
Fast Algorithms via
Dynamic-Oracle Matroids

Joakim Blikstad∗ Sagnik Mukhopadhyay‡

Danupon Nanongkai∗† Ta-Wei Tu†

♠

♣
♣

♣ ♣

♡
♡

♡

♠ ♠

♠

♢

♢

♢

⋯∗KTH Royal Institute of Technology, Sweden
†Max-Planck Institute of Informatics, Germany
‡University of Sheffield, UK

May 2023
ETH Zürich A&C online seminar

To appear at STOC’23

⋯



⋅

k-Disjoint Spanning Tree

Given: Graph G = (V,E), integer k ≥ 1;
Goal: Find k disjoint spanning trees.



⋅

k-Disjoint Spanning Tree

Given: Graph G = (V,E), integer k ≥ 1;
Goal: Find k disjoint spanning trees.

k = 1



⋅

k-Disjoint Spanning Tree

Given: Graph G = (V,E), integer k ≥ 1;
Goal: Find k disjoint spanning trees.

k = 2



⋅

k-Disjoint Spanning Tree

Given: Graph G = (V,E), integer k ≥ 1;
Goal: Find k disjoint spanning trees.

Open: Õ(∣E∣) time even for k = 2?

k = 2



⋅

k-Disjoint Spanning Tree

Given: Graph G = (V,E), integer k ≥ 1;
Goal: Find k disjoint spanning trees.

Open: Õ(∣E∣) time even for k = 2?

Õk(∣V ∣√∣E∣) [Gabow-Westerman STOC’88]
Õk(∣E∣ + ∣V ∣√∣V ∣) Ours†

k = 2

†Also concurrently by [Quanrud’23]



⋅

Graph Problems & Reductions

Want Unified way to design Efficient algorithms.



⋅

Graph Problems & Reductions

Want Unified way to design Efficient algorithms.

Min-Cost Max-Flow†

Bipartite Matching
Vertex ConnectivityEdge Connectivity

Gomory-Hu Trees

NWSSSPDirected Cut

†Almost linear time, [Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva FOCS’22]

Airline Scheduling

Closure Problem



⋅

Graph Problems & Reductions

Want Unified way to design Efficient algorithms.

Min-Cost Max-Flow†

Bipartite Matching
Vertex ConnectivityEdge Connectivity

Gomory-Hu Trees

NWSSSPDirected Cut

†Almost linear time, [Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva FOCS’22]

k-Disjoint Spanning Trees

Arboricity

Colorful Spanning Trees
Tree Packing

Graphic Matroid Intersection
Job Scheduling Matroid Intersection

Airline Scheduling

Closure Problem



⋅

Graph Problems & Reductions

Want Unified way to design Efficient algorithms.

Min-Cost Max-Flow†

Bipartite Matching
Vertex ConnectivityEdge Connectivity

Gomory-Hu Trees

NWSSSPDirected Cut

†Almost linear time, [Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva FOCS’22]

k-Disjoint Spanning Trees

Arboricity

Colorful Spanning Trees
Tree Packing

Graphic Matroid Intersection
Job Scheduling Matroid Intersection

Matroid Intersection/Union

Airline Scheduling

Closure Problem
Bipartite Matching

Vertex Connectivity

NWSSSP



Matroid Problems



⋅

Matroids

1. Ground set U of n elements
Matroid M = (U, I)



⋅

Matroids

1. Ground set U of n elements
2. Notion of independence I

Eg. Colourful Matroid
“no duplicate colours”

Matroid M = (U, I)



⋅

Matroids

1. Ground set U of n elements
2. Notion of independence I

S ∈ I

Eg. Colourful Matroid
“no duplicate colours”

Matroid M = (U, I)



⋅

Matroids

1. Ground set U of n elements
2. Notion of independence I

S ∉ I

Eg. Colourful Matroid
“no duplicate colours”

Matroid M = (U, I)



⋅

Matroids

1. Ground set U of n elements
2. Notion of independence I

Downward closure

S ∈ I

S
′ ∈ I

Eg. Colourful Matroid
“no duplicate colours”

Matroid M = (U, I)



⋅

Matroids

1. Ground set U of n elements
2. Notion of independence I

Downward closure

S ∈ I

Exchange property

Eg. Colourful Matroid
“no duplicate colours”

