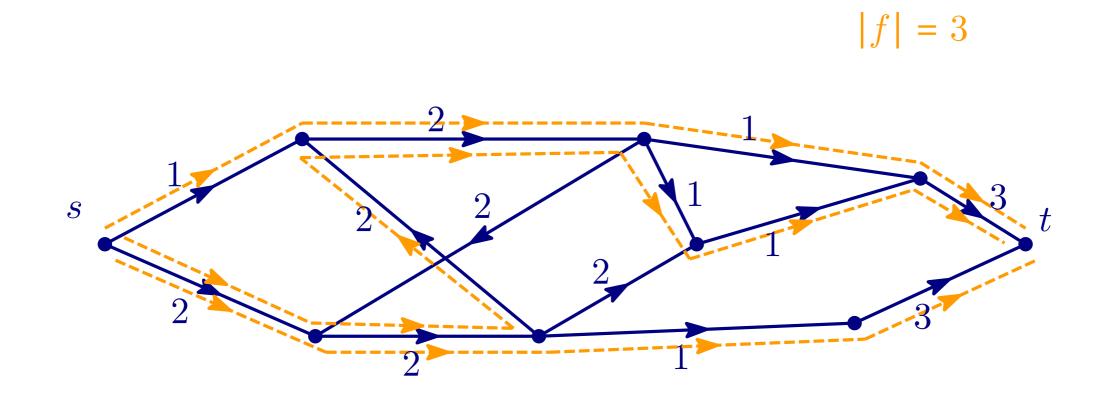
Goal: Compute s, t-flow f of largest size.



Maximum Flow

Given: Directed graph G = (V, E), edge capacities $c : E \to \mathbb{Z}_{\geq 1}$, source s, and sink t.

Goal: Compute s, t-flow f of largest size.



Maximum Flow

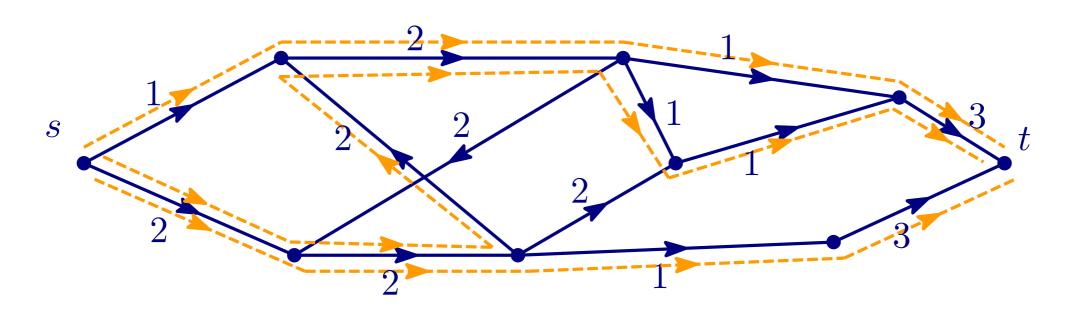
Given: Directed graph G = (V, E), edge capacities $c : E \to \mathbb{Z}_{\geq 1}$, source s, and sink t.

Goal: Compute s, t-flow f of largest size.

Flow satisfies:

- (1) Capacity constraints $f(e) \le c(e)$
- (2) Conservation of flow "incoming = outgoing"

$$|f| = 3$$



1955	Ford-Fulkerson	$O(E \cdot answer)$	$ ilde{O}$: hides polylog
1970	Edmonds-Karp	$O(VE^2)$	\hat{O} : hides $n^{o(1)}$
1970	Dinic "Blocking Flow"	$O(V^2E)$	\mathcal{O} . Thues \mathcal{H}
1978	Malhotra-Kumar-Maheshwari	$O(V^3)$	
1983	Dinics Dynamic Trees	$\tilde{O}(VE)$	
1986	Goldberg-Tarjan "Push-Relabel"	$\tilde{O}(V^3)$	
1988	Improved "Push-Relabel"	$\tilde{O}(VE)$	
1998	Goldberg-Rao'	$ ilde{O}(E\sqrt{E})$ and $ ilde{O}(EV^{2/3})$)

1955	Ford-Fulkerson	$O(E \cdot \ $ a	nswer)	\tilde{O} .	hides polylog
1970	Edmonds-Karp	$O(VE^2)$			hides $n^{o(1)}$
1970	Dinic "Blocking Flow"	$O(V^2E)$		O.	mues 11
1978	Malhotra-Kumar-Maheshwari	$O(V^3)$			
1983	Dinics Dynamic Trees	$ ilde{O}(VE)$			
1986	Goldberg-Tarjan "Push-Relabel"	$\tilde{O}(V^3)$			
1988	Improved "Push-Relabel"	$ ilde{O}(VE)$			
1998	Goldberg-Rao'	$\tilde{O}(E\sqrt{E})$) and $ ilde{O}(EV^{2/3})$	1	
2014	Lee-Sidford		$\tilde{O}(E\sqrt{V})$		
2020	Kathuria-Liu-Sidford		$\hat{O}(E^{4/3})$ (unit-	capa	acity)
2020	BLNPSSSW / BLLSSSW		$\tilde{O}(E + V\sqrt{V})$		
2022	Chen-Kyng-Liu-Peng-Gutenberg-S	Sachdeva	$\hat{O}(E)$		

1955	Ford-Full		$O(E \cdot answer)$	$ ilde{O}$: hides polylog
1970	Edmonds	s-Karp	$O(VE^2)$	\hat{O} : hides $n^{o(1)}$
1970	Dinic "B	locking Elow"	$O(V^2 E)$	7. Ilides 11
1978	Malhotr	Combinatorial, A	Augmenting Paths	
1983	Dinics ["Nice" "Simple" "	'Works well in practice"	
1986	Goldber			
1988	Improved	"Push-Relabel"	$ ilde{O}(VE)$	
1998	Goldberg	g-Rao'	$ ilde{O}(E\sqrt{E})$ and $ ilde{O}(EV^{2/2})$	3)
2014	Lee-Sidfo	ord	$\tilde{O}(E\sqrt{V})$	
2020	Kathuria	-Liu-Sidford	$\hat{O}(E^{4/3})$ (uni	t-capacity)
2020	BLNPSS	SW / BLLSSSW	$\tilde{O}(E + V\sqrt{V})$	
2022	Chen-Ky	ng-Liu-Peng-Gutenberg	g-Sachdeva $\hat{O}(E)$	

1970 Edmonds-Karp $O(VE^2)$ 1970 Dinic "Blocking Flow" $O(V^2E)$ 1978 Malhotr Combinatorial, Augmenting Paths 1983 Dinics ["Nice", "Simple", "Works well in practice" 1986 Goldber 1988 Improved "Push-Relabel" $\tilde{O}(VE)$ 1998 Goldberg-Rao' $\tilde{O}(E\sqrt{E})$ and $\tilde{O}(EV^{2/3})$ 2014 Lee-Sidf Continiuous Optimization, Interior Point Methods capacity) 2020 Kathuri Continiuous Optimization, Interior Point Methods capacity) 2020 BLNPS "I don't understand them" 2022 Chen-Kyarg are reng garcinger Jacouava $O(EV)$	1955	Ford-Fulkerson	$O(E \cdot answer)$	$ ilde{O}$: hides polylog
1970 Dinic "Blocking Flow" $O(N^2 - E)$ 1978 Malhotr Combinatorial, Augmenting Paths 1983 Dinics ["Nice", "Simple", "Works well in practice" 1986 Goldber 1988 Improved "Push-Relabel" $\tilde{O}(VE)$ 1998 Goldberg-Rao' $\tilde{O}(E\sqrt{E})$ and $\tilde{O}(EV^{2/3})$ 2014 Lee-Sidf Continiuous Optimization, Interior Point Methods capacity) 2020 BLNPS "I don't understand them"	1970	Edmonds-Karp		\hat{O} : hides $polylog$
1983 Dinics Γ 1986 Goldber "Nice", "Simple", "Works well in practice" 1988 Improved "Push-Relabel" 1998 Goldberg-Rao' $\tilde{O}(VE)$ 1998 Goldberg-Rao' $\tilde{O}(E\sqrt{E})$ and $\tilde{O}(EV^{2/3})$ 2014 Lee-Sidf 2020 Kathuri Continiuous Optimization, Interior Point Methods capacity) 2020 BLNPS: "I don't understand them"	1970	Dinic "Blocking Flow"	$O(V^2E)$	\mathcal{O} . Thues \mathcal{H}
1983 Dinics Γ "Nice", "Simple", "Works well in practice" 1986 Goldber 1988 Improved "Push-Relabel" $\tilde{O}(VE)$ 1998 Goldberg-Rao' $\tilde{O}(E\sqrt{E})$ and $\tilde{O}(EV^{2/3})$ 2014 Lee-Sidf Continiuous Optimization, Interior Point Methods capacity) 2020 BLNPS "I don't understand them"	1978	Malhotr Combinatoria	II, Augmenting Paths	
1986 Goldber 1988 Improved "Push-Relabel" $\tilde{O}(VE)$ 1998 Goldberg-Rao' $\tilde{O}(E\sqrt{E})$ and $\tilde{O}(EV^{2/3})$ 2014 Lee-Sidf Continiuous Optimization, Interior Point Methods capacity) 2020 BLNPS "I don't understand them"	1983	Dinies d		
1998 Goldberg-Rao' $\tilde{O}(E\sqrt{E})$ and $\tilde{O}(EV^{2/3})$ 2014 Lee-Sidf Continiuous Optimization, Interior Point Methods capacity) 2020 BLNPS "I don't understand them"	1986			
2014 Lee-Sidf Continiuous Optimization, Interior Point Methods capacity) 2020 BLNPS "I don't understand them"	1988	Improved "Push-Relabel"	$\tilde{O}(VE)$	
2020 Kathuri Continiuous Optimization, Interior Point Methods capacity) 2020 BLNPS "I don't understand them"	1998	Goldberg-Rao'	$\tilde{O}(E\sqrt{E})$ and $\tilde{O}(EV^{2/3})$)
2020 BLNPS "I don't understand them"	2014	Lee-Sidf	<u>~</u> ζη (Τζ)	
	2020	Kathuria Continiuous Optimiz	zation, Interior Point Methods	-capacity)
2022 Chen-Kyng-eng-outenberg-bachdeva $v(x)$	2020	BLNPS "I don't	understand them"	
	2022	Chen-Kyng-Ener-eng-Guterno	${f crg}$ -vacnueva ${f U}({f T})$	

Can we get better combinatorial algorithms?

2024

Bernstein-B.-Saranurak-Tu

$$n^{2+o(1)}$$

"almost linear time in dense graphs"

2024 Bernstein-**B.**-Saranurak-Tu $n^{2+o(1)}$

This Paper Bernstein-B.-Li-Saranurak-Tu $\tilde{O}(n^2)$ "much simpler, implementable"

Main Result: Maximum flow in on n-vertex graphs in $O(n^2 \log^{19} n)$ time.

Bernstein-B.-Saranurak-Tu 2024

 $n^{2+o(1)} \approx 100 \text{ pages}$

This Paper Bernstein-B.-Li-Saranurak-Tu $\tilde{O}(n^2)$ "much simpler, implementable"

Main Result: Maximum flow in on n-vertex graphs in $O(n^2 \log^{19} n)$ time.

Bernstein-B.-Saranurak-Tu 2024

 $n^{2+o(1)} \approx 100 \text{ pages}$

This Paper Bernstein-B.-Li-Saranurak-Tu $\tilde{O}(n^2)$ "much simpler, implementable"

Main Result: Maximum flow in on n-vertex graphs in $O(n^2 \log^{19} n)$ time.

After $\log(n)$ simplifications we will have a SOSA paper :)

Bernstein-B.-Saranurak-Tu 2024

 $n^{2+o(1)} \approx 100 \text{ pages}$

This Paper

Bernstein-**B.**-Li-Saranurak-Tu $\tilde{O}(n^2)$ "much simpler, implementable"

Main Result: Maximum flow in on n-vertex graphs in $O(n^2 \log^{19} n)$ time.

https://github.com/TaWeiTu/combinatorial-max-flow

Full implementation!

Bernstein-B.-Saranurak-Tu 2024

 $n^{2+o(1)} \approx 100 \text{ pages}$

This Paper Bernstein-B.-Li-Saranurak-Tu $\tilde{O}(n^2)$ "much simpler, implementable"

Main Result: Maximum flow in on n-vertex graphs in $O(n^2 \log^{19} n)$ time.

https://github.com/TaWeiTu/combinatorial-max-flow

Full implementation!

Runs in $\ll 1$ sec for n = 2 on my laptop

2024

Bernstein-B.-Saranurak-Tu

 $n^{2+o(1)} \approx 100 \text{ pages}$

This Paper Bernstein-B.-Li-Saranurak-Tu $\tilde{O}(n^2)$ "much simpler, implementable"

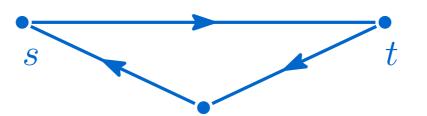
Main Result: Maximum flow in on n-vertex graphs in $O(n^2 \log^{19} n)$ time.

https://github.com/TaWeiTu/combinatorial-max-flow

Full implementation!

Runs in $\ll 1$ sec for n = 2 on my laptop

n = 3 is still running on my laptop...



Bernstein-B.-Saranurak-Tu 2024

 $n^{2+o(1)} \approx 100 \text{ pages}$

This Paper

Bernstein-**B.**-Li-Saranurak-Tu $\tilde{O}(n^2)$ "much simpler, implementable"

Main Result: Maximum flow in on n-vertex graphs in $O(n^2 \log^{19} n)$ time.

https://github.com/TaWeiTu/combinatorial-max-flow

Full implementation!

(Setting parameters slightly inaccurately: $n \approx 50$, $m \approx 1000$ in 1 sec.)

Theoretically possible \mapsto (Implementable) \mapsto Practical

Bernstein-B.-Saranurak-Tu 2024

 $n^{2+o(1)} \approx 100 \text{ pages}$

This Paper Bernstein-B.-Li-Saranurak-Tu $\tilde{O}(n^2)$ "much simpler, implementable"

Main Result: Maximum flow in on n-vertex graphs in $O(n^2 \log^{19} n)$ time.

Techniques:

Augmenting Paths (new version of Push-Relabel)

Directed Expander Hierarchy

New: Shortcuts

Bernstein-B.-Saranurak-Tu 2024

 $n^{2+o(1)} \approx 100 \text{ pages}$

This Paper Bernstein-**B.**-Li-Saranurak-Tu $\tilde{O}(n^2)$ "much simpler, implementable"

Main Result: Maximum flow in on n-vertex graphs in $O(n^2 \log^{19} n)$ time.

Techniques:

Augmenting Paths (new version of Push-Relabel)

Directed Expander Hierarchy

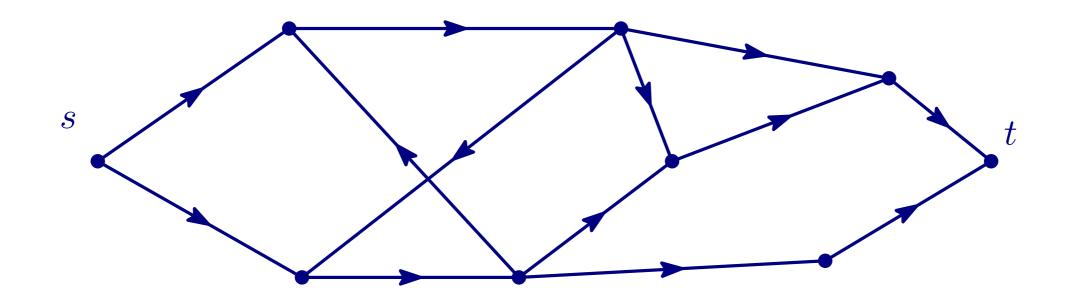
New: Shortcuts

My Hope: (in a few years)

"Simple", "Combinatorial" $\tilde{O}(E)$ Maximum Flow?

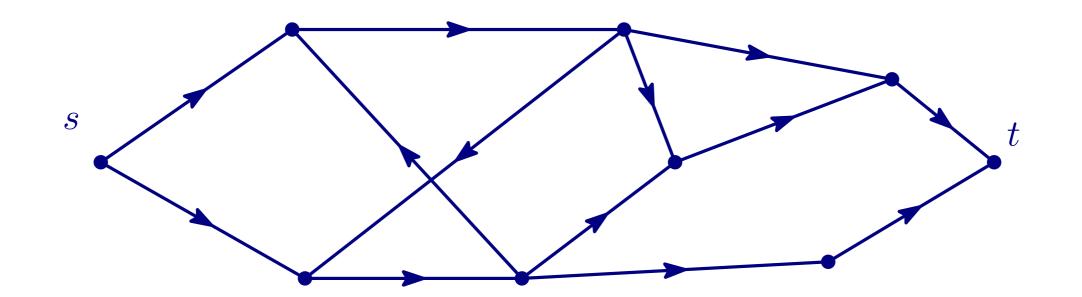
Non-bipartite Maximum Matching in $\tilde{O}(V^2)$ or $\tilde{O}(E)$ time?

[Ford-Fulkerson 1955] [Jacobi 1836]



Remainder of this talk: unit-capacities c(e) = 1

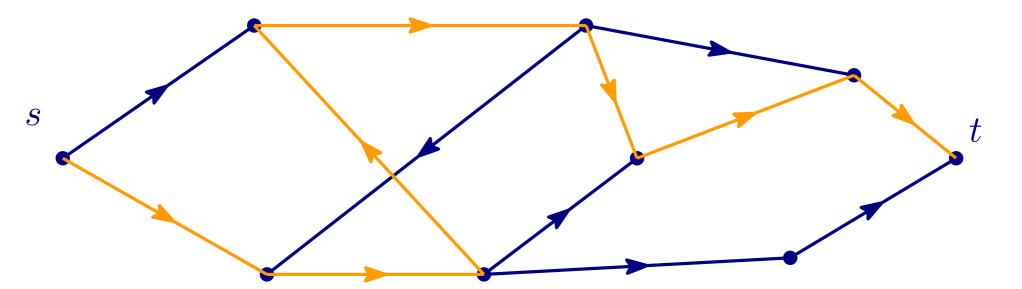
[Ford-Fulkerson 1955] [Jacobi 1836]



Remainder of this talk: unit-capacities c(e) = 1

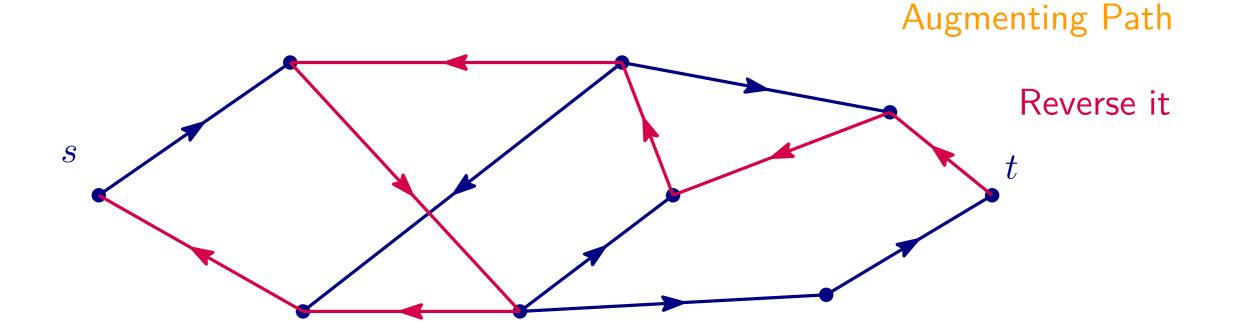
[Ford-Fulkerson 1955] [Jacobi 1836]

Augmenting Path



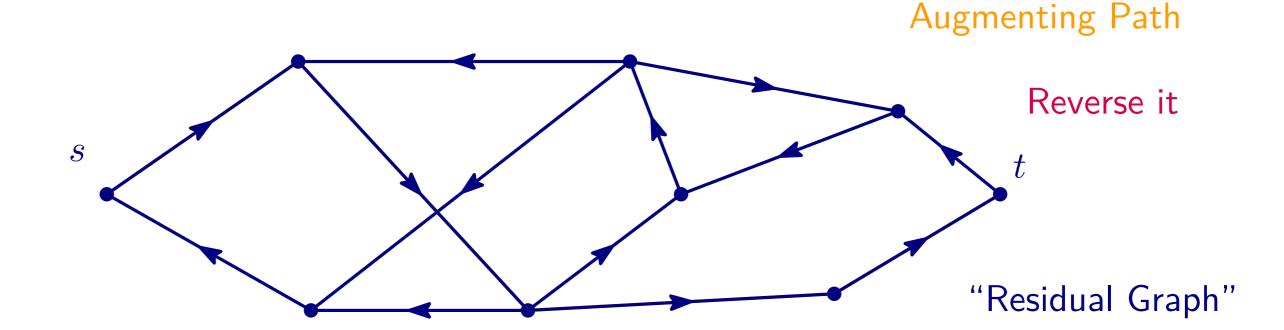
Remainder of this talk: unit-capacities c(e) = 1

[Ford-Fulkerson 1955] [Jacobi 1836]



