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k-Disjoint Spanning Tree

Given: Graph G = (V, E), integer k > 1;
Goal: Find £ disjoint spanning trees.

C N —/ e

/— Open: O(|E|) time even for k = 27

O,(|VIV|E]) [Gabow-Westerman STOC'88]
Or(|E| + |VIV]V]) Ours'

"Also concurrently by [Quanrud’23]
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Graph Problems & Reductions

Want Unified way to design Efficient algorithms.

Min-Cost Max-Flow! Matroid Intersection/Union

Directed Cut
Closure Problem

Arboricity
Tree Packing
Gomory-Hu Trees Colorful Spanning Trees
Edge Connectivity

Airline Scheduling k-Disjoint Spanning Trees
Graphic Matroid Intersection

Job Scheduling Matroid Intersection

1-/A\II‘T‘]OS'I: Iinear time, [Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva FOCS'22]
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Matroid M = (U, T)
1. Ground set U of n elements
2. Notion of independence 7

®» Downward closure

m Exchange property

“All maximal independent
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Matroids

Matroid M = (U, T)
1. Ground set U of n elements
2. Notion of independence 7

®» Downward closure

m Exchange property

“All maximal independent
sets have the same size”
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Matroid Rank

rk(S) = max{|A|: Ac S, AeT}
= size of a maximum independent set in S

= size of a maximal independent set in S

Properties:
mSeTl < rk(S)=|95] ¢

m Submodular (Diminishing returns)
If A S B, and z € B then: O
rk(A+x)—rk(A) = rk(B+xz)—-rk(B)

-
-
-
——————
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Matroids: Examples

Colourful Matroid

Z ="no duplicate colours”

rk =“number of distinct colours”

Linear Matroid
(2,1,4,2,3,3)
(1,0,1,0,1,0)
(3,1,5,2,4,3)

U = vectors

7 ="linear independence”
rk =rank

Graphic Matroid

U = edges
7 ="no cycles”
rk ="+t vertices - # components”

Vamos Matroid



Matroid Problems

Matroid Intersection:
Given two matroids My = (U,Z;) and My = (U, Z,),
find a set .S of maximum size in Z; N Z,.

Matroid Union: (a.k.a. matroid sum)
Given k matroids M, = (U,Z,),
findaset S =5;,US,U---USL of maximum size, where S; € Z,.

k-Fold Matroid Union: (a.k.a. partitioning)
Special case of matroid union where all £ matroids are the same.
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Matroid Intersection

Given two matroids:

O Ml = (V7 Il)

O MQ = (V7 IQ)

Find a common independent set S € Z7; NI, of maximum size.
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Matroid Intersection

Given two matroids:

O Ml = (V7 Il)

O MQ = (V7 IQ)

Find a common independent set S € Z; N, of maximum size.

M = "distinct suits”
o * v My = “distinct colours”
é b ¢ Red
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Matroid Intersection

Given two matroids:
O Ml = (Vazl)
. MQ — (VazQ)

Find a common independent set S € Z; N, of maximum size.

My
v M

“distinct suits”
“distinct colours”

o @ & Blue

o * ® Green
v

o ¢



Matroid Intersection

Given two matroids:
O Ml = (Vazl)
O MQ — (VazQ)

Find a common independent set S € 7; N, of maximum size.

My
v M

“distinct suits”
“distinct colours”

o & Blue
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Matroid Intersection

Given two matroids:

= Ml = (V7 Il)

O MQ = (V7 IZ)

Find a common independent set S € 7; N, of maximum size.

PN M = "distinct suits”

* ,/” ‘II _/\/l - ud- . | "

- ) v o = distinct colours
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Goal: Find S =5, U - U S}, (where S; € 7) of maximum size.
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Given: Matroid M = (U,T), integer k;
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k-fold Matroid Union

Given: Matroid M = (U,T), integer k;
Goal: Find S =5, U - U S}, (where S; € 7) of maximum size.

. k=2
™ / M = graphic matroid
S; € E is in T iff no cycle.
/ IS
1

Can solve using Matroid Intersection!

1 = colorful matroid

N N M
& \/ & \/ Mo = k independent copies of M



Matroid Intersection & Union: Examples

® Bipartite matching

B k-disjoint spanning trees

m Arborescence (directed spanning tree)
m Colourful spanning tree

® Tree/Arborescence packing

m Some scheduling problems

®m Some routing problems

®m Some graph orientation problems

Also connections to Submodular Function Minimization
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Query Access

How to access a matroid?