S
′ ∈ I

“All maximal independent
sets have the same size”

Matroid M = (U, I)



⋅

Matroids

1. Ground set U of n elements
2. Notion of independence I

Downward closure

S ∈ I

Exchange property

Eg. Colourful Matroid
“no duplicate colours”

S
′ ∈ I

“All maximal independent
sets have the same size”

Matroid M = (U, I)



⋅

Matroid Rank

rk(S) = 3

rk(S) = max{∣A∣ ∶ A ⊆ S,A ∈ I}



⋅

Matroid Rank

rk(S) = 3

rk(S) = max{∣A∣ ∶ A ⊆ S,A ∈ I}
= size of a maximum independent set in S



⋅

Matroid Rank

rk(S) = 3

rk(S) = max{∣A∣ ∶ A ⊆ S,A ∈ I}
= size of a maximum independent set in S

= size of a maximal independent set in S



⋅

Matroid Rank

rk(S) = 3

rk(S) = max{∣A∣ ∶ A ⊆ S,A ∈ I}
= size of a maximum independent set in S

= size of a maximal independent set in S

S ∈ I ⟺ rk(S) = ∣S∣Properties:



⋅

Matroid Rank

rk(S) = 3

rk(S) = max{∣A∣ ∶ A ⊆ S,A ∈ I}
= size of a maximum independent set in S

= size of a maximal independent set in S

S ∈ I ⟺ rk(S) = ∣S∣
Submodular (Diminishing returns)
If A ⊆ B, and x ∉ B then:
rk(A+x)−rk(A) ≥ rk(B+x)−rk(B)

Properties:



⋅

Matroids: Examples
Colourful Matroid

I =“no duplicate colours”
rk =“number of distinct colours”



⋅

Matroids: Examples
Colourful Matroid

I =“no duplicate colours”
rk =“number of distinct colours”

Graphic Matroid

U = edges
I =“no cycles”

rk =“#vertices - #components”



⋅

Matroids: Examples
Colourful Matroid

I =“no duplicate colours”
rk =“number of distinct colours”

Graphic Matroid

U = edges
I =“no cycles”

rk =“#vertices - #components”

Linear Matroid

U = vectors
I =“linear independence”

rk =rank

(2, 1, 4, 2, 3, 3)(1, 0, 1, 0, 1, 0)(3, 1, 5, 2, 4, 3)



⋅

Matroids: Examples
Colourful Matroid

I =“no duplicate colours”
rk =“number of distinct colours”

Graphic Matroid

U = edges
I =“no cycles”

rk =“#vertices - #components”

Linear Matroid

U = vectors
I =“linear independence”

rk =rank

(2, 1, 4, 2, 3, 3)(1, 0, 1, 0, 1, 0)(3, 1, 5, 2, 4, 3)
Vámos Matroid



⋅

Matroid Problems

Matroid Intersection:
Given two matroids M1 = (U, I1) and M2 = (U, I2),
find a set S of maximum size in I1 ∩ I2.

Matroid Union: (a.k.a. matroid sum)
Given k matroids Mi = (U, Ii),
find a set S = S1∪S2∪⋯∪Sk of maximum size, where Si ∈ Ii.

k-Fold Matroid Union: (a.k.a. partitioning)
Special case of matroid union where all k matroids are the same.



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”

♣

♢

♠

♡

Blue
Red
Green
Yellow



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”

♣

♢

♠

♡

Blue
Red
Green
Yellow



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”

♣

♢

♠

♡

Blue
Red
Green
Yellow



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”

♣

♢

♠

♡

Blue
Red
Green
Yellow



⋅

k-fold Matroid Union

Given: Matroid M = (U, I), integer k;
Goal: Find S = S1 ∪⋯∪ Sk (where Si ∈ I) of maximum size.



⋅

k-fold Matroid Union

Given: Matroid M = (U, I), integer k;
Goal: Find S = S1 ∪⋯∪ Sk (where Si ∈ I) of maximum size.

M = graphic matroid
Si ⊆ E is in I iff no cycle.

k = 2



⋅

k-fold Matroid Union

Given: Matroid M = (U, I), integer k;
Goal: Find S = S1 ∪⋯∪ Sk (where Si ∈ I) of maximum size.