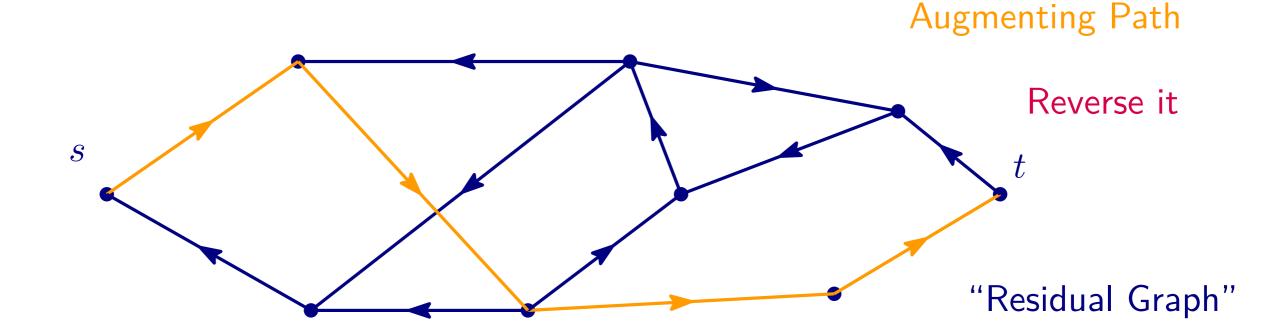
Remainder of this talk: unit-capacities c(e) = 1

[Ford-Fulkerson 1955] [Jacobi 1836]



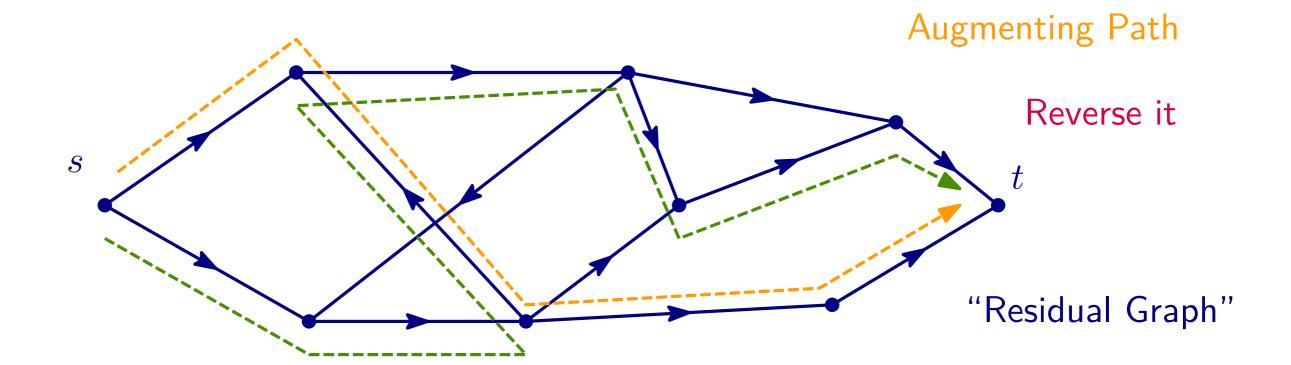
Remainder of this talk: unit-capacities c(e) = 1

[Ford-Fulkerson 1955] [Jacobi 1836]



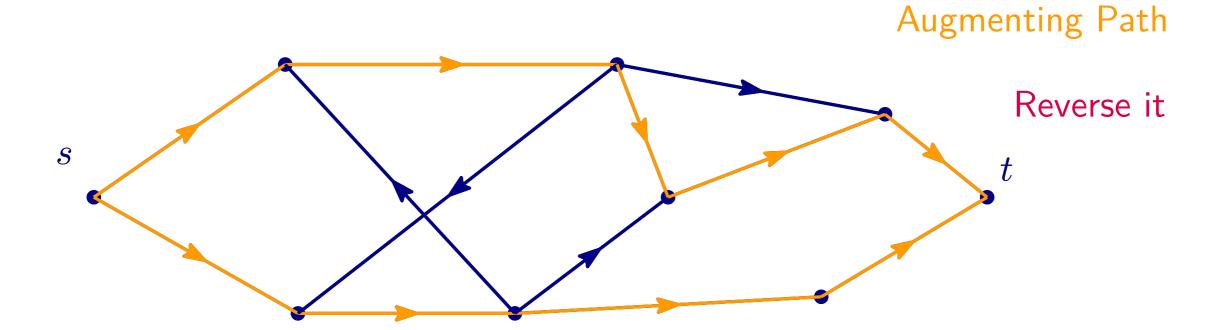
Remainder of this talk: unit-capacities c(e) = 1

[Ford-Fulkerson 1955] [Jacobi 1836]



Remainder of this talk: unit-capacities c(e) = 1

[Ford-Fulkerson 1955] [Jacobi 1836]



Maximum Flow f, |f| = 2

Approximate Flow \Longrightarrow **Exact Flow**

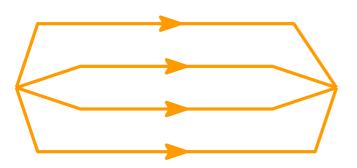
Approximate Flow \Longrightarrow **Exact Flow**

Proof. Recurse on residual graph.

Goal in rest of talk: constant- or $\frac{1}{\mathsf{polylog}(n)}$ -approx flow.

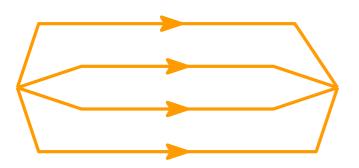
(does not work in undirected graphs)

Guarantee: Suppose max-flow f^* of G is short



Guarantee: Suppose max-flow f^* of G is short

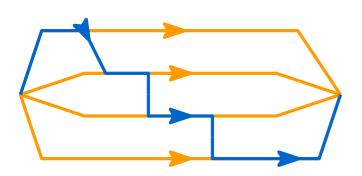
average length of flow-path is $\leq h \ (\approx polylog(n))$



Guarantee: Suppose max-flow f^* of G is short

average length of flow-path is $\leq h \ (\approx polylog(n))$

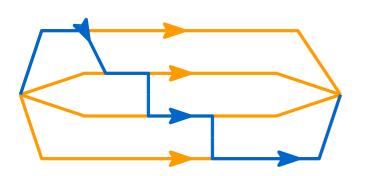
Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in $\tilde{O}(mh)$ time



Guarantee: Suppose max-flow f^* of G is short

average length of flow-path is $\leq h \ (\approx polylog(n))$

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in $\tilde{O}(mh)$ time

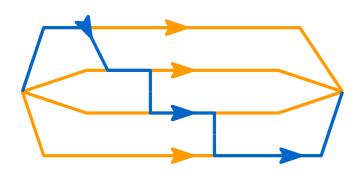


Guarantee: Suppose max-flow f^* of G is short

average length of flow-path is $\leq h \ (\approx polylog(n))$

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in $\tilde{O}(mh)$ time

- (1): lengths of flow path in f is $\leq 2h$
- (2): shortest s-t path in residual graph G_f length > 2h

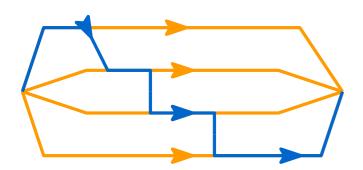


Guarantee: Suppose max-flow f^* of G is short

average length of flow-path is $\leq h \ (\approx polylog(n))$

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in $\tilde{O}(mh)$ time

- (1): lengths of flow path in f is $\leq 2h$
- (2): shortest s-t path in residual graph G_f length > 2h

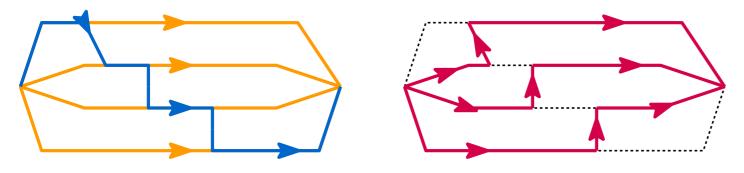


Guarantee: Suppose max-flow f^* of G is short

average length of flow-path is $\leq h \ (\approx polylog(n))$

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in $\tilde{O}(mh)$ time

- (1): lengths of flow path in f is $\leq 2h$
- (2): shortest s-t path in residual graph G_f length > 2h



 $f^* - f$ is flow in residual graph

Short Flow

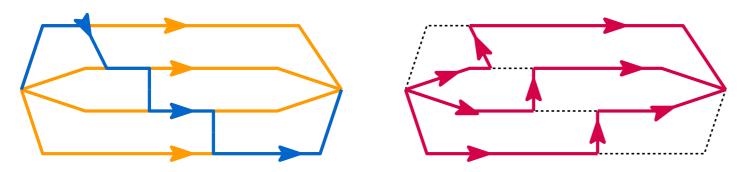
Guarantee: Suppose max-flow f^* of G is short

average length of flow-path is $\leq h \ (\approx polylog(n))$

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in $\tilde{O}(mh)$ time

Proof: Run Push-Relabel / Dinic's Blocking-Flow up to depth 2h.

- (1): lengths of flow path in f is $\leq 2h$
- (2): shortest s-t path in residual graph G_f length > 2h



average-length $(f^* - f) \le \frac{|f^*| \cdot h + |f| \cdot 2h}{|f^*| - |f|}$

 $f^* - f$ is flow in residual graph

Short Flow

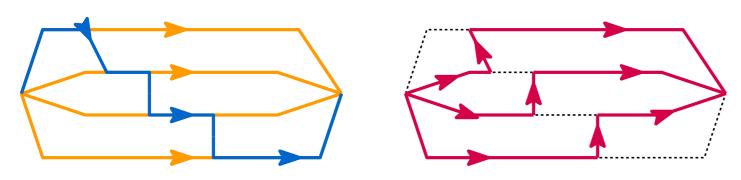
Guarantee: Suppose max-flow f^* of G is short

average length of flow-path is $\leq h \ (\approx polylog(n))$

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in $\tilde{O}(mh)$ time

Proof: Run Push-Relabel / Dinic's Blocking-Flow up to depth 2h.

- (1): lengths of flow path in f is $\leq 2h$
- (2): shortest s-t path in residual graph G_f length > 2h



average-length $(f^* - f) \le \frac{|f^*| \cdot h + |f| \cdot 2h}{|f^*| - |f|}$

$$\leq \frac{1.2h \cdot |f^*|}{0.9 \cdot |f^*|} \ll 2h$$

 $f^* - f$ is flow in residual graph

(assuming $|f| < 0.1|f^*|$)

.

Short Flow

Guarantee: Suppose max-flow f^* of G is short

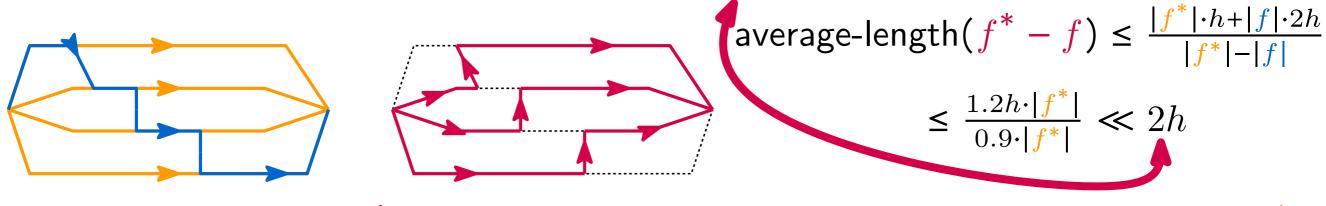
average length of flow-path is $\leq h \ (\approx polylog(n))$

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in $\tilde{O}(mh)$ time

Proof: Run Push-Relabel / Dinic's Blocking-Flow up to depth 2h.

- (1): lengths of flow path in f is $\leq 2h$
- (2): shortest s-t path in residual graph G_f length > 2h

Contradiction!



 $f^* - f$ is flow in residual graph

(assuming $|f| < 0.1|f^*|$)

.

Guarantee: Suppose max-flow f^* of G is short

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in $\tilde{O}(mh)$ time

.

Guarantee: Suppose max-flow f^* of G is short for edge lengths w(e)

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in O(nh) time "Weighted Push-Relabel" $O(h \cdot \sum_{e} \frac{1}{w(e)})$

Guarantee: Suppose max-flow f^* of G is short for edge lengths w(e)

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in O(h) time "Weighted Push-Relabel" $O(h \cdot \sum_{e} \frac{1}{w(e)})$

How to find good lengths w(e) that satisfies guarantee and has small $\sum_{e} \frac{1}{w(e)}$?

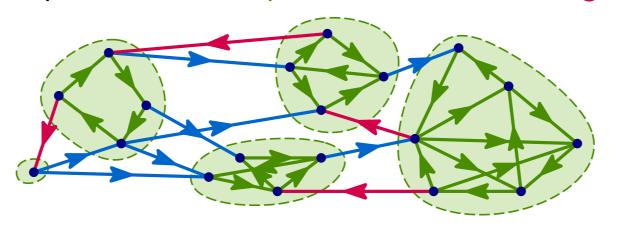
Guarantee: Suppose max-flow f^* of G is short for edge lengths w(e)

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in O(nh) time "Weighted Push-Relabel" $O(h \cdot \sum_{e} \frac{1}{w(e)})$

How to find good lengths w(e) that satisfies guarantee and has small $\sum_{e} \frac{1}{w(e)}$?

Directed Expander Hierarchy

Graph = DAG + Expanders + Few back-edges



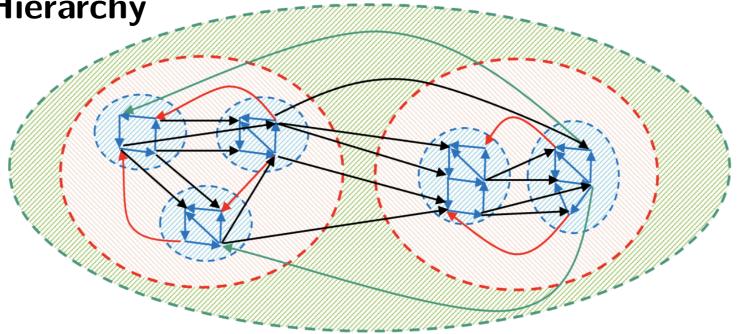
Guarantee: Suppose max-flow f^* of G is short for edge lengths w(e)

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in O(mh) time "Weighted Push-Relabel" $O(h \cdot \sum_{e} \frac{1}{w(e)})$

How to find good lengths w(e) that satisfies guarantee and has small $\sum_{e} \frac{1}{w(e)}$?

"topological" $w(u, v) = |\tau(u) - \tau(v)|$

Directed Expander Hierarchy



Guarantee: Suppose max-flow f^* of G is short for edge lengths w(e)

Theorem: Can compute 10-approx max-flow f with $|f| \ge 0.1 \cdot |f^*|$ in O(nh) time "Weighted Push-Relabel" $O(h \cdot \sum_{e} \frac{1}{w(e)})$

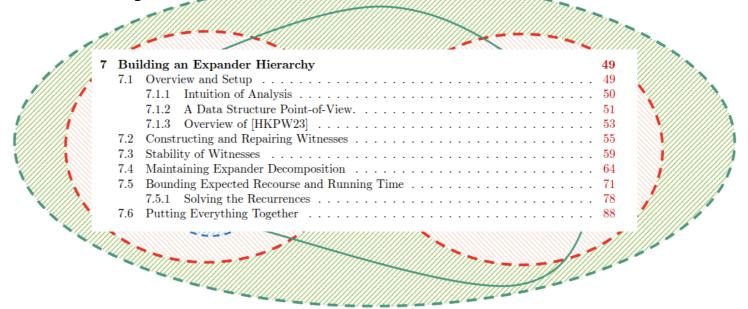
How to find good lengths w(e) that satisfies guarantee and has small $\sum_{e} \frac{1}{w(e)}$?

"topological" $w(u,v) = |\tau(u) - \tau(v)|$

Directed Expander Hierarchy

Really annoying to construct

≈50 pages



Guarantee: Suppose max-flow f^* of G is short

How to guarantee this?

Guarantee: Suppose max-flow f^* of G is short

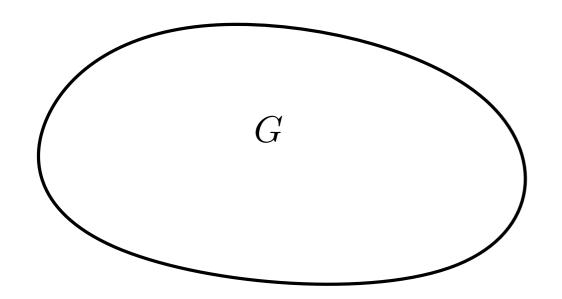
How to guarantee this?

Answer: We will cheat!

Guarantee: Suppose max-flow f^* of G is short

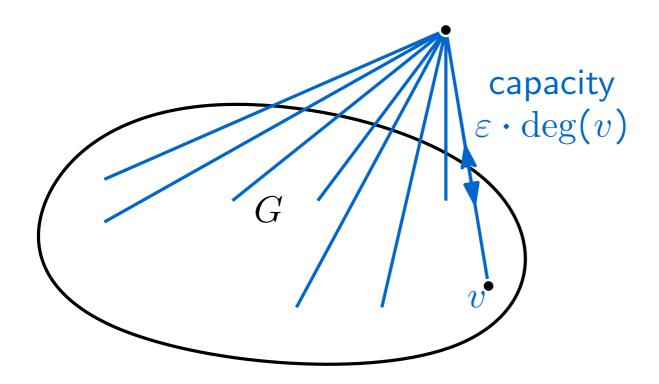
How to guarantee this?

Answer: We will cheat!



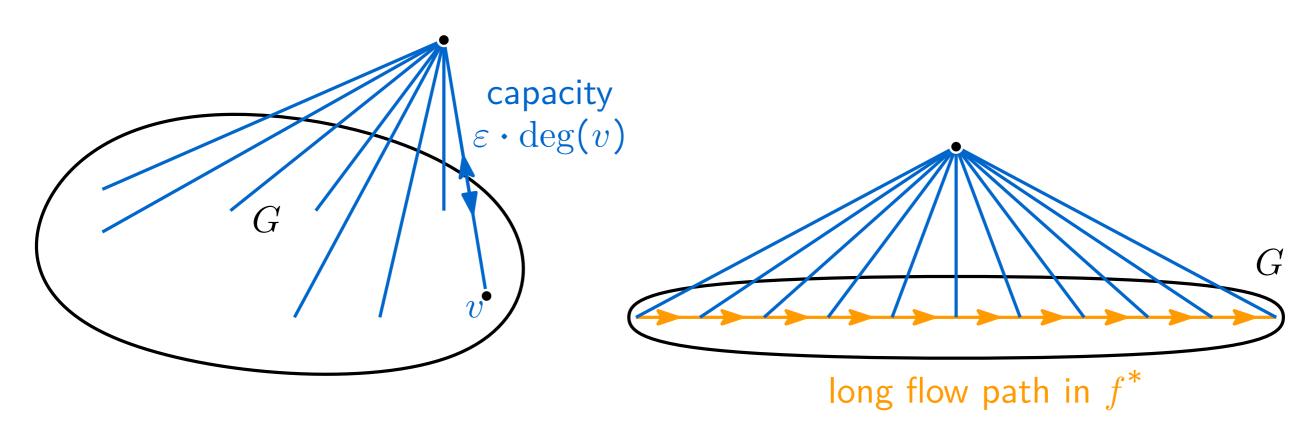
Guarantee: Suppose max-flow f^* of G is short

How to guarantee this?



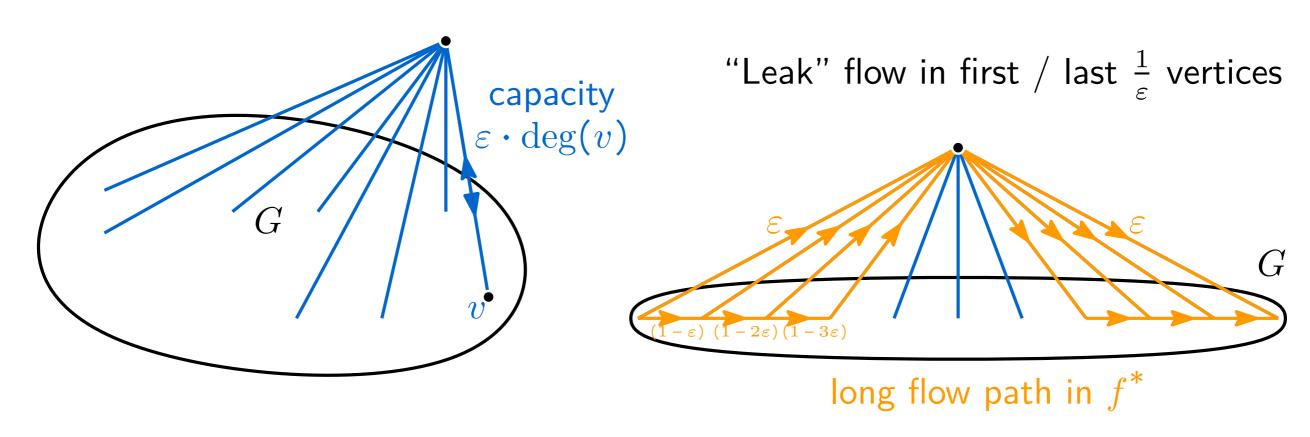
Guarantee: Suppose max-flow f^* of G is short

How to guarantee this?