Oracle Access

® Independence query: “Is S € 77"
® Rank query: “What is rk(S5)?"

Important:
We do not know the underlying
structure of the matroids!
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Traditional Model

Traditional Model:
Minimize number of indep./rank queries measured in terms of:

n = |U| = number of elements (= #edges)
r = |S| = size of answer (< F#vertices)

Statg-of-the—art: Matroid Intersection & Union
O(n+/r) rank-queries [CLSSW FOCS'19]
0(717“3/4) indep-queries [BvdBMN STOC'21, Blikstad ICALP'21]

Open: O(n) possible?

Caveat:
Does not imply Efficient algorithms.
Query “tk(Q)?" takes O(|Q]) time to specify, let alone answer.

Many papers in the 80s/90s specialize matroid intersection /union framework
to specific problems
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Dynamic Oracle

Main Motivation:
Cost to answer a query = how different it is to previous queries.



Dynamic Oracle

Main Motivation:
Cost to answer a query = how different it is to previous queries.

New Dynamic Oracle Maodel:

Cost to issue the k'th query Q) is min;.. |Qr & Q;].
=

Query Qi = @; £ {e}.



Data Structures for Dynamic Rank Oracle

m Colourful /partition matroid:
Count colors in O(1) update time.
® Graphic matroid:

Count components in O(polylogn) (or O(no(l))) update time.
[IKKM'13, GKKKT'15, CGLNPS'20, NSW'17]

(delete / add edges)
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Data Structures for Dynamic Rank Oracle

m Colourful/partition matroid:
Count colors in O(1) update time.
® Graphic matroid:

Count components in O(polylogn) (or O(no(l))) update time.
[IKKM'13, GKKKT'15, CGLNPS'20, NSW'17]

(delete / add edges)

e

O(f(n,r)) dynamic query matroid intersection/union algorithm
+
fast data structures £

Need to be worst-case.
Oblivious advesary is okay.

O(f(n,r)) time algorithm



Our Results

® Dynamic-oracle algorithms matching previous query-bounds:
» O(n+/r)-dynamic-rank-query.
o O~(nr3/4)—dynamic—indep.—query.

® Improved Matroid Union:
s O(n + r/r)-dynamic-rank-query.
= Concurrently & independently shown' by [Quanrud'23]
» Compare O(|E|/|V]) vs O(|E| + |V'|*) for graph problems.

®m First super-linear lower-bounds:
s Q(nlogn) dynamic-rank-queries needed
s Q(nlogn) traditional-indep.-queries needed

= Improves log,(3)n —o(n) = 1.58n lower-bound by [Harvey SODA'08]

Tln traditional model + specialized to graphic and partition matroids.



Applications

problems

our bounds

state-of-the-art results

(Via k-fold matroid union)
k-forest®
k-pseudoforest
k-disjoint spanning trees
arboricity®
tree packing
Shannon Switching Game
graph k-irreducibility

(1] + (kIV])>7%) v
(1] + (k|[V])>/%) X
(1] + (k[V])>72) v
(1E[IV]) X
(1E]%/2)

(1B +1V*?) v
(

Qi i O Cr O O

B + (kIV)*2 + K2|V]) v

O(k*2|V|\/|E]) [GW8S]
|E|1+e() [CKL*22]
O(k3/2|V|\/|E]) [GW8S]
O(|E|3/?) [Gab95]
(|1E|3/%) [GW8S]
(IV]VIE]) [GW8S]
(K3/2|V|\/|E]) [GW8S]

QOO O

(Via matroid union)

(f,p)-mixed forest-pseudoforest

Orp(|EI + VIVIV]) v

O((f +p)IVIVFIE]) [GW8S]

(Via matroid intersection)
bipartite matching (combinatorial®?)
bipartite matching (continuous)
graphic matroid intersection
simple job scheduling matroid intersection

convex transversal matroid [EF65] intersection

linear matroid intersection'©
colorful spanning tree

maximum forest with deadlines

(IE1VIV])
(IElVIV]) X
(1Z1VIV1)
(ny/r)
(IVlym)
(n2.529\/,‘,—,) X
(IE1VIV])
(IEIVIV]) v

Qi Qi O i Ot O O

O(|E|\/[V]) [HKT73]
|E|t*e) [CKL*22]
O(|E|\/IV]) [GX89]
O(ny/r) [XG94]
O(|V|y/m) [XG94]
O(nr*—1) [Har09]

O(|E|\/|V]) [GS85]

(no prior work)
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Technical part — Overview