M = graphic matroid
Si ⊆ E is in I iff no cycle.

S1

k = 2

S2



⋅

k-fold Matroid Union

Given: Matroid M = (U, I), integer k;
Goal: Find S = S1 ∪⋯∪ Sk (where Si ∈ I) of maximum size.

M = graphic matroid
Si ⊆ E is in I iff no cycle.

S1

k = 2

S2

Can solve using Matroid Intersection!



⋅

k-fold Matroid Union

Given: Matroid M = (U, I), integer k;
Goal: Find S = S1 ∪⋯∪ Sk (where Si ∈ I) of maximum size.

M = graphic matroid
Si ⊆ E is in I iff no cycle.

S1

k = 2

S2

Can solve using Matroid Intersection!
M1 = colorful matroid

M2 = k independent copies of M⋯



⋅

Matroid Intersection & Union: Examples

Bipartite matching
k-disjoint spanning trees
Arborescence (directed spanning tree)
Colourful spanning tree
Tree/Arborescence packing
Some scheduling problems
Some routing problems
Some graph orientation problems
. . .

Also connections to Submodular Function Minimization



⋅

Query Access

How to access a matroid?



⋅

Query Access

How to access a matroid?

Oracle Access
Independence query: “Is S ∈ I?”
Rank query: “What is rk(S)?”



⋅

Query Access

How to access a matroid?

Oracle Access
Independence query: “Is S ∈ I?”
Rank query: “What is rk(S)?”



⋅

Query Access

How to access a matroid?

Oracle Access
Independence query: “Is S ∈ I?”
Rank query: “What is rk(S)?”

Important:
We do not know the underlying
structure of the matroids!



⋅

Traditional Model

Traditional Model:
Minimize number of indep./rank queries measured in terms of:

n = ∣U ∣ = number of elements (= #edges)
r = ∣S∣ = size of answer (≤ #vertices)



⋅

Traditional Model

Traditional Model:
Minimize number of indep./rank queries measured in terms of:

n = ∣U ∣ = number of elements (= #edges)
r = ∣S∣ = size of answer (≤ #vertices)

State-of-the-art: Matroid Intersection & Union
Õ(n√r) rank-queries [CLSSW FOCS’19]
Õ(nr3/4) indep-queries [BvdBMN STOC’21, Blikstad ICALP’21]



⋅

Traditional Model

Traditional Model:
Minimize number of indep./rank queries measured in terms of:

n = ∣U ∣ = number of elements (= #edges)
r = ∣S∣ = size of answer (≤ #vertices)

State-of-the-art: Matroid Intersection & Union
Õ(n√r) rank-queries [CLSSW FOCS’19]
Õ(nr3/4) indep-queries [BvdBMN STOC’21, Blikstad ICALP’21]

Open: Õ(n) possible?



⋅

Traditional Model

Traditional Model:
Minimize number of indep./rank queries measured in terms of:

n = ∣U ∣ = number of elements (= #edges)
r = ∣S∣ = size of answer (≤ #vertices)

State-of-the-art: Matroid Intersection & Union
Õ(n√r) rank-queries [CLSSW FOCS’19]
Õ(nr3/4) indep-queries [BvdBMN STOC’21, Blikstad ICALP’21]

Caveat:
Does not imply Efficient algorithms.

Query “rk(Q)?” takes O(∣Q∣) time to specify, let alone answer.

Open: Õ(n) possible?



⋅

Traditional Model

Traditional Model:
Minimize number of indep./rank queries measured in terms of:

n = ∣U ∣ = number of elements (= #edges)
r = ∣S∣ = size of answer (≤ #vertices)

State-of-the-art: Matroid Intersection & Union
Õ(n√r) rank-queries [CLSSW FOCS’19]
Õ(nr3/4) indep-queries [BvdBMN STOC’21, Blikstad ICALP’21]

Caveat:
Does not imply Efficient algorithms.

Query “rk(Q)?” takes O(∣Q∣) time to specify, let alone answer.

Open: Õ(n) possible?

Many papers in the 80s/90s specialize matroid intersection/union framework
to specific problems



⋅

Dynamic Oracle
Q1



⋅

Dynamic Oracle
Q1

Q2



⋅

Dynamic Oracle
Q1

Q3 = Q1 ∪ {e}Q2



⋅

Dynamic Oracle
Q1

Q3 = Q1 ∪ {e}Q2

Q4 = Q3 \ {e′}



⋅

Dynamic Oracle
Q1

Q3 = Q1 ∪ {e}Q2

Q4 = Q3 \ {e′}
Main Motivation:

Cost to answer a query ≈ how different it is to previous queries.



⋅

Dynamic Oracle
Q1

Q3 = Q1 ∪ {e}Q2

Q4 = Q3 \ {e′}
Main Motivation:

Cost to answer a query ≈ how different it is to previous queries.

New Dynamic Oracle Model:
Cost to issue the k’th query Qk is mini<k ∣Qk ⊕Qi∣.
⟺
Query Qk = Qi ± {e}.



⋅

Data Structures for Dynamic Rank Oracle

Colourful/partition matroid:
Count colors in O(1) update time.
Graphic matroid:
Count components in O(polylogn) (or O(no(1))) update time.

[KKM’13, GKKKT’15, CGLNPS’20, NSW’17]
(delete / add edges)



⋅

Data Structures for Dynamic Rank Oracle

Colourful/partition matroid:
Count colors in O(1) update time.
Graphic matroid:
Count components in O(polylogn) (or O(no(1))) update time.

[KKM’13, GKKKT’15, CGLNPS’20, NSW’17]
(delete / add edges)



⋅

Data Structures for Dynamic Rank Oracle

Colourful/partition matroid:
Count colors in O(1) update time.
Graphic matroid:
Count components in O(polylogn) (or O(no(1))) update time.

[KKM’13, GKKKT’15, CGLNPS’20, NSW’17]
(delete / add edges)

O(f(n, r)) dynamic query matroid intersection/union algorithm
+

fast data structures
=

Õ(f(n, r)) time algorithm

Caveat



⋅

Data Structures for Dynamic Rank Oracle

Colourful/partition matroid:
Count colors in O(1) update time.
Graphic matroid:
Count components in O(polylogn) (or O(no(1))) update time.

[KKM’13, GKKKT’15, CGLNPS’20, NSW’17]
(delete / add edges)

O(f(n, r)) dynamic query matroid intersection/union algorithm
+

fast data structures
=

Õ(f(n, r)) time algorithm

Caveat

Need to be worst-case.
Oblivious advesary is okay.



⋅

Our Results

Dynamic-oracle algorithms matching previous query-bounds:
Õ(n√r)-dynamic-rank-query.
Õ(nr3/4)-dynamic-indep.-query.

Improved Matroid Union:
Õ(n + r

√
r)-dynamic-rank-query.

Concurrently & independently shown† by [Quanrud’23]
Compare O(∣E∣√∣V ∣) vs O(∣E∣ + ∣V ∣1.5) for graph problems.

First super-linear lower-bounds:
Ω(n log n) dynamic-rank-queries needed
Ω(n log n) traditional-indep.-queries needed
Improves log2(3)n− o(n) ≈ 1.58n lower-bound by [Harvey SODA’08]

†In traditional model + specialized to graphic and partition matroids.



⋅

Applications



Techniques



⋅

Technical part — Overview

1. Exchange Graph & Augmenting Paths

2. Matroid Intersection
Matching previous algorithms with Dynamic Oracle
Main Idea: “Exchange-Binary-Search-Tree”

3. Matroid Union
Improving Õ(n√r) to Õ(n + r

√
r)

Main Idea: Sparsifying the Exchange Graph

4. Lower Bound
Ω(n log n)
Main Idea: Communication Complexity of Reachability



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

Definition:
The Exchange Graph G(S) for a common independent set S ∈
I1 ∩ I2 looks as follows:

U \ S S

s

t



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

Definition:
The Exchange Graph G(S) for a common independent set S ∈
I1 ∩ I2 looks as follows:

U \ S S

s

t

b1

S + b1 ∈ I1



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

Definition:
The Exchange Graph G(S) for a common independent set S ∈
I1 ∩ I2 looks as follows:

U \ S S

s

t

b1

S + b1 ∈ I1
S + b1 − a2 ∈ I2

a2



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

Definition:
The Exchange Graph G(S) for a common independent set S ∈
I1 ∩ I2 looks as follows:

U \ S S

s

t

b1

S + b1 ∈ I1
S + b1 − a2 ∈ I2

a2

b3
S + b3 − a2 ∈ I1



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

Definition:
The Exchange Graph G(S) for a common independent set S ∈
I1 ∩ I2 looks as follows:

U \ S S

s

t

b1

S + b1 ∈ I1
S + b1 − a2 ∈ I2

a2

b3
S + b3 − a2 ∈ I1

S + b3 ∈ I2



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

s t

⊆ U \ S ⊆ U \ S ⊆ U \ S⊆ S ⊆ S



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

s t
b1 a2

b3

b5a4

S + b1 ∈ I1

S + b1 − a2 ∈ I2

S + b3 − a2 ∈ I1

S + b3 − a4 ∈ I2

S + b5 − a4 ∈ I1

S + b5 ∈ I2



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

s t
b1 a2

b3

b5a4

S + b1 ∈ I1

S + b1 − a2 ∈ I2

S + b3 − a2 ∈ I1

S + b3 − a4 ∈ I2

S + b5 − a4 ∈ I1

S + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I1



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

s t
b1 a2

b3

b5a4

S + b1 ∈ I1

S + b1 − a2 ∈ I2

S + b3 − a2 ∈ I1

S + b3 − a4 ∈ I2

S + b5 − a4 ∈ I1

S + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I1
Common independent set S ′ ∶= S+b1−a2+b3−a4+b5 of size ∣S ′∣ = ∣S∣+1



⋅

Exchange graph G(S) behaves weirdly. . .

s t

Θ(nr) edges — expensive to compute



⋅

Exchange graph G(S) behaves weirdly. . .

s t

Θ(nr) edges — expensive to compute



⋅

Exchange graph G(S) behaves weirdly. . .

s t

Θ(nr) edges — expensive to compute



⋅

Exchange graph G(S) behaves weirdly. . .

s t

Θ(nr) edges — expensive to compute



⋅

Exchange graph G(S) behaves weirdly. . .

s t

Θ(nr) edges — expensive to compute



⋅

Exchange graph G(S) behaves weirdly. . .

s t

Θ(nr) edges — expensive to compute



⋅

Exchange graph G(S) behaves weirdly. . .

s t

Disjoint paths not necessarily “compatible”
Need recompute to handle inserted and deleted edges.

Θ(nr) edges — expensive to compute



⋅

Graph Exploration — Exchange Pairs

v

X

?



⋅

Graph Exploration — Exchange Pairs

v

X

?
“rk1(S + v −X) = ∣S + v −X∣ ?”
“rk2(S − v +X) = ∣S∣ ?”



⋅

Graph Exploration — Exchange Pairs

v

X

?
“rk1(S + v −X) = ∣S + v −X∣ ?”
“rk2(S − v +X) = ∣S∣ ?”



⋅

Graph Exploration — Exchange Pairs

v

X

?
“rk1(S + v −X) = ∣S + v −X∣ ?”
“rk2(S − v +X) = ∣S∣ ?”

Binary-Search! [CLSSW, Nguyễn]



⋅

Technical part — Overview

1. Exchange Graph & Augmenting Paths

2. Matroid Intersection
Matching previous algorithms with Dynamic Oracle
Main Idea: “Exchange-Binary-Search-Tree”

3. Matroid Union
Improving Õ(n√r) to Õ(n + r

√
r)

Main Idea: Sparsifying the Exchange Graph

4. Lower Bound
Ω(n log n)
Main Idea: Communication Complexity of Reachability



⋅

Matroid Intersection — Main Idea

“rk2(S − v +X) = ∣S∣ ?”



⋅

Matroid Intersection — Main Idea

“rk2(S − v +X) = ∣S∣ ?”
Challenge: Query sets far apart in binary search.

X



⋅

Matroid Intersection — Main Idea

“rk2(S − v +X) = ∣S∣ ?”
Challenge: Query sets far apart in binary search.

X

Solution: Prebuild sets:
S + {x1, . . . , xm