Guarantee: Suppose max-flow f^* of G is short

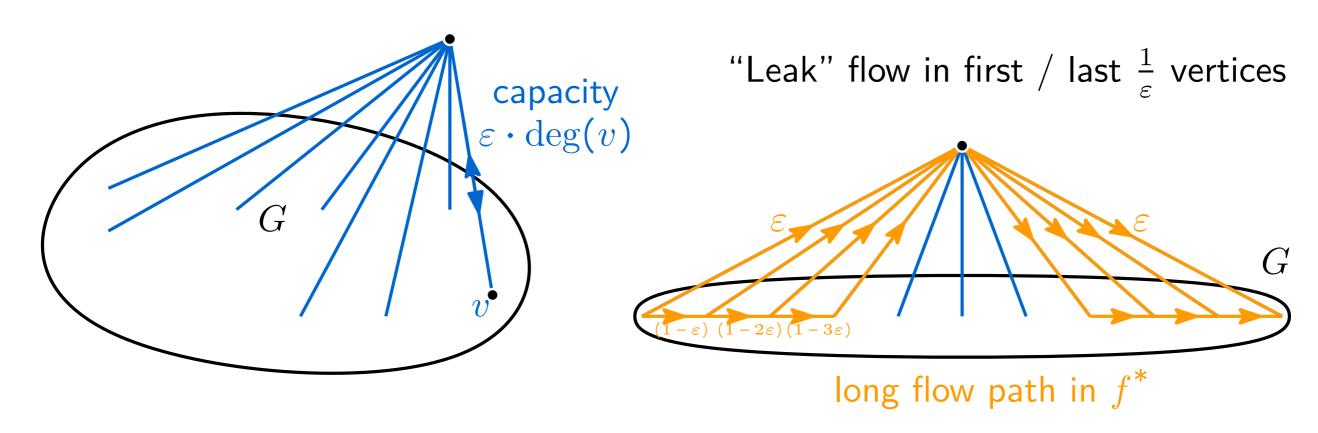
How to guarantee this?



Guarantee: Suppose max-flow f^* of G is short

How to guarantee this?

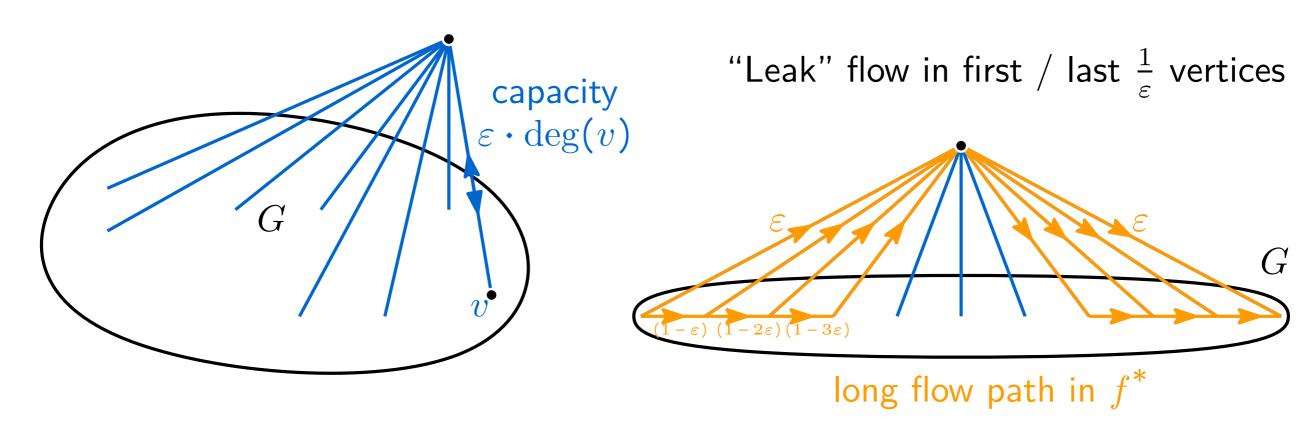
Guarantee satisfied in G+star



Guarantee: Suppose max-flow f^* of G is short

How to guarantee this?

Guarantee satisfied in G+star Compute max flow in G+star in $\tilde{O}(m/\varepsilon)$ time!

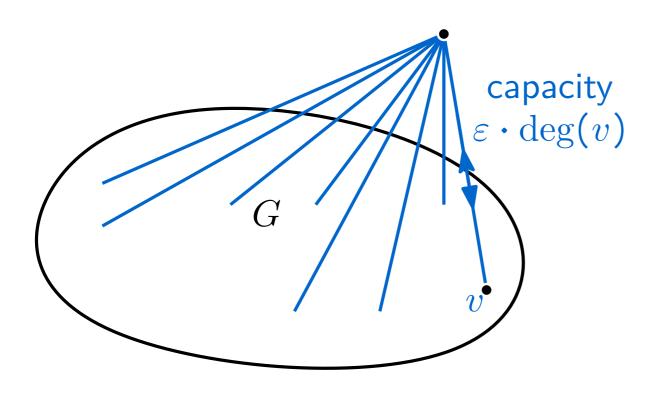


Guarantee: Suppose max-flow f^* of G is short

How to guarantee this?

Guarantee satisfied in G+starCompute max flow in G+star in $\tilde{O}(m/\varepsilon)$ time!

Answer: We will cheat! "Shortcut Star"



Big Problem:

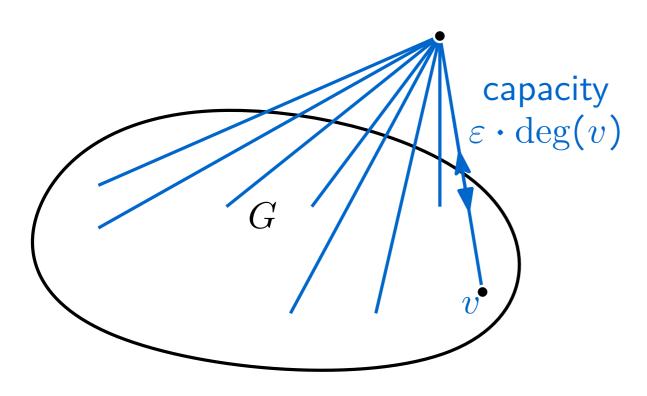
Max-flow in G+star \neq Max-Flow in G

Guarantee: Suppose max-flow f^* of G is short

How to guarantee this?

Guarantee satisfied in G+starCompute max flow in G+star in $\tilde{O}(m/\varepsilon)$ time!

Answer: We will cheat! "Shortcut Star"



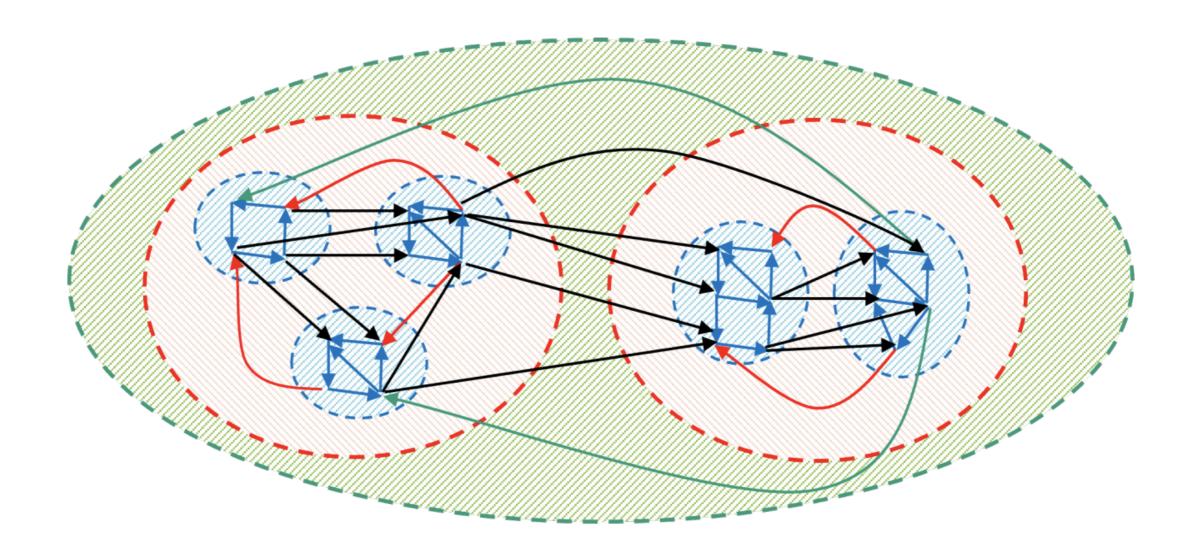
Big Problem:

Max-flow in G+star \neq Max-Flow in G

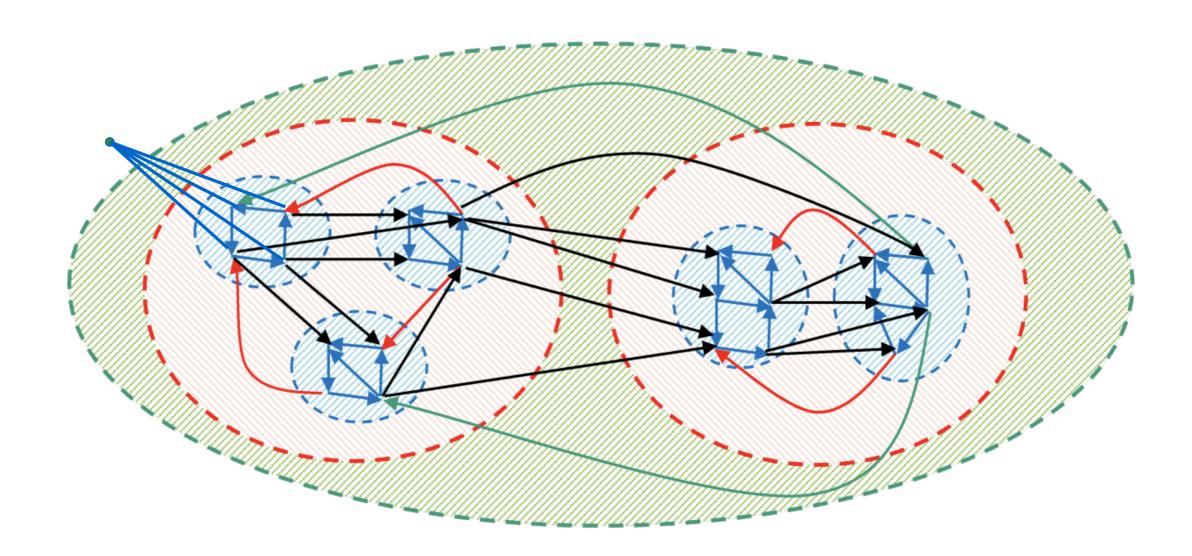
Luckily:

Max-flow in $G+\operatorname{star} \approx \operatorname{Max-Flow}$ in G if G is ϕ -expander and ε is small

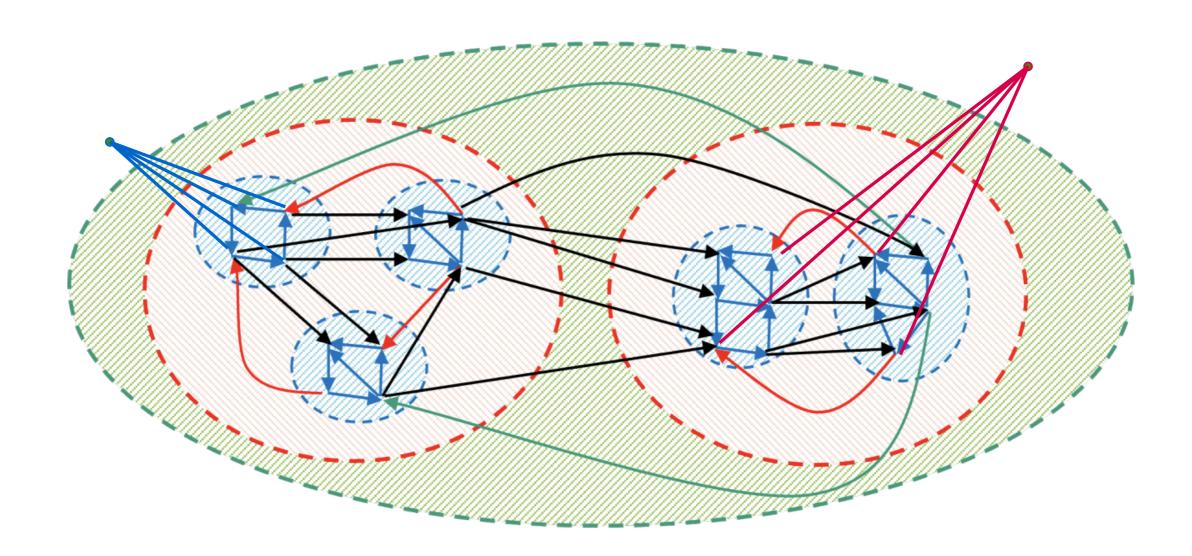
Add shortcut stars on each expander in the Expander Hierarchy



Add shortcut stars on each expander in the Expander Hierarchy

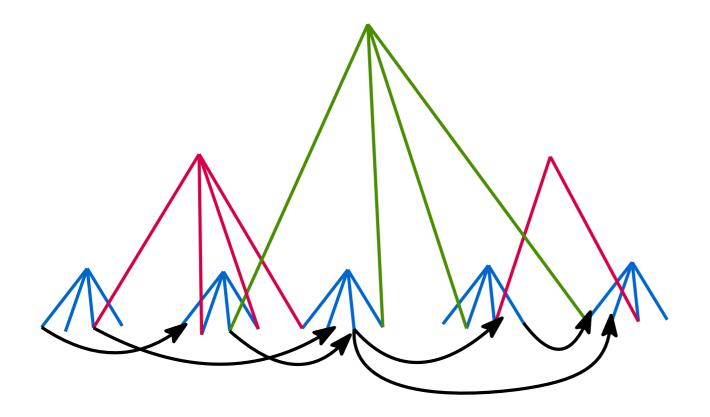


Add shortcut stars on each expander in the Expander Hierarchy



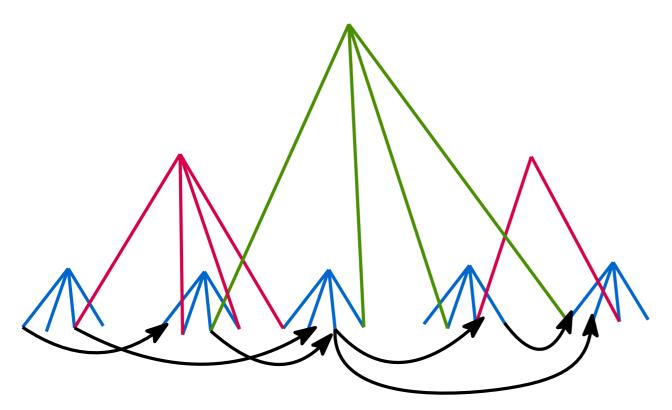
Add shortcut stars on each expander in the Expander Hierarchy

Much simpler structure $\approx \mathsf{DAG} + \log n$ levels of disjoint stars



Add shortcut stars on each expander in the Expander Hierarchy

Much simpler structure $\approx \mathsf{DAG} + \log n$ levels of disjoint stars



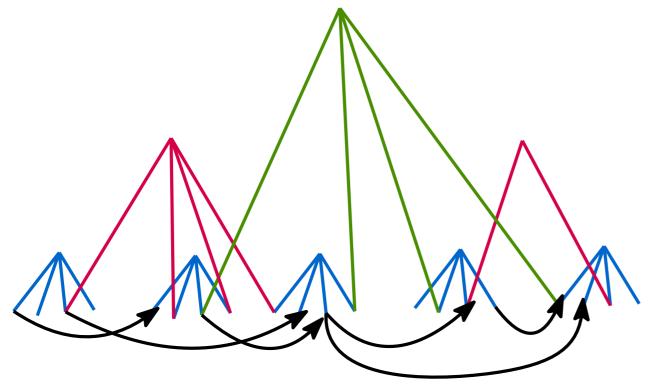
Greatly Simplifies:

Construction of hierarchy

Most of the remaining analysis

Add shortcut stars on each expander in the Expander Hierarchy

Much simpler structure $\approx \mathsf{DAG} + \log n$ levels of disjoint stars



Greatly Simplifies:

Construction of hierarchy

Most of the remaining analysis

Consequences:

$$n^{2+o(1)} \mapsto \tilde{O}(n^2)$$

40 instead of 100 pages

Implementable

Determinsistic for vertex-capacities

Summary

Main Result: Maximum flow in on *n*-vertex graphs in $O(n^2 \log^{19} n)$ time.

Techniques:

Augmenting Paths (new version of Push-Relabel)

Directed Expander Hierarchy

New: Shortcuts

My Hope:

"Simple", "Combinatorial" $\tilde{O}(E)$ Maximum Flow?

Non-bipartite Maximum Matching in $\tilde{O}(V^2)$ or $\tilde{O}(E)$ time?

Bottleneck towards $\tilde{O}(m)$: Approximate Max Flow in DAGs

("simple" $\tilde{O}(n^2)$ algo)

Summary

Main Result: Maximum flow in on *n*-vertex graphs in $O(n^2 \log^{19} n)$ time.

Theoretically possible → (Implementable) → Practical

Techniques:

Augmenting Paths (new version of Push-Relabel)

Directed Expander Hierarchy

New: Shortcuts

My Hope:

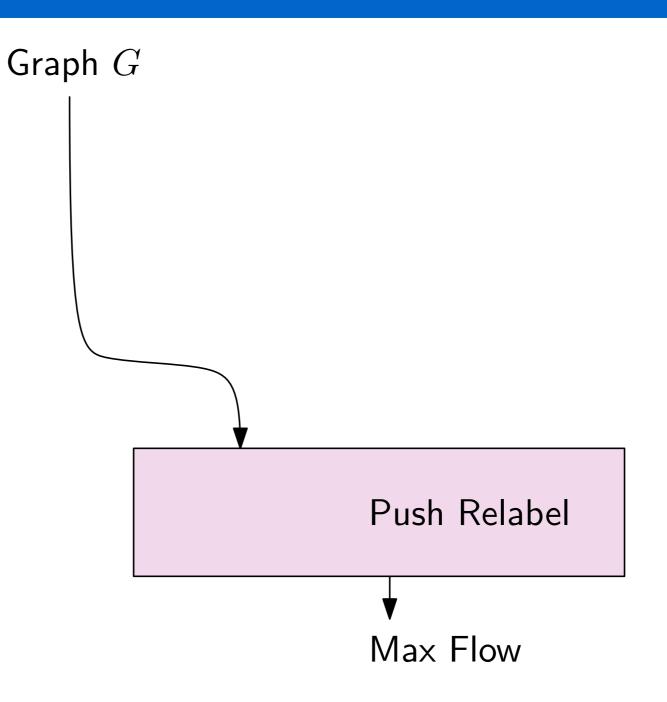
"Simple", "Combinatorial" $\tilde{O}(E)$ Maximum Flow?

Non-bipartite Maximum Matching in $\tilde{O}(V^2)$ or $\tilde{O}(E)$ time?

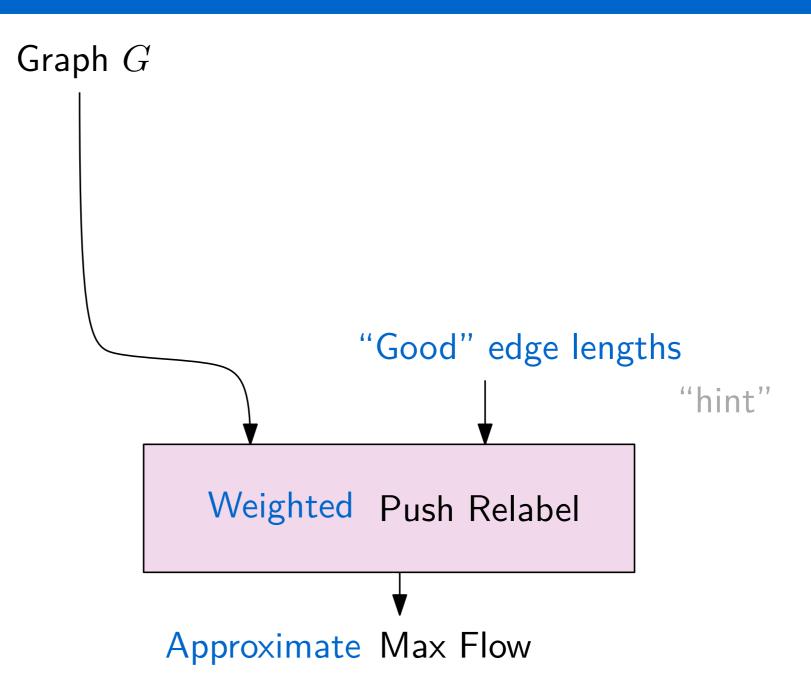
Thanks!

Extra Slides

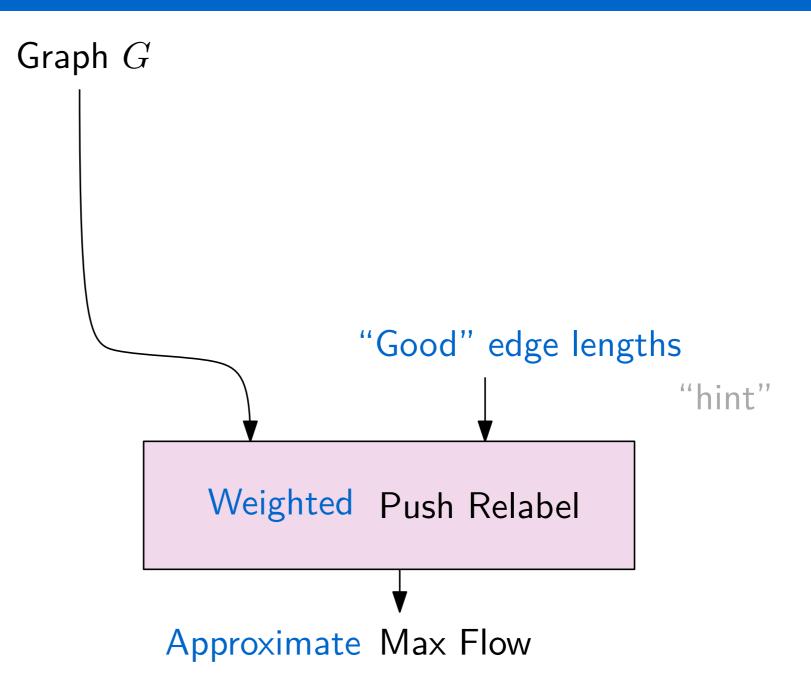
1. Recap: Push-Relabel



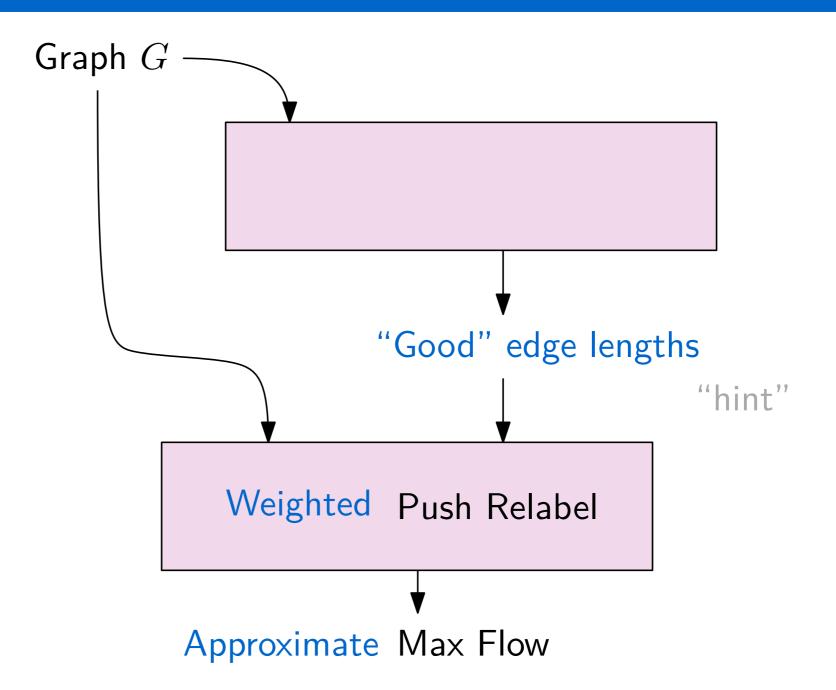
- 1. Recap: Push-Relabel
- 2. Weighted PR



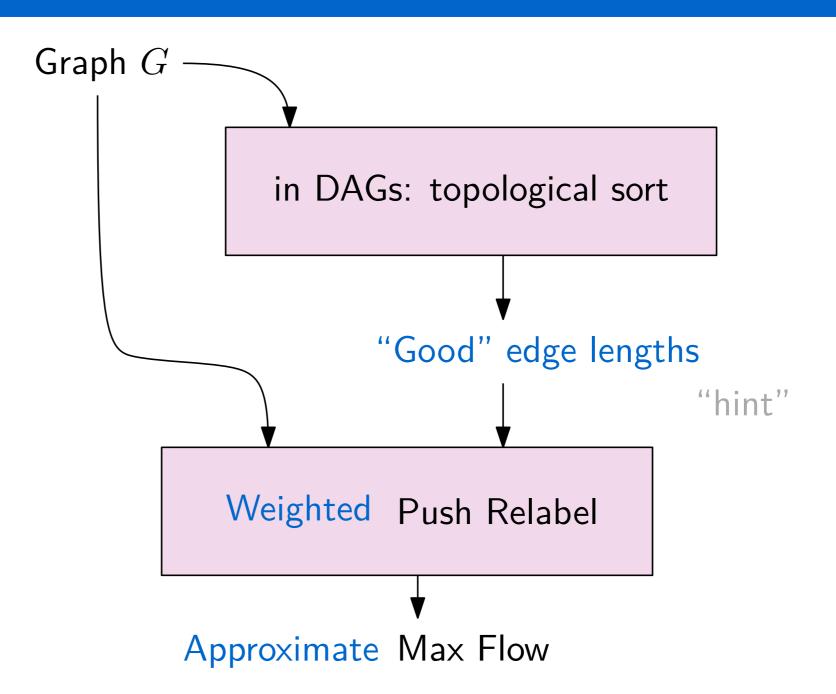
- 1. Recap: Push-Relabel
- 2. Weighted PR
- 3. "Good"



- 1. Recap: Push-Relabel
- 2. Weighted PR
- 3. "Good"

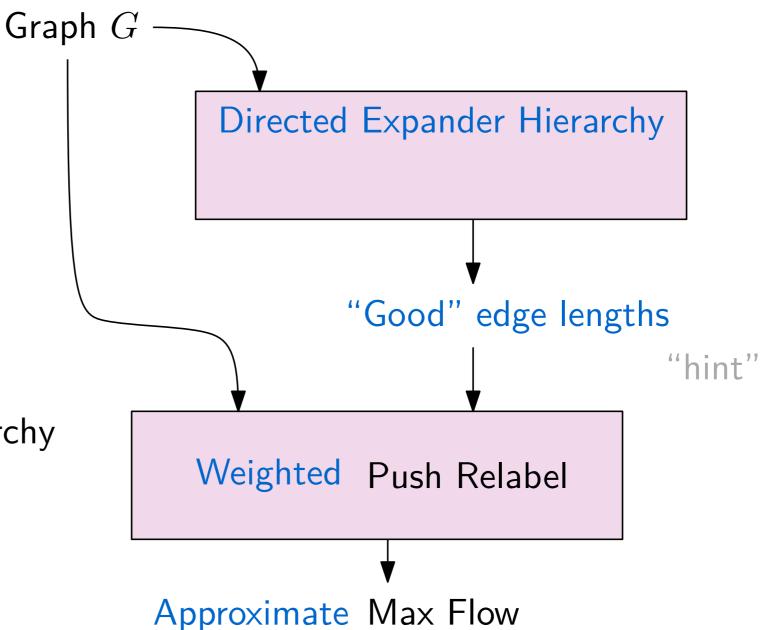


- 1. Recap: Push-Relabel
- 2. Weighted PR
- 4: Edge L'enghts in DAGs



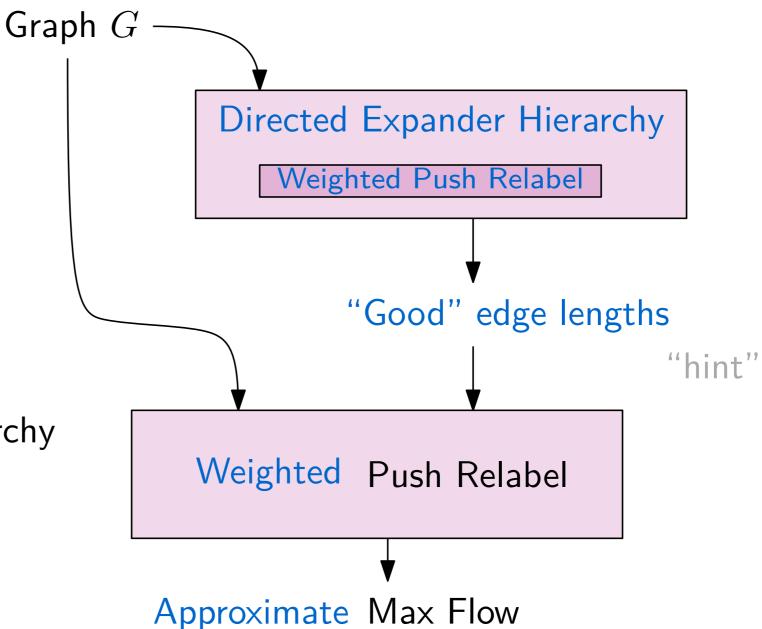
- 1. Recap: Push-Relabel
- 2. Weighted PR
- 3. "Good"
- 4. Edge Lenghts in DAGs
- 5. General Graphs:

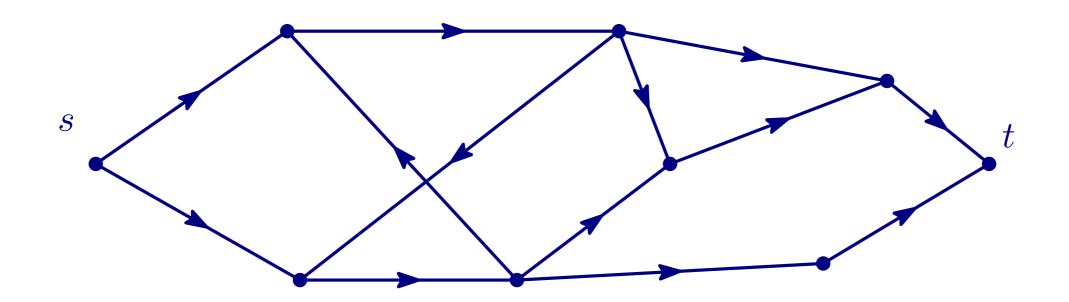
Directed Expander Hierarchy



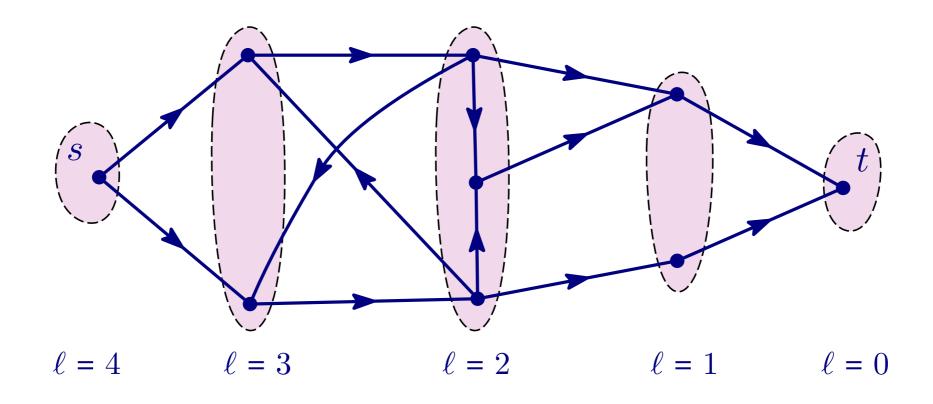
- 1. Recap: Push-Relabel
- 2. Weighted PR
- 3. "Good"
- 4. Edge Lenghts in DAGs
- 5. General Graphs:

Directed Expander Hierarchy



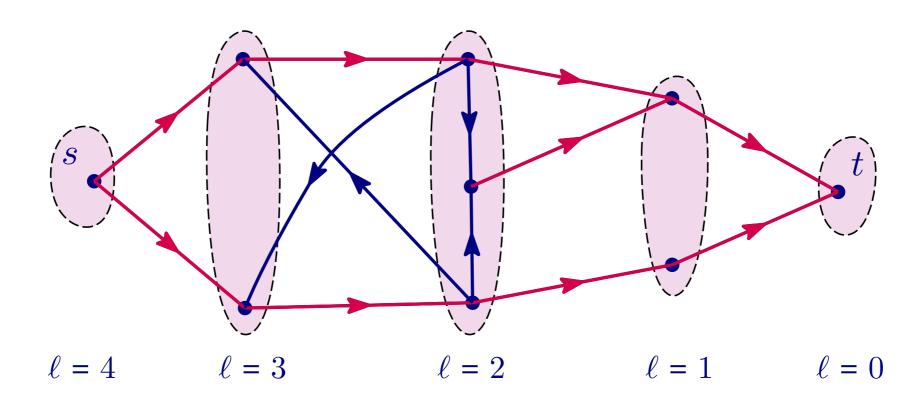


$$\ell(v) = \operatorname{dist}(v, t)$$



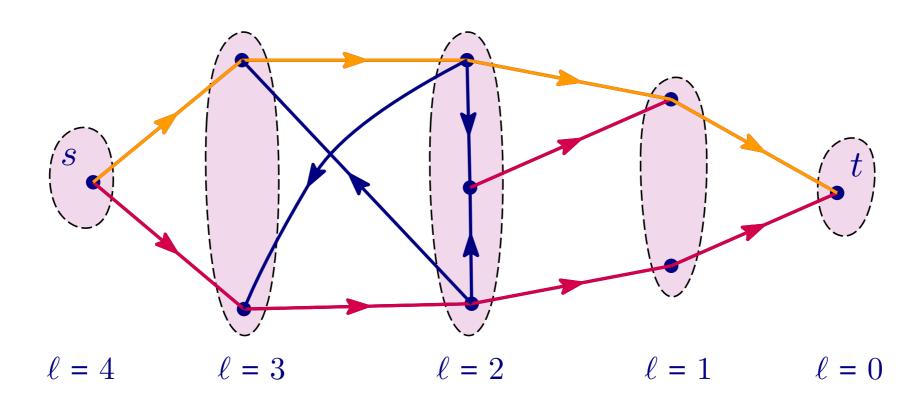
$$\ell(v) = \operatorname{dist}(v, t)$$

edge e = (u, v) admissible iff $\ell(u) = \ell(v) + 1$



$$\ell(v) = \operatorname{dist}(v, t)$$

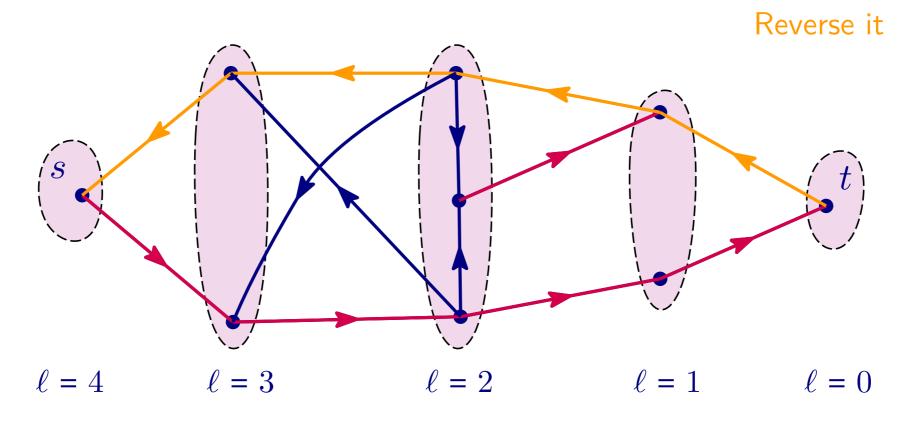
edge
$$e = (u, v)$$
 admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from s

$$\ell(v) = \operatorname{dist}(v, t)$$

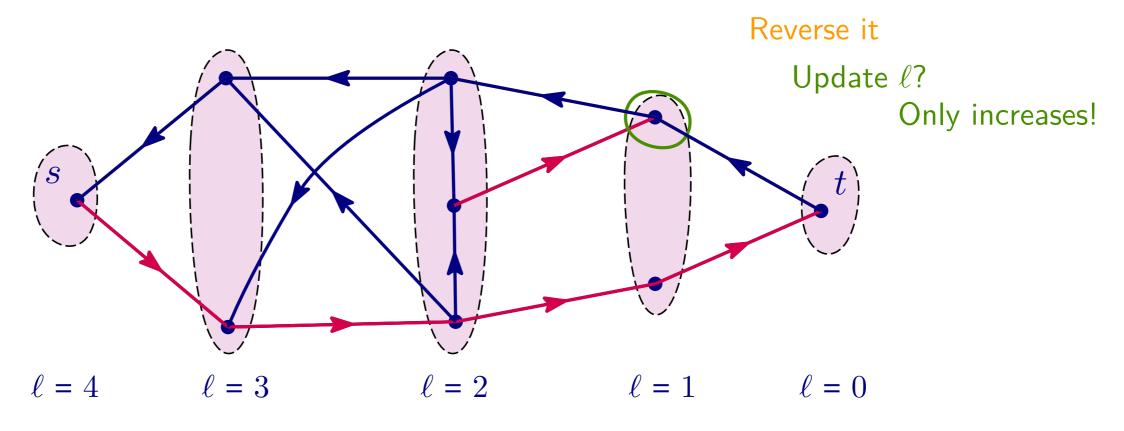
edge e = (u, v) admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from s

$$\ell(v) = \operatorname{dist}(v, t)$$

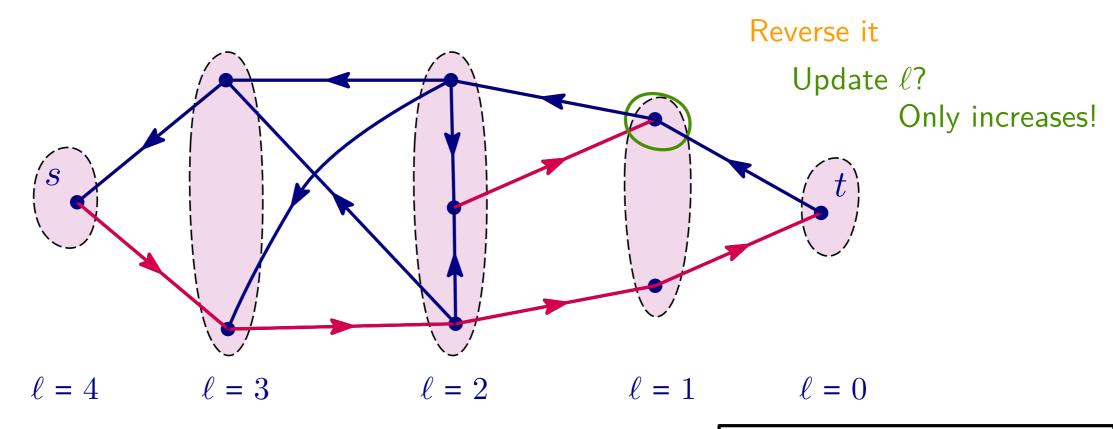
edge
$$e = (u, v)$$
 admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from s

$$\ell(v) = \operatorname{dist}(v, t)$$

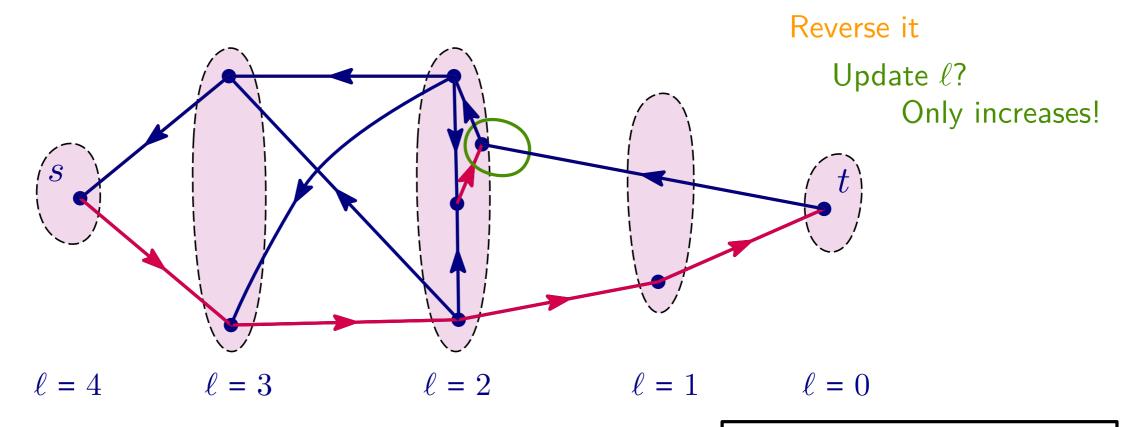
edge e = (u, v) admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from s

$$\ell(v) = \operatorname{dist}(v, t)$$

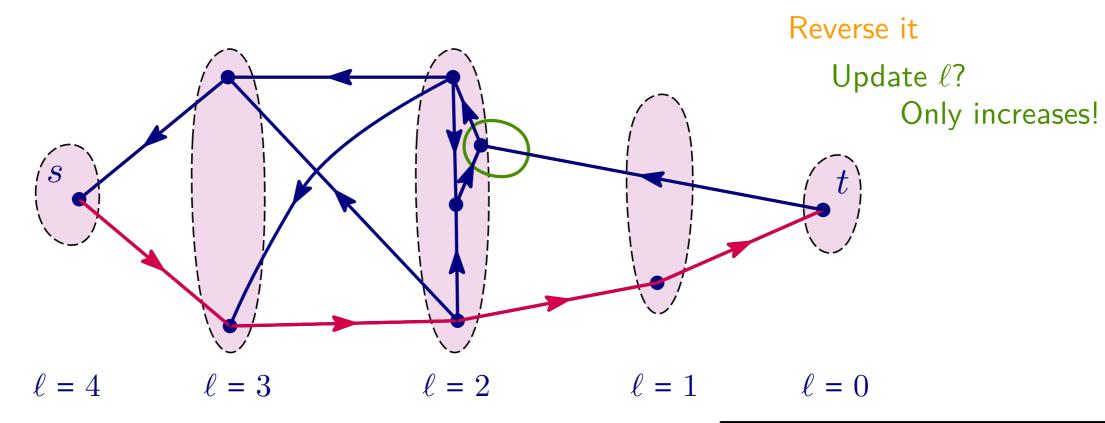
edge
$$e = (u, v)$$
 admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from \boldsymbol{s}

$$\ell(v) = \operatorname{dist}(v, t)$$

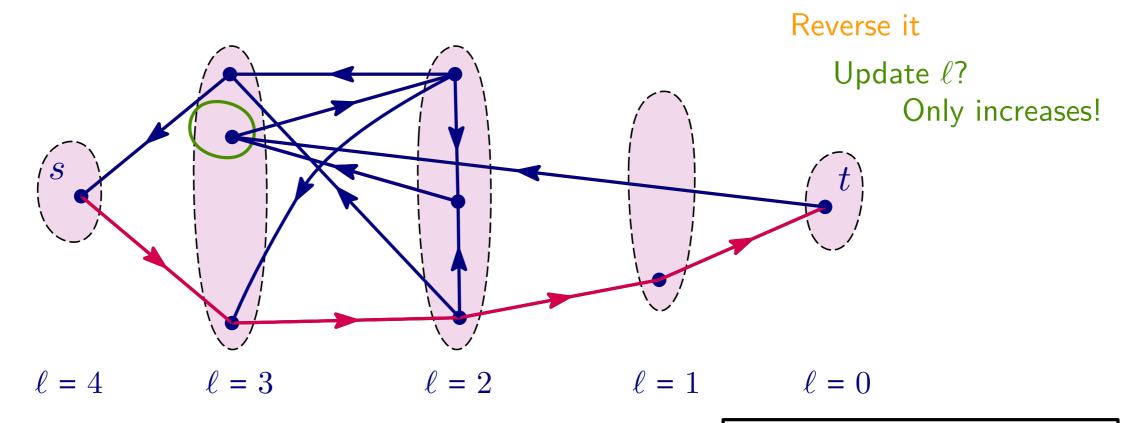
edge e = (u, v) admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from s

$$\ell(v) = \operatorname{dist}(v, t)$$

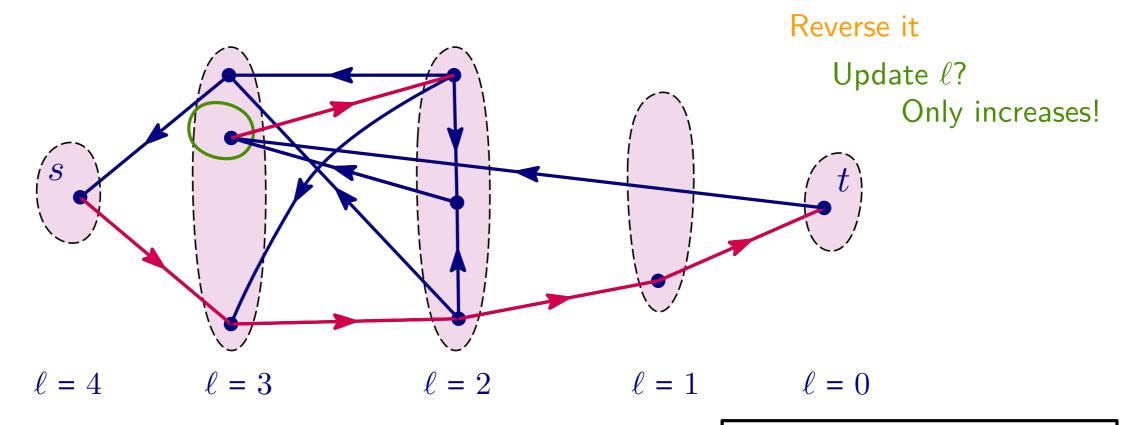
edge
$$e = (u, v)$$
 admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from s

$$\ell(v) = \operatorname{dist}(v, t)$$

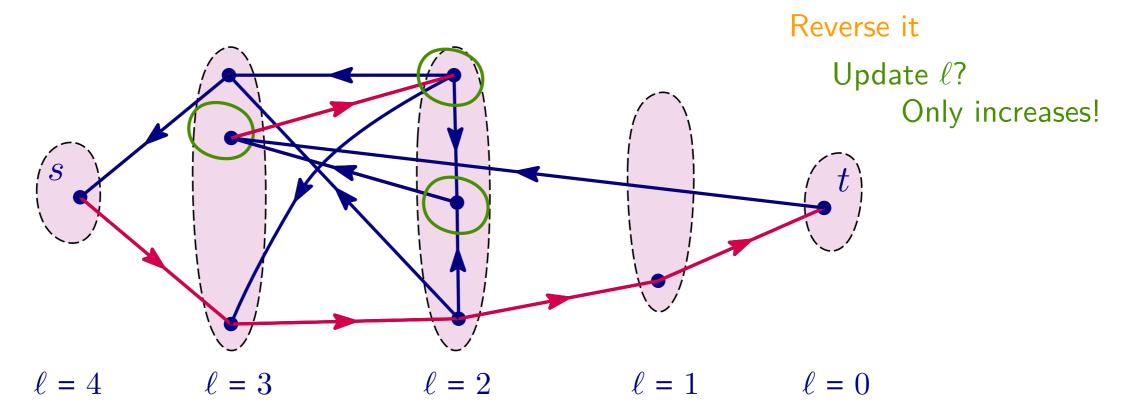
edge
$$e = (u, v)$$
 admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from \boldsymbol{s}

$$\ell(v) = \operatorname{dist}(v, t)$$

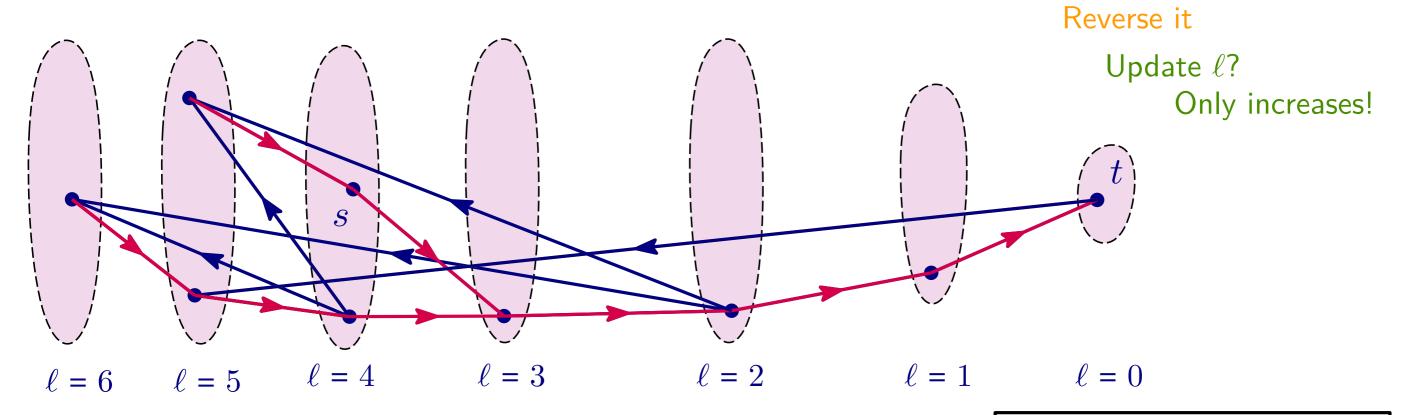
edge
$$e = (u, v)$$
 admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from \boldsymbol{s}

$$\ell(v) = \operatorname{dist}(v, t)$$

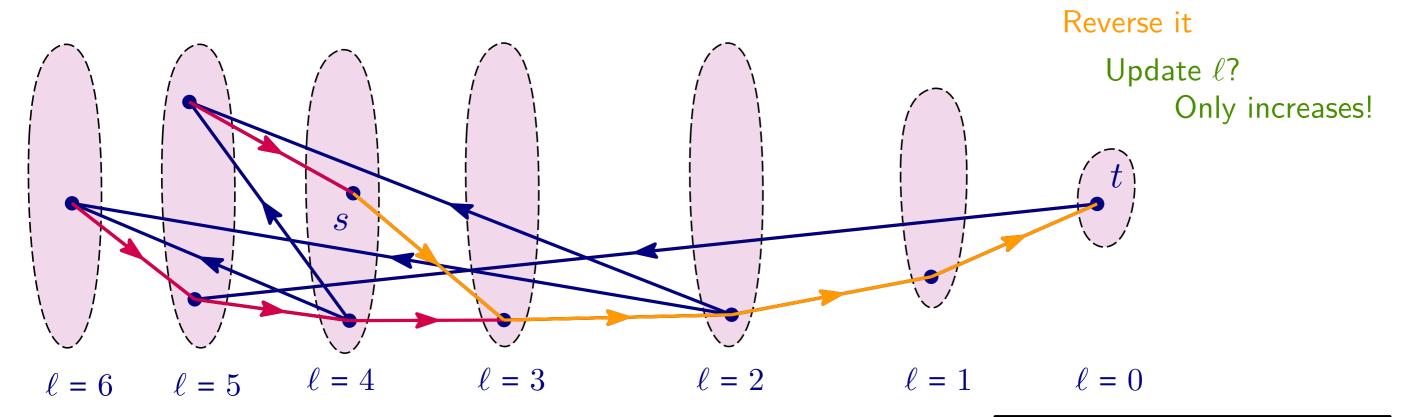
edge
$$e = (u, v)$$
 admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from s

$$\ell(v) = \operatorname{dist}(v, t)$$

edge
$$e = (u, v)$$
 admissible iff $\ell(u) = \ell(v) + 1$



Shortest Augmenting Path: follow admissible edges from s

Relabel $O(n^2)$ (n vertices, n layers)

Relabel $O(n^2)$ (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Relabel $O(n^2)$ (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

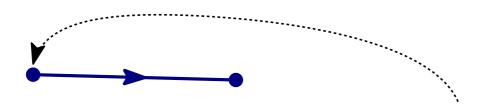
Augmentations O(nm) (n per edge)

Relabel $O(n^2)$ (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Augmentations O(nm) (n per edge)

Relabel $O(n^2)$ (n vertices, n layers) Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges) Augmentations O(nm) (n per edge)



Relabel $O(n^2)$ (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Augmentations O(nm) (n per edge) $O(nm\log n)$ (capacitated graphs:

Link-Cut trees of admissible edges)

Relabel $O(n^2)$ (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Augmentations O(nm) (n per edge) $O(nm \log n)$ (capacitated graphs:

Link-Cut trees of admissible edges)

Total: $\tilde{O}(nm)$

How to speed it up?

$$w(e) = 2$$

$$w(e) = 10$$

"short" = "frequent"

$$w(e) = 2$$

$$w(e) = 10$$

.

$$w(e) = 2$$

$$w(e) = 10$$

Guarantee: Path P in maxflow f^*

few long edges, potentially many short

"short" = "frequent"
$$w(e) = 2$$

$$w(e) = 10$$

Guarantee: Path P in maxflow f^*

$$w(P) \leq \tilde{O}(n)$$

few long edges, potentially many short

$$w(e) = 2$$

$$w(e) = 10$$

Potential Faster Algo:

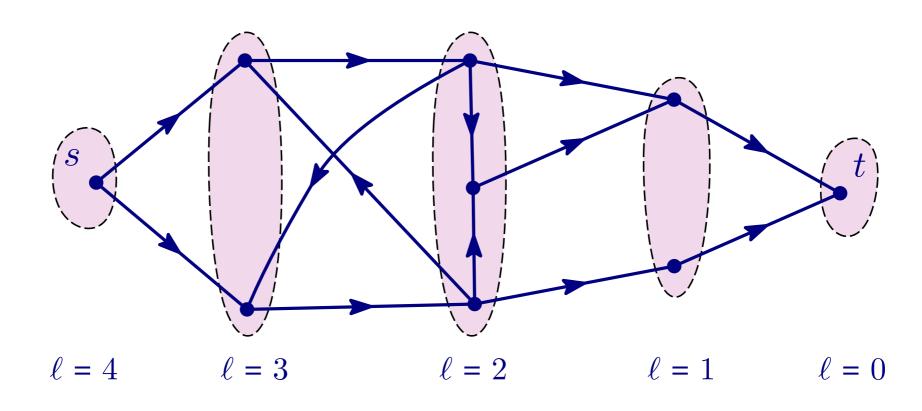
look for short paths

Guarantee: Path P in maxflow f^*

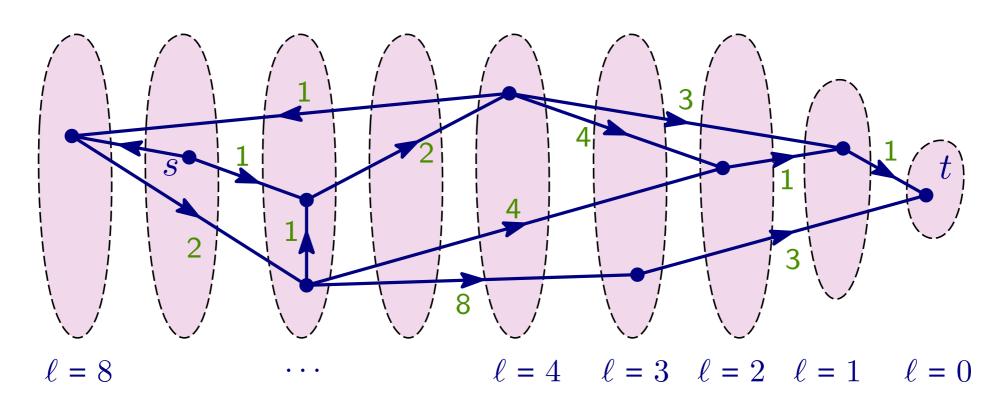
$$w(P) \leq \tilde{O}(n)$$

few long edges, potentially many short

$$\ell(v) = \operatorname{dist}(v, t)$$

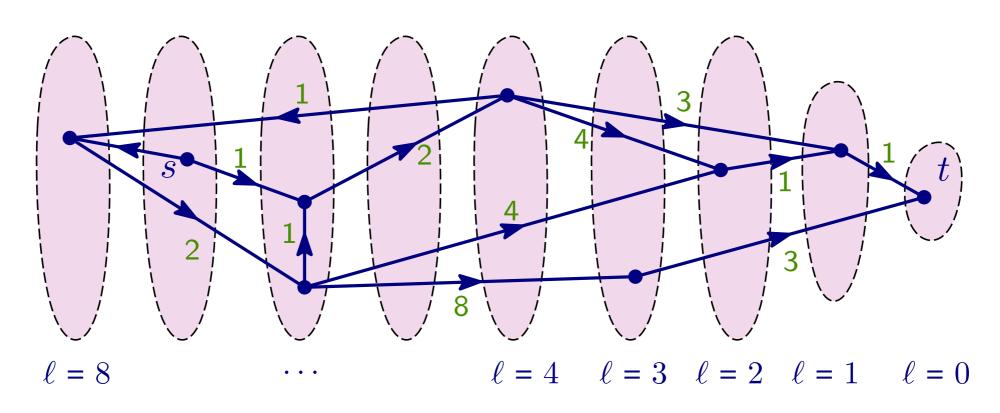


$$\ell(v) = \operatorname{dist}_{\mathbf{w}}(v, t)$$



$$\ell(v) = \operatorname{dist}_{\boldsymbol{w}}(v,t)$$

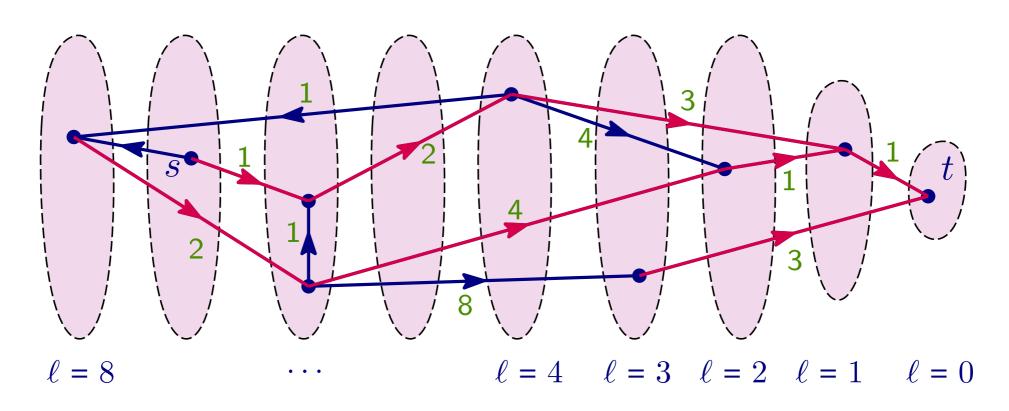
edge e = (u, v) admissible iff $\ell(u) = \ell(v) + 1$



.

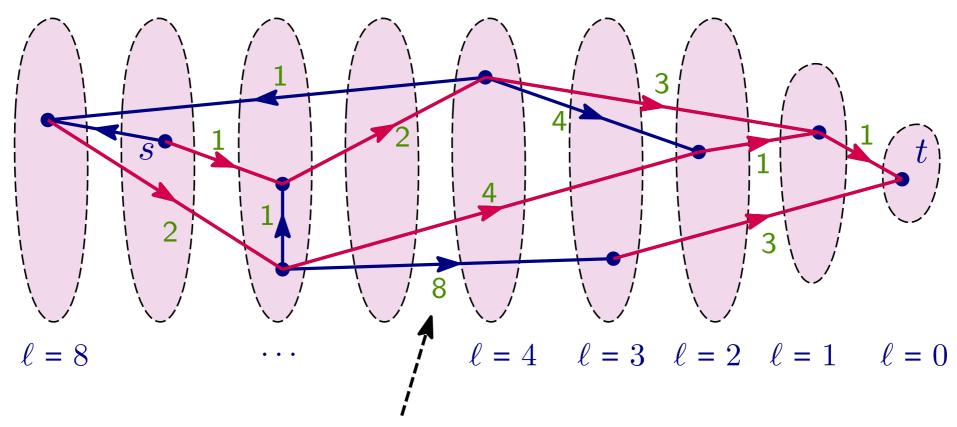
$$\ell(v) = \operatorname{dist}_{\boldsymbol{w}}(v,t)$$

edge e = (u, v) admissible iff $\ell(u) = \ell(v) + w(e)$



$$\ell(v) = \operatorname{dist}_{\mathbf{w}}(v,t)$$

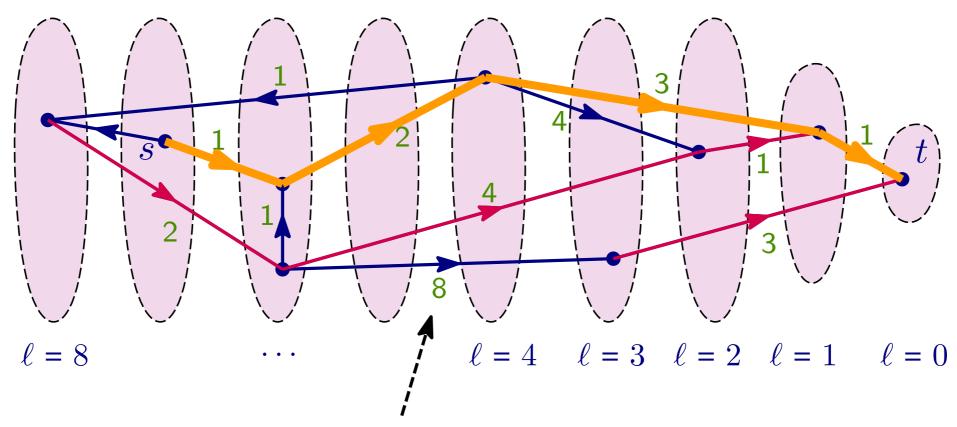
edge
$$e = (u, v)$$
 admissible iff $\ell(u) = \ell(v) + w(e)$



Not all forward edges are admissible!

$$\ell(v) = \operatorname{dist}_{\boldsymbol{w}}(v,t)$$

edge
$$e = (u, v)$$
 admissible iff $\ell(u) = \ell(v) + w(e)$

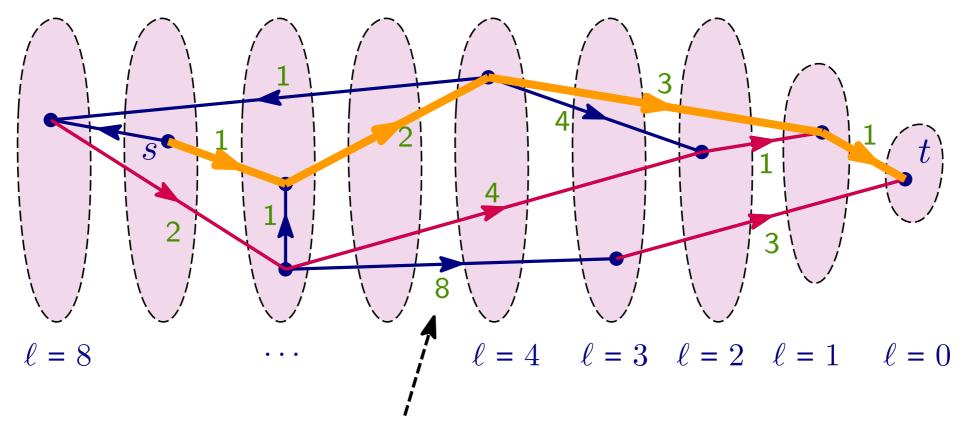


Not all forward edges are admissible!

 ${m w}$ -Shortest Augmenting Path: follow admissible edges from s

$$\ell(v) \approx \operatorname{dist}_{\boldsymbol{w}}(v,t)$$

edge
$$e = (u, v)$$
 admissible iff $\ell(u) \ge \ell(v) + w(e)$



Not all forward edges are admissible!

Running Time Analysis

Relabel $O(n^2)$ (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Augmentations O(nm) (n per edge) $O(nm \log n)$ (capacitated graphs:

Link-Cut trees of admissible edges)

Running Time Analysis

Relabel $O(n^2)$ (n vertices, n layers)

Keeping track of admissible edges: O(nm) (after relabel: recheck incident edges)

Augmentations O(nm) (n per edge) O(nm) (capacitated graphs:

Link-Cut trees of admissible edges)

RELABEL

Keeping track of admissible edges:

Augmentations

Goal: $\tilde{O}\left(\sum_{e\in E} \frac{\# \text{layers}}{w(e)}\right)$

 $O(n^2)$ (n vertices, n layers) O(nm) (after relabel: recheck incident edges) O(nm) (n per edge) $O(nm \log n)$ (capacitated graphs:

Link-Cut trees of admissible edges)

 $(\# layers = \tilde{O}(n))$

RELABEL

Keeping track of admissible edges:

Augmentations

$$O(n^2)$$
 (n vertices, n layers)

Q(nm) (after relabel: recheck incident edges)

O(nm) ($nm \log n$) (capacitated graphs:
Link-Cut trees of admissible edges)

Goal:
$$\tilde{O}\left(\sum_{e\in E} \frac{\# \text{layers}}{w(e)}\right)$$

 $(\# layers = \tilde{O}(n))$

After relabel v: recheck only incident edges e where w(e) divides $\ell(v)$

RELABEL

Keeping track of admissible edges:

Augmentations

$$O(n^2)$$
 (n vertices, n layers)

Q(nm) (after relabel: recheck incident edges)

O(nm) ($nm \log n$) (capacitated graphs:
Link-Cut trees of admissible edges)

Goal:
$$\tilde{O}\left(\sum_{e\in E} \frac{\# \text{layers}}{w(e)}\right)$$

$$(\# layers = \tilde{O}(n))$$

After relabel v: recheck only incident edges e where w(e) divides $\ell(v)$

Augmentations

$$\ell(u) \approx \ell(v) + \mathbf{w}(e)$$

RELABEL

Keeping track of admissible edges:

Augmentations

 $O(n^2)$ (n vertices, n layers)

Q(nm) (after relabel: recheck incident edges)

O(nm) ($nm \log n$) (capacitated graphs:
Link-Cut trees of admissible edges)

Goal:
$$\tilde{O}\left(\sum_{e\in E} \frac{\# \text{layers}}{w(e)}\right)$$

 $(\# layers = \tilde{O}(n))$

After relabel v: recheck only incident edges e where w(e) divides $\ell(v)$

Augmentations

$$\ell(u) \approx \ell(v) + w(e)$$

RELABEL

Keeping track of admissible edges:

Augmentations

 $O(n^2)$ (n vertices, n layers)

Q(nm) (after relabel: recheck incident edges)

O(nm) ($nm \log n$) (capacitated graphs:
Link-Cut trees of admissible edges)

Goal:
$$\tilde{O}\left(\sum_{e \in E} \frac{\# \text{layers}}{w(e)}\right)$$

$$(\# layers = \tilde{O}(n))$$

After relabel v: recheck only incident edges e where w(e) divides $\ell(v)$

Augmentations

$$\ell(u) \approx \ell(v) + w(e)$$

$$\ell(v) \text{ inc. by } 2w(e)$$

Pseudo-Code

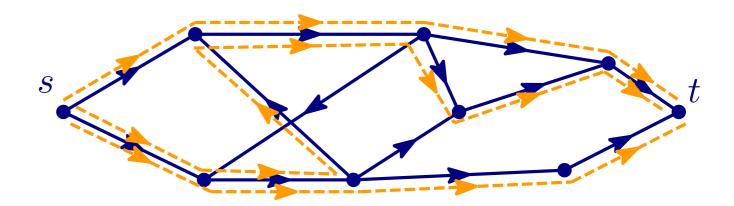
```
Algorithm 1: PUSHRELABEL(G, c, \Delta, \nabla, w, h)
1 Initialize f as the empty flow.
 2 Let \ell(v) = 0 for all v \in V. // levels
3 Mark each edge e \in \overrightarrow{E} \cup \overleftarrow{E} as inadmissible and all vertices as alive.
4 function Relabel(v)
        Set \ell(v) \leftarrow \ell(v) + 1.
       if \ell(v) > 9h then
          \max v as dead and \mathbf{return}.
       for each edge e \ni v where w(e) divides \ell(v) do
           Let (x, y) = e.
            if \ell(x) - \ell(y) \ge 2w(e) and c_f(e) > 0 then mark e as admissible.
10
            else mark e as inadmissible.
11
12 main loop
        while there is an alive vertex v with \nabla_f(v) = 0 and without an admissible out-edge do
13
           Relabel(v)
14
       if there is some alive vertex s with \Delta_f(s) > 0 then
15
           // P is an "augmenting path"
            Trace a path P from s to some sink t, by arbitrarily following admissible out-edges.
16
            Let c^{\text{augment}} \leftarrow \min\{\boldsymbol{\Delta}_{\boldsymbol{f}}(s), \boldsymbol{\nabla}_{\boldsymbol{f}}(t), \min_{e \in P} \boldsymbol{c}_{\boldsymbol{f}}(e)\}.
17
            for e \in P do
                                                                                    // Augment f along P
18
                if e is a forward edge then f(e) \leftarrow f(e) + c^{\text{augment}}.
19
                else f(e') \leftarrow f(e') - c^{\text{augment}}, where e' is the corresponding forward edge to e.
20
                Adjust residual capacities c_f of e and the corresponding reverse edge.
               if c_f(e) = 0 then mark e as inadmissible.
           // {f \Delta}_{m f}(s) and {f 
abla}_{m f}(t) goes down by c^{
m augment}
        else return f
```

Similar to normal Augment-Relabel / Push-Relabel

Good Edge Lengths

■ Good w:

- "Optimal" flow f^* which is short w.r.t. w (flow paths of length $\approx \tilde{O}(n)$)



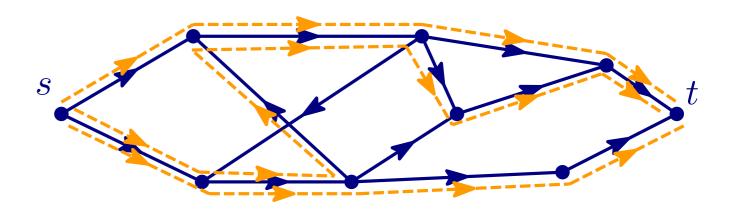
Good Edge Lengths

■ Good w:

- $lacksquare \sum_{e \in E} rac{n}{oldsymbol{w}(e)}$ is small
- "Optimal" flow f^* which is short w.r.t. w (flow paths of length $\approx \tilde{O}(n)$)

Lemma.

Weighted Push-Relabel finds f with $|f| \ge \frac{1}{10} |f^{\star}|$



 $(\approx \tilde{O}(n^2)$, running-time)

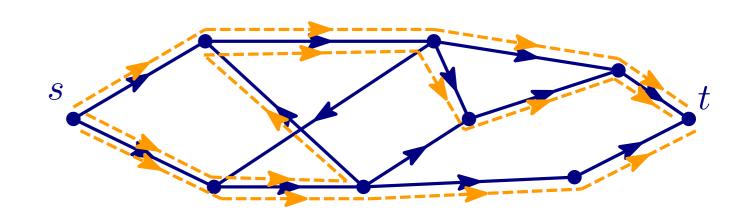
Good Edge Lengths

■ Good w:

- lacksquare $\sum_{e \in E} \frac{n}{w(e)}$ is small
- "Optimal" flow f^* which is short w.r.t. w (flow paths of length $\approx \tilde{O}(n)$)

Lemma.

Weighted Push-Relabel finds f with $|f| \geq \frac{1}{10}|f^{\star}|$



 $(\approx \tilde{O}(n^2)$, running-time)

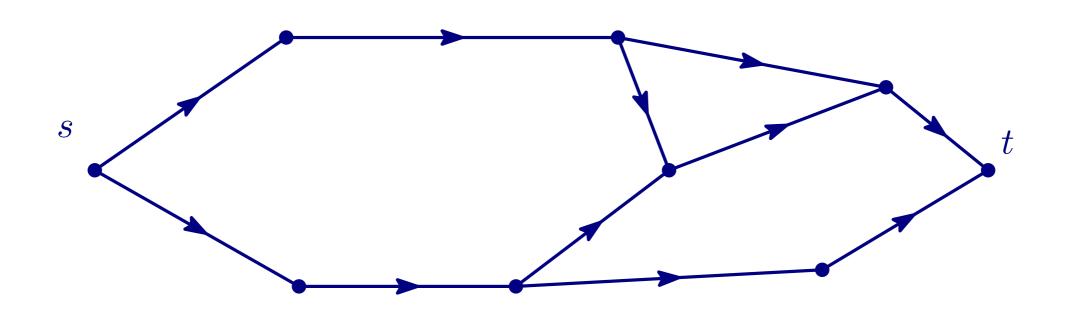
Proof Sketch.

If not:
$$|f| < \frac{1}{10} |f^{\star}|$$

 \implies some flow path is still short in residual graph $G_{m{f}}$

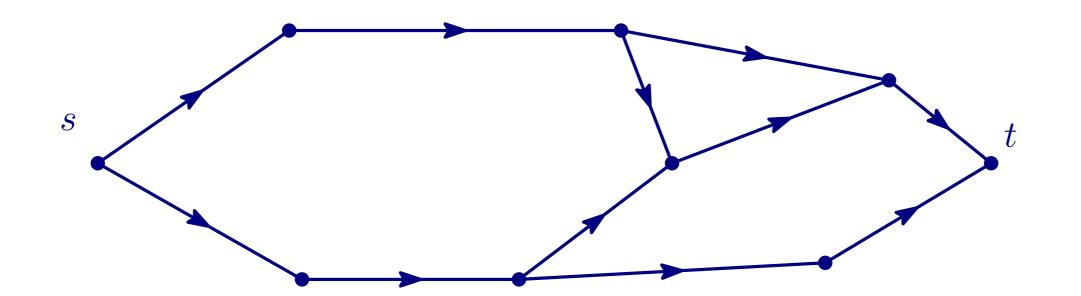
How to find good edge lengths?

Def: no directed cycles



Def: no directed cycles

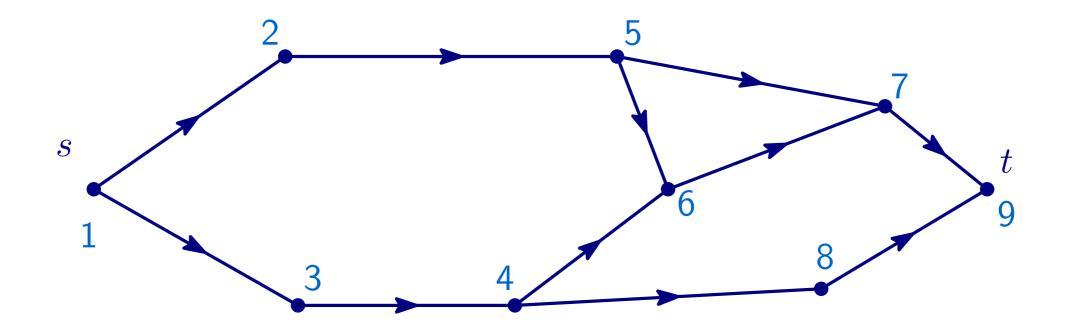
- lacksquare $\sum_{e \in E} \frac{n}{w(e)}$ is small
- "Optimal" flow f" which is short w.r.t. w



Def: no directed cycles

Topological order τ

- lacksquare $\sum_{e \in E} \frac{n}{w(e)}$ is small
- "Optimal" flow f
 which is short w.r.t. w

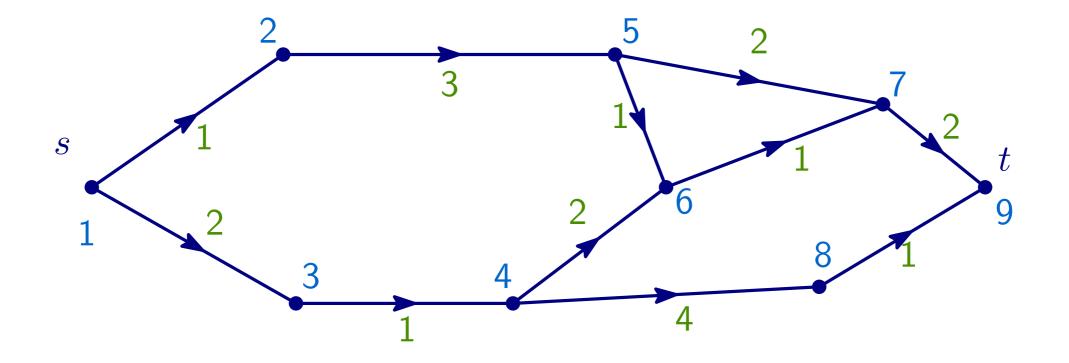


Def: no directed cycles

Topological order τ

$$w(u,v) = |\tau(u) - \tau(v)|$$

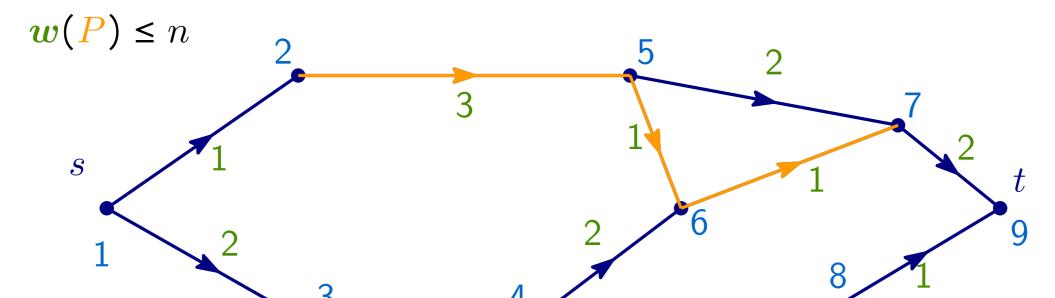
- lacksquare $\sum_{e \in E} \frac{n}{w(e)}$ is small
- "Optimal" flow f" which is short w.r.t. w



Def: no directed cycles

Topological order τ

$$w(u,v) = |\tau(u) - \tau(v)|$$



Def: no directed cycles

Topological order **7**

$$\boldsymbol{w(u,v)} = |\boldsymbol{\tau}(u) - \boldsymbol{\tau}(v)|$$

$$w(P) \le n$$

$$s = 1$$

$$s = 1$$

$$2$$

$$2$$

$$3$$

$$2$$

$$4$$

$$5$$

$$2$$

$$6$$

$$3$$

$$4$$

$$5$$

$$6$$

$$4$$

$$5$$

$$6$$

$$5$$

$$6$$

$$7$$

$$9$$

$$\sum_{(u,v)} \frac{n}{|\tau(u) - \tau(v)|} \le n \sum_{v \in V} \sum_{k=1}^{n-1} \frac{1}{k} \le n^2 \log n$$

$$\sum_{e \in E} \frac{n}{w(e)} \text{ is small}$$

$$\text{"Optimal" flow } f$$

$$\text{which is short w.r.t. } w$$

Def: no directed cycles

Topological order τ

$$w(u,v) = |\tau(u) - \tau(v)|$$

$$w(P) \leq n$$

$$\sum_{e \in E} \frac{n}{w(e)} \text{ is small}$$

$$\text{"Optimal" flow } f^*$$

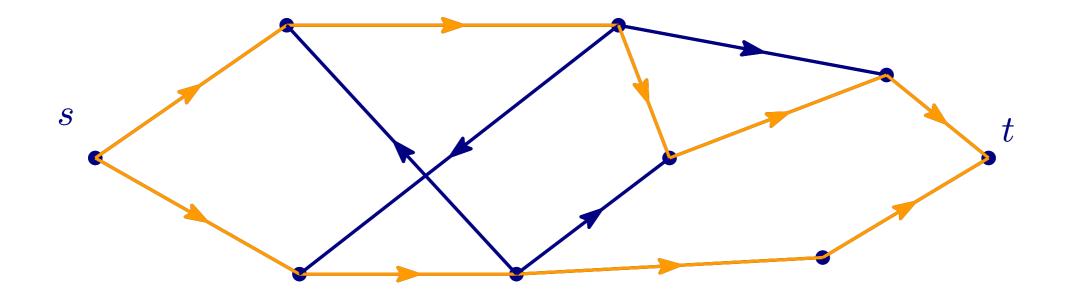
$$\text{which is short w.r.t. } w$$

Theorem: "Simple"
$$\frac{1}{6}$$
-approx flow on n -vertex DAGs in $O(n^2 \log^2 n)$ time.

$$\frac{1}{\sum_{(u,v)} \frac{n}{|\tau(u) - \tau(v)|}} \le n \sum_{v \in V} \sum_{k=1}^{n-1} \frac{1}{k} \le n^2 \log n}$$

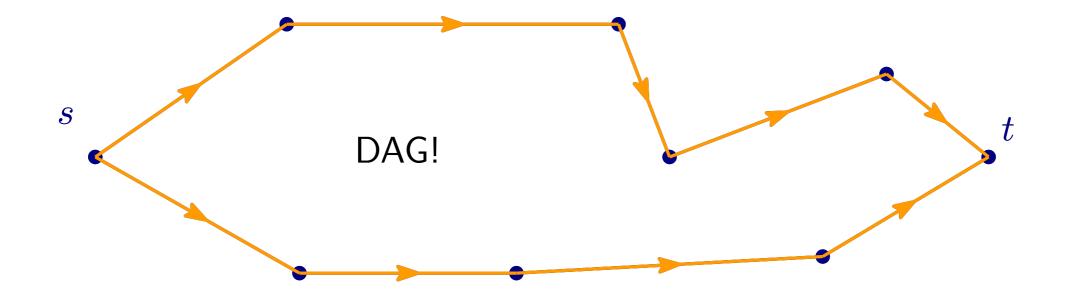
1. Compute maxflow f^*

- lacksquare $\sum_{e \in E} \frac{n}{w(e)}$ is small
- "Optimal" flow f which is short w.r.t. w



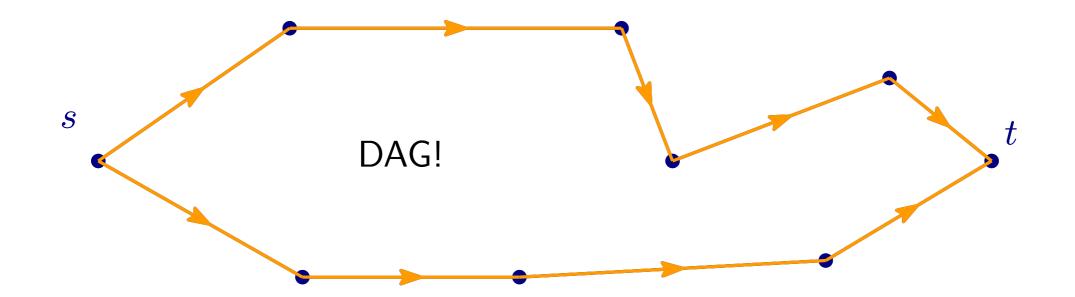
- 1. Compute maxflow f^*
- 2. Look at graph induced by f^*

- lacksquare $\sum_{e \in E} \frac{n}{w(e)}$ is small
- "Optimal" flow f" which is short w.r.t. w



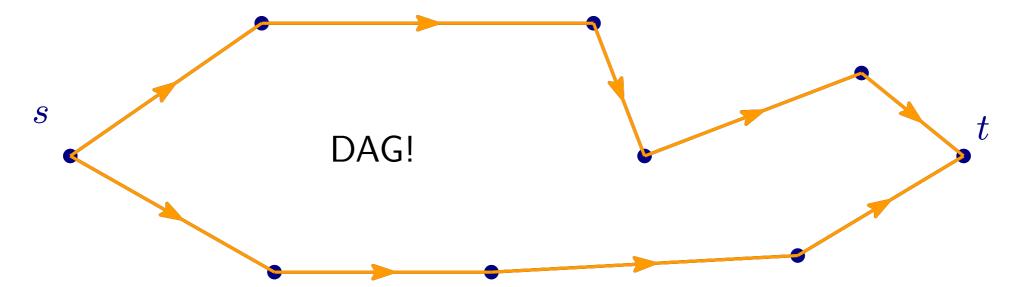
- 1. Compute maxflow f^*
- 2. Look at graph induced by f^*
- 3. Edge lengths $oldsymbol{w}$ from topological order

- $\blacksquare \sum_{e \in E} \frac{n}{w(e)}$ is small
- "Optimal" flow f which is short w.r.t. w



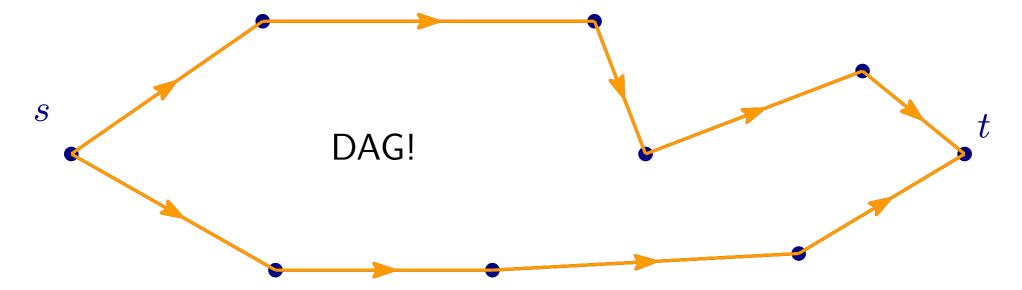
- 1. Compute maxflow f^*
- 2. Look at graph induced by f^*
- 3. Edge lengths $oldsymbol{w}$ from topological order
- 4. Use weighted push-relabel to solve approx maxflow:)

- lacksquare $\sum_{e \in E} \frac{n}{w(e)}$ is small
- "Optimal" flow f" which is short w.r.t. w

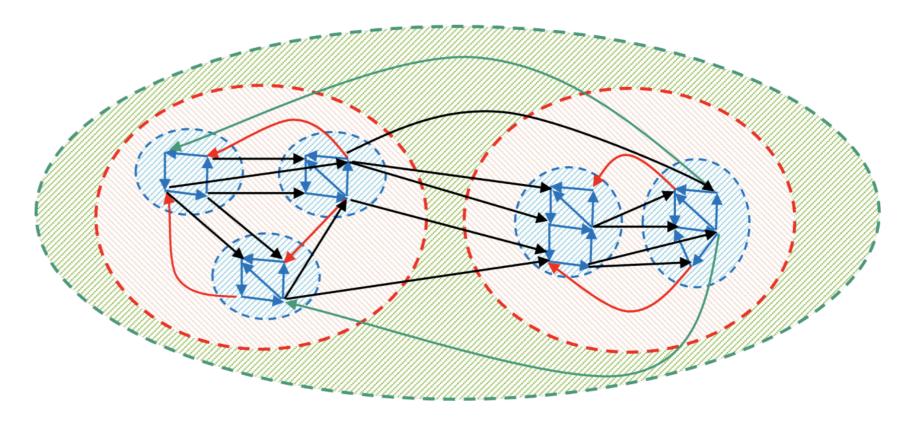


- 1. Compute maxflow $f^* \leftarrow Cheating!$
- 2. Look at graph induced by f^*
- 3. Edge lengths $oldsymbol{w}$ from topological order
- 4. Use weighted push-relabel to solve approx maxflow:)

- lacksquare $\sum_{e \in E} \frac{n}{w(e)}$ is small
- "Optimal" flow fwhich is short w.r.t. w



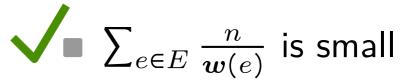
- lacksquare $\sum_{e \in E} \frac{n}{w(e)}$ is small
- "Optimal" flow f" which is short w.r.t. w



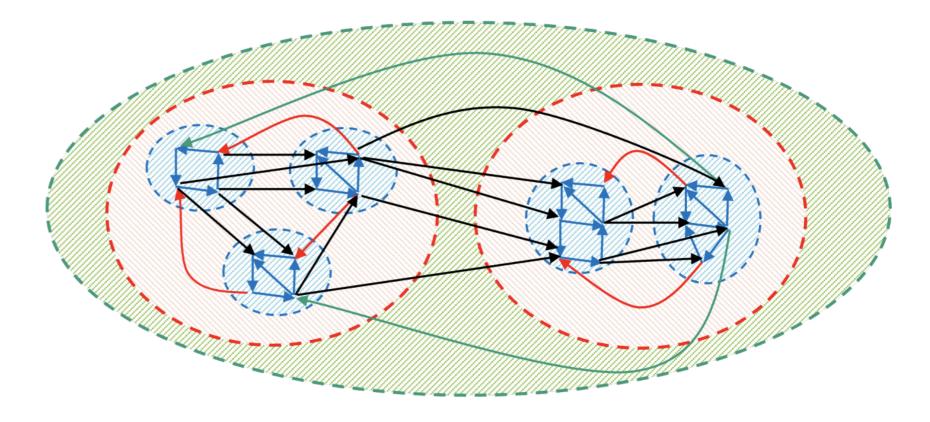
"Pseudo-Topological" order τ

$$\mathbf{w(u,v)} = |\boldsymbol{\tau}(u) - \boldsymbol{\tau}(v)|$$

Good edge lenghts w?



lacktriangle "Optimal" flow f which is short w.r.t. w

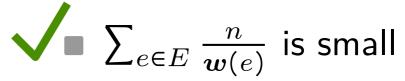


"Pseudo-Topological" order au

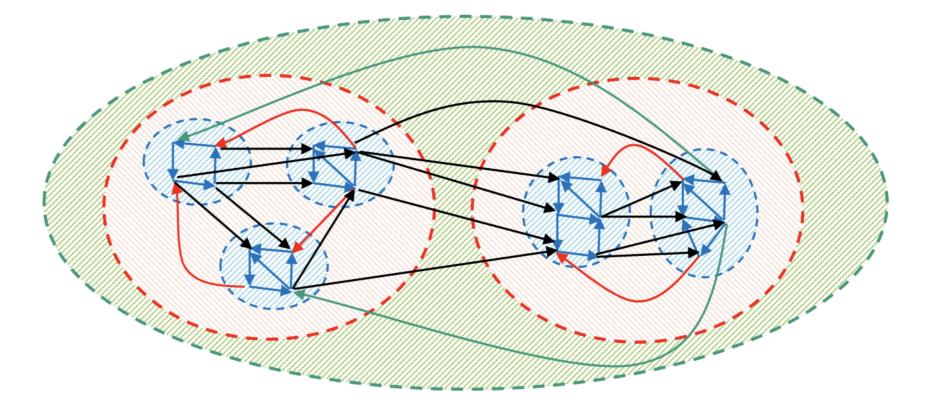
$$\mathbf{w(u,v)} = |\boldsymbol{\tau}(u) - \boldsymbol{\tau}(v)|$$

Directed Expander Hierarchy

Good edge lenghts w?



• "Optimal" flow f which is short w.r.t. w



"Pseudo-Topological" order au

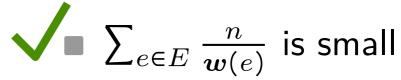
$$\mathbf{w(u,v)} = |\boldsymbol{\tau}(u) - \boldsymbol{\tau}(v)|$$

Directed Expander Hierarchy

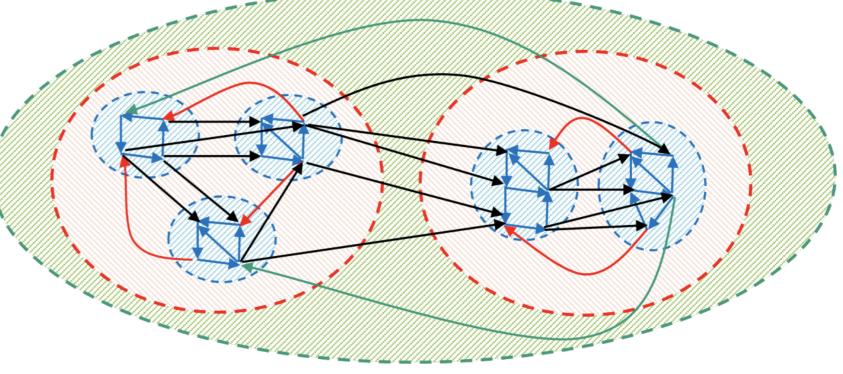
Can build using $n^{o(1)}$ many maximum flow calls!

(Cheating!)

Good edge lenghts w?



• "Optimal" flow f which is short w.r.t. w



"Pseudo-Topological" order au

$$\mathbf{w(u,v)} = |\boldsymbol{\tau}(u) - \boldsymbol{\tau}(v)|$$

Directed Expander Hierarchy

Can build using $n^{o(1)}$ many maximum flow calls!

(Cheating!)

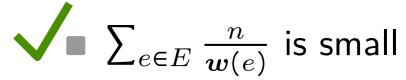
Instead:

Build Bottom Up

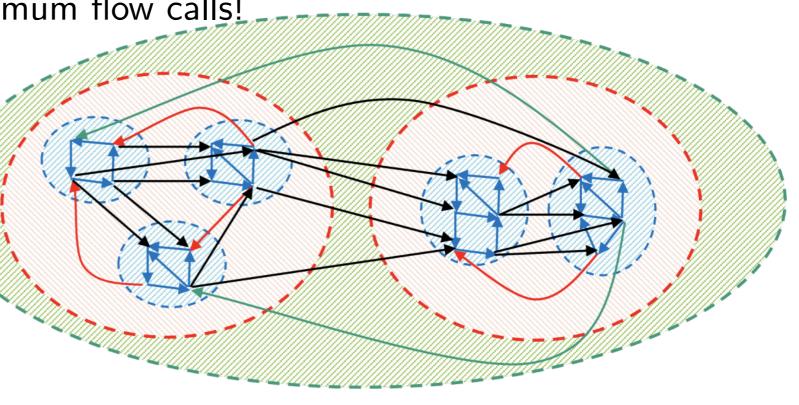
Bootstrap Weighted P.R.

(solve "easier" flow instances)

Good edge lenghts w?



• "Optimal" flow f" which is short w.r.t. w



"Pseudo-Topological" order τ

$$\mathbf{w(u,v)} = |\boldsymbol{\tau}(u) - \boldsymbol{\tau}(v)|$$

Directed Expander Hierarchy

Can build using $n^{o(1)}$ many maximum flow calls!

(Cheating!)

Instead:

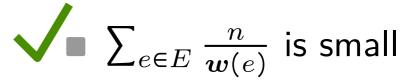
Build Bottom Up

Bootstrap Weighted P.R.

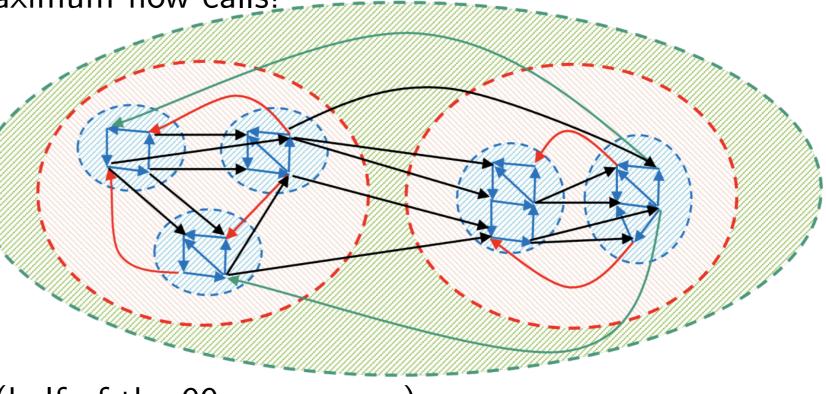
(solve "easier" flow instances)

Technically Complicated :(bad guy: nestedness)

Good edge lenghts w?



• "Optimal" flow f which is short w.r.t. w

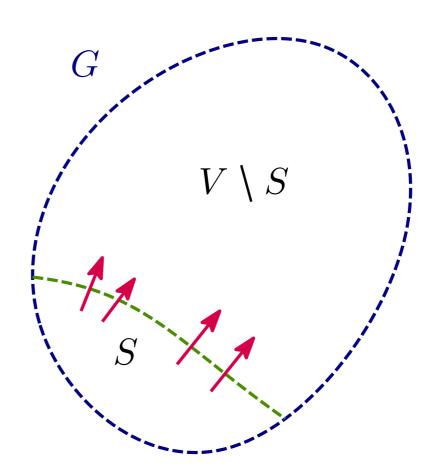


(half of the 99 page paper)

(Directed) Expanders

Def: G is ϕ -expander if $E(S, V \setminus S) \ge \phi \cdot \min\{\text{vol}(S), \text{vol}(V \setminus S)\}$ $\forall S$

$$(\operatorname{vol}(S) = \sum_{v \in S} \deg(v), \ \phi \approx 1/n^{o(1)})$$



(Directed) Expanders

Def: G is ϕ -expander if $E(S, V \setminus S) \ge \phi \cdot \min\{\text{vol}(S), \text{vol}(V \setminus S)\}$ $\forall S$

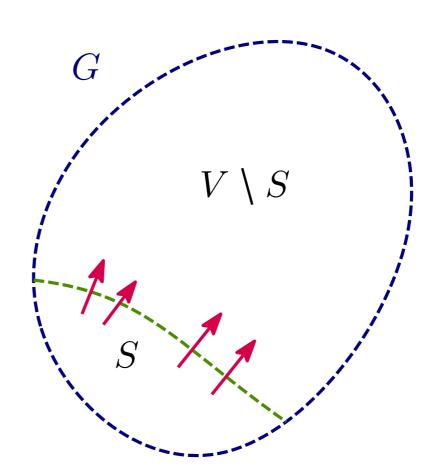
$$(\operatorname{vol}(S) = \sum_{v \in S} \deg(v), \ \phi \approx 1/n^{o(1)})$$

Examples:

Cliques

Bidirected Stars

Random



(Directed) Expanders

Def: G is ϕ -expander if $E(S, V \setminus S) \ge \phi \cdot \min\{\operatorname{vol}(S), \operatorname{vol}(V \setminus S)\}$

$$(\operatorname{vol}(S) = \sum_{v \in S} \deg(v), \ \phi \approx 1/n^{o(1)})$$

Examples:

Cliques

Bidirected Stars

Random

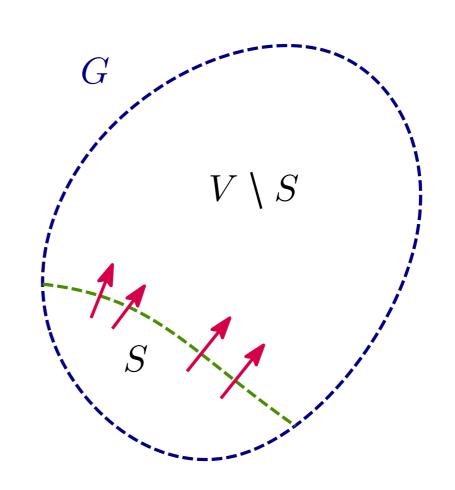
Why?

Well-connected

Low diameter $\frac{\log(n)}{\phi}$

Easy to route (short) flow in

Robust to small changes

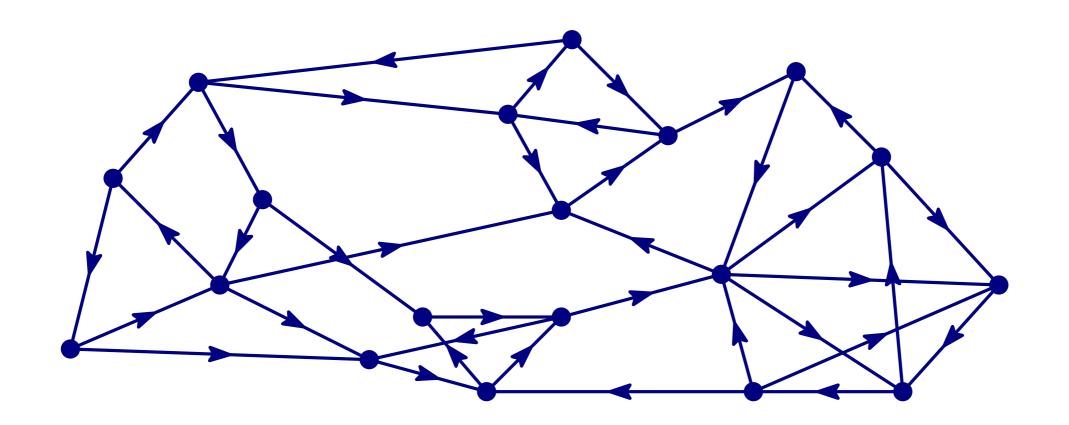


Every graph can be decomposed into:

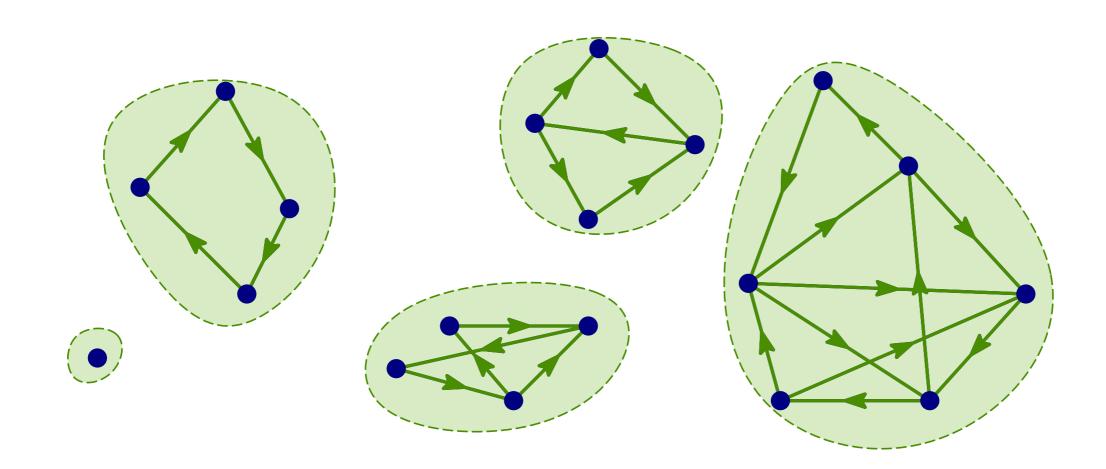
1.

2

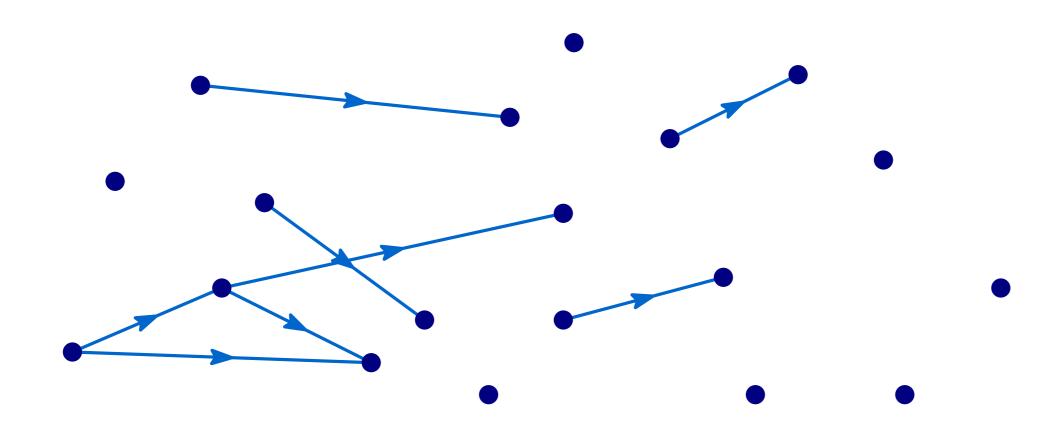
3,



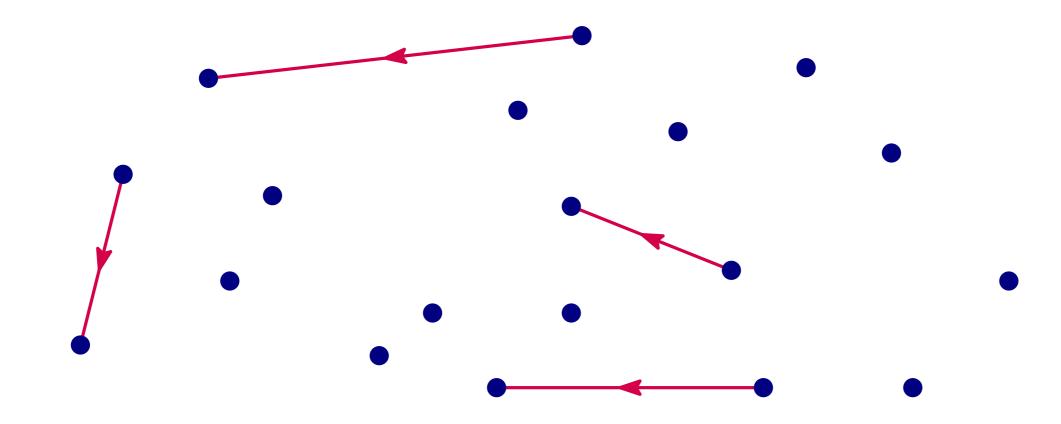
- 1. Expanders X_1, \ldots, X_k
- 2.
- 3.



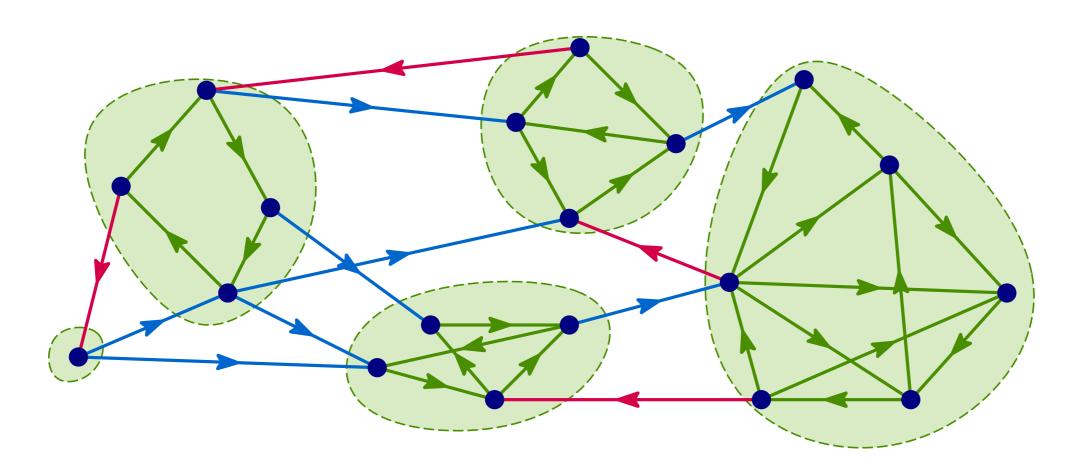
- 1. Expanders X_1, \ldots, X_k
- 2. DAG edges D
- 3.



- 1. Expanders X_1, \ldots, X_k
- 2. DAG edges D
- 3. Few backward edges B

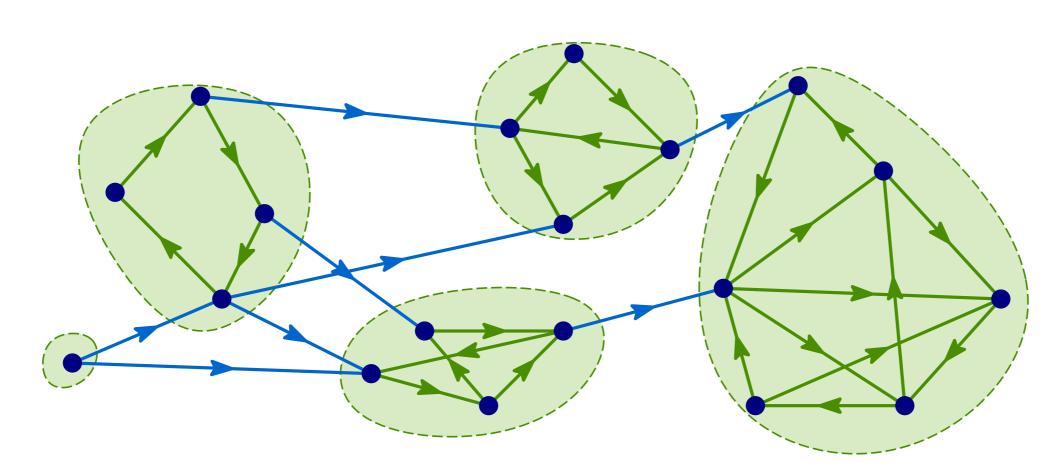


- 1. Expanders X_1, \ldots, X_k
- 2. DAG edges D
- 3. Few backward edges B



Every graph can be decomposed into:

- 1. Expanders $X_1, \ldots, X_k = SCC(G \setminus B)$
- 2. DAG edges D
- 3. Few backward edges B



Every graph can be decomposed into:

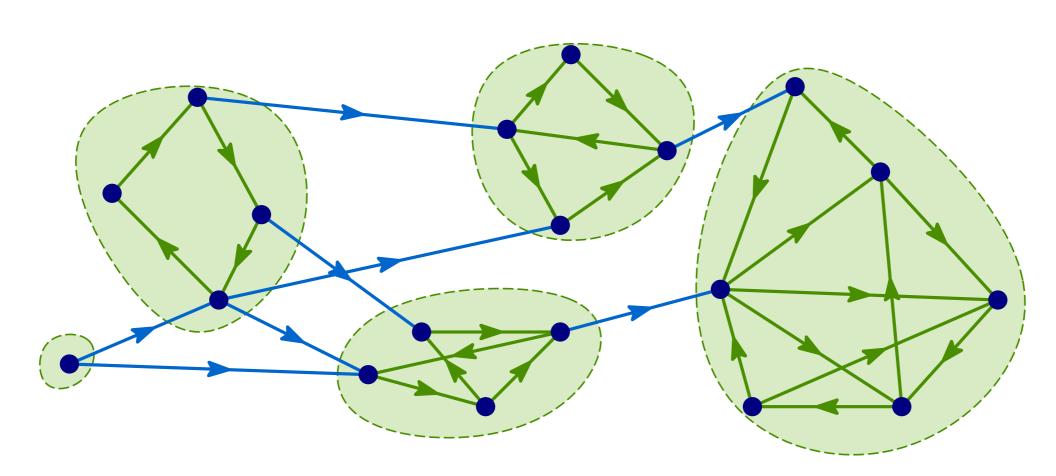
- 1. Expanders $X_1, \ldots, X_k = SCC(G \setminus B)$
- 2. DAG edges D
- 3. Few backward edges B

Good edge lengths in $G \setminus B$:

$$\boldsymbol{w}(u,v) = |\boldsymbol{\tau}(u) - \boldsymbol{\tau}(v)|$$

au respects DAG

au contiguous in expanders



Every graph can be decomposed into:

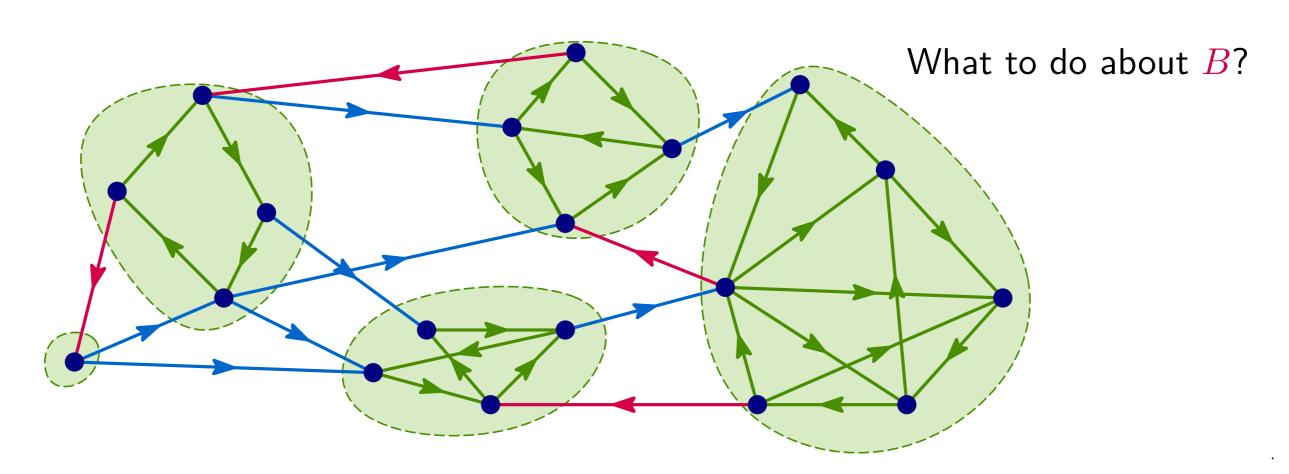
- 1. Expanders $X_1, \ldots, X_k = SCC(G \setminus B)$
- 2. DAG edges D
- 3. Few backward edges B

Good edge lengths in $G \setminus B$:

$$\boldsymbol{w}(u,v) = |\boldsymbol{\tau}(u) - \boldsymbol{\tau}(v)|$$

au respects DAG

au contiguous in expanders



Every graph can be decomposed into:

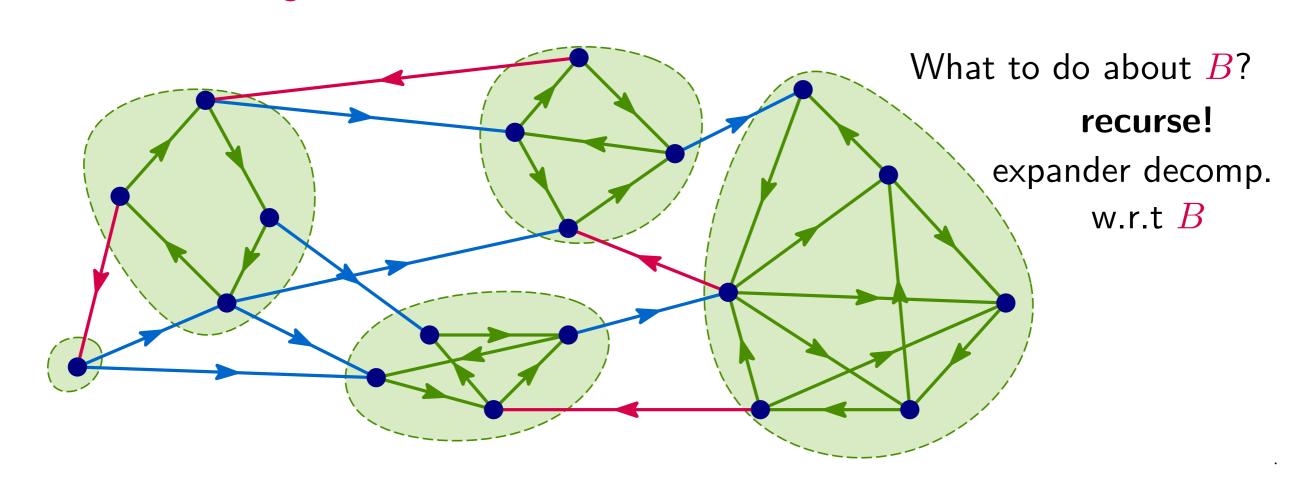
- 1. Expanders $X_1, \ldots, X_k = SCC(G \setminus B)$
- 2. DAG edges D
- 3. Few backward edges B

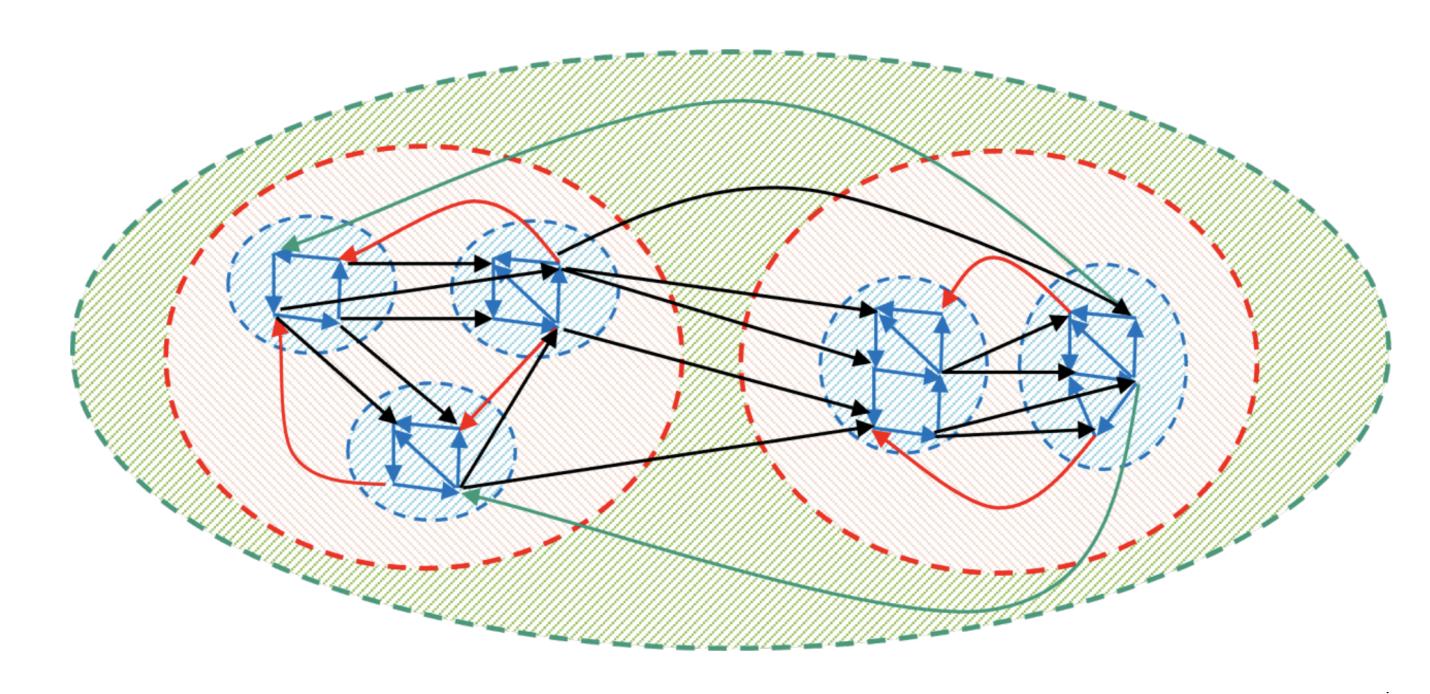
Good edge lengths in $G \setminus B$:

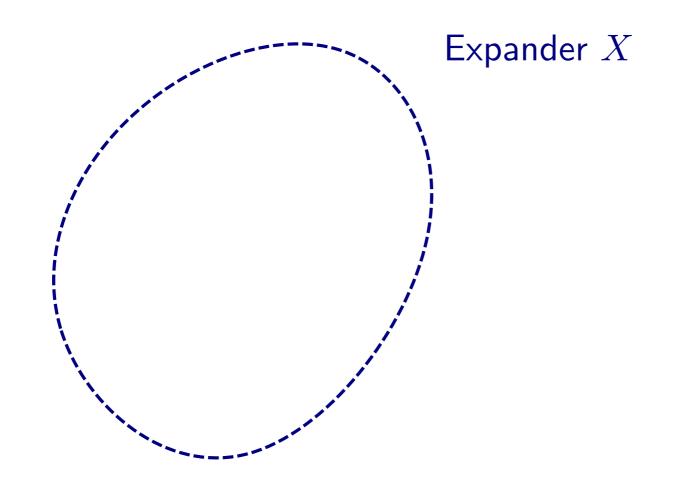
$$\boldsymbol{w}(u,v) = |\boldsymbol{\tau}(u) - \boldsymbol{\tau}(v)|$$

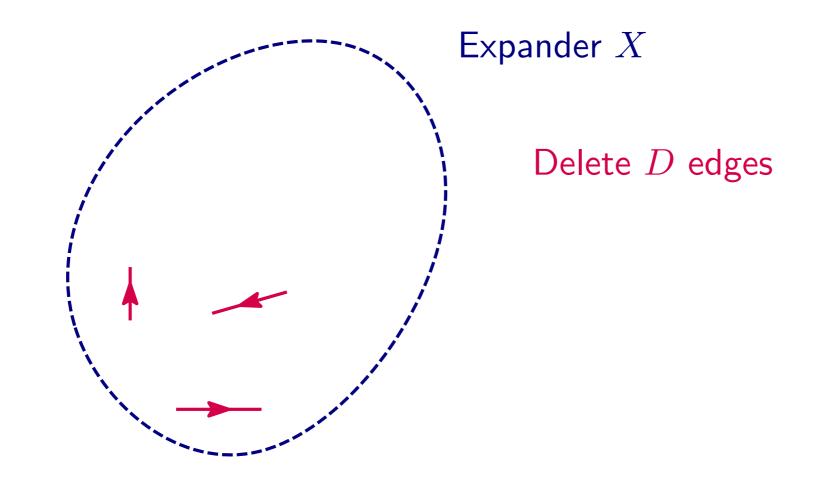
au respects DAG

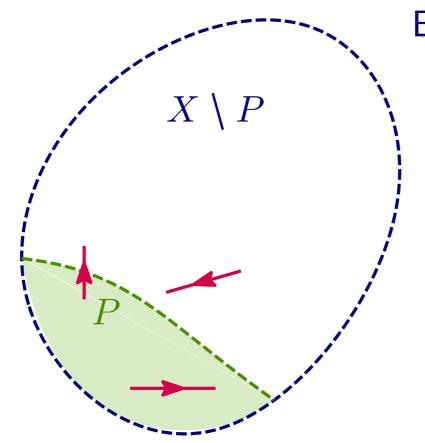
au contiguous in expanders











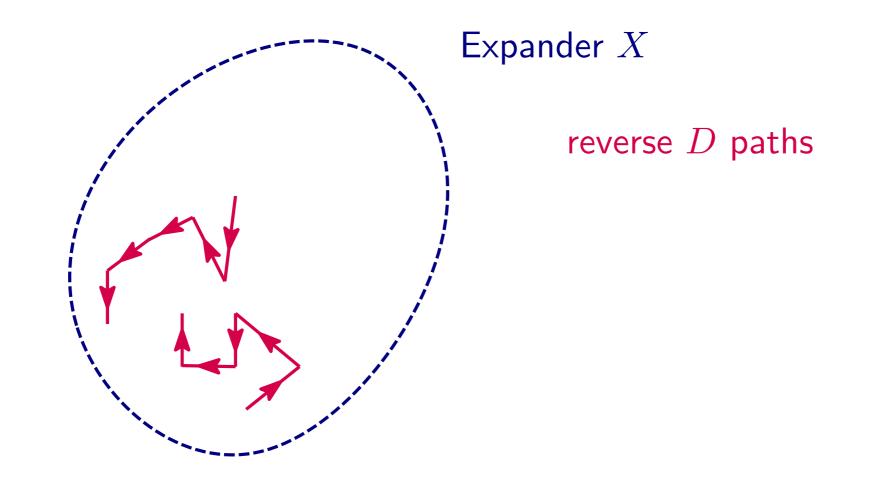
Expander X

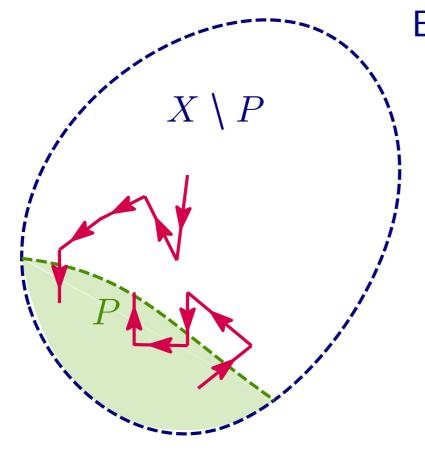
Delete D edges

Small "pruned" part $P \operatorname{vol}(P) \le 6|D|/\phi$

 $X \setminus P$ is still expander

Known: "Expander Pruning"





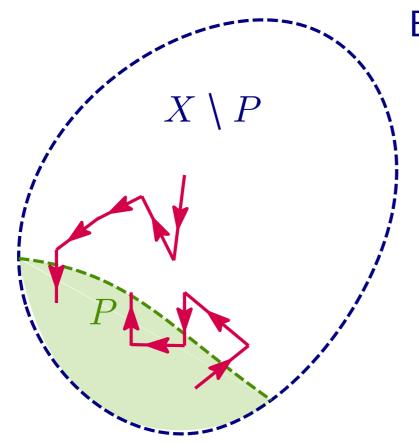
Expander X

reverse D paths

Small "pruned" part $P \operatorname{vol}(P) \le 6|D|/\phi$

 $X \setminus P$ is still expander

Theorem: Path-Reversal Expander Pruning



Expander X

reverse D paths

Small "pruned" part $P \operatorname{vol}(P) \le 6|D|/\phi$

 $X \setminus P$ is still expander

Theorem: Path-Reversal Expander Pruning

Directed Expander Hierarchy is robust under flow augmentation

[Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22]

Ours

Maximum Flow

[Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22]

Minimum Cost Maximum Flow

Ours

Maximum Flow

$$\tilde{O}(n^2)$$

[Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22]

Minimum Cost Maximum Flow

$$m^{1+o(1)}$$

Ours

Maximum Flow

$$\tilde{O}(n^2)$$

Combinatorial Augmenting Paths

Implementable

[Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva'22]

Minimum Cost Maximum Flow

$$m^{1+o(1)}$$

Continuous Optimization Dynamic Data Structures

Tricky to implement?