1. Exchange Graph & Augmenting Paths

2. Matroid Intersection
® Matching previous algorithms with Dynamic Oracle
® Main Idea: “Exchange-Binary-Search-Tree”

3. Matroid Union i
m Improving O(n+/r) to O(n + ry/r)
® Main ldea: Sparsifying the Exchange Graph

4. Lower Bound
m Q(nlogn)
® Main ldea: Communication Complexity of Reachability



Exchange Graph & Augmenting Paths [Edmonds’60s]

Definition:
The Exchange Graph G(S) for a common independent set S €

71 NI, looks as follows:

S

U\S S



Exchange Graph & Augmenting Paths [Edmonds’60s]

Definition:
The Exchange Graph G(S) for a common independent set S €

71 NI, looks as follows:

S+b €l S

U\S S



Exchange Graph & Augmenting Paths [Edmonds’60s]

Definition:
The Exchange Graph G(S) for a common independent set S €

71 NI, looks as follows:

S+b €l

S+b1—0/2 EIQ

U\S S



Exchange Graph & Augmenting Paths [Edmonds’60s]

Definition:
The Exchange Graph G(S) for a common independent set S €

71 NI, looks as follows:

S+b €l

U\S S



Exchange Graph & Augmenting Paths [Edmonds’60s]

Definition:
The Exchange Graph G(S) for a common independent set S €

71 NI, looks as follows:

U\S S



Exchange Graph & Augmenting Paths [Edmonds’'60s]
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— S+by—as+by—ay+ by €15
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Exchange Graph & Augmenting Paths [Edmonds’'60s]

— S+by—as+by—ay+ by €15

— S+b1—a2+b3—a4+b5 EZl

Common independent set S' := S +b; —ay +bs —ay +bs of size |S'| = |S] +1
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Exchange graph G(S) behaves weirdly. . .

® O(nr) edges — expensive to compute

®m Disjoint paths not necessarily “compatible”
® Need recompute to handle inserted and deleted edges.
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Graph Exploration — Exchange Pairs

X
Yy (S +v-X)=|S+v-X|?

‘Yo (S — v + X) = |S] ?”

Binary-Search! [CLSSW, Nguyén]



Technical part — Overview

1. Exchange Graph & Augmenting Paths

2. Matroid Intersection
m Matching previous algorithms with Dynamic Oracle
® Main ldea: “Exchange-Binary-Search-Tree"

3. Matroid Union i
® Improving O(n+/r) to O(n + ry/r)
® Main ldea: Sparsifying the Exchange Graph

4. Lower Bound
m Q(nlogn)
® Main Idea: Communication Complexity of Reachability
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Matroid Intersection — Main ldea

“To(S — v + X) = |S] ?”

Challenge: Query sets far apart in binary search.
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Matroid Intersection — Main ldea

“rko(S—v+ X) =1|5]| ?"
Challenge: Query sets far apart in binary search.

Solution: Prebuild sets:

S+{xy,...,0}
_— T
S+{z1,...,zmp2t S+ {Tm2e1,-- -, T}

Challenge: S changes when augmenting path found.

Solution:
Lazily rebuild in batched 4+ “Augmenting Sets” Lemma [CLSSW]
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1. Exchange Graph & Augmenting Paths

2. Matroid Intersection
® Matching previous algorithms with Dynamic Oracle
® Main ldea: “Exchange-Binary-Search-Tree”
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B Improving O(n+/r) to O(n + r/r)
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Matroid Union — Main ldea

Going from O(n+/r) to O(n + r/r).
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Matroid Union — Main ldea

Going from O(n+/r) to O(n + r/r).
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Matroid Union — Main ldea

Going from O(n+/r) to O(n + r/r).
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Matroid Union — Main ldea

Going from O(n+/r) to O(n + r/r).

cU\S cS cU\S cS cU\S

=
gAE Q‘ghé; t

Only a basis of size = r is relevant

Maintain dynamically when S changes

Binary tree of sqrt-decomposition
similar to early dynamic MST [Fre85 , EGIN97]
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Communication game

Alice —> Bob
<_'

Ml = (Uaz’.l) <

—

M2 = (UazZ)

How many bits of communication necessary?

(indep. queries

A

< {rank queries [ log(n)

dynamic rank queries

Carefully choose matroids (gammoids) to model Graph Reachability

Q(nlogn) bit lower-bound’ [Hajnal-Maass-Turan STOC'88]

T(unconditionally for deterministic, and conjectured to hold for randomized algorithms)
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Thanks!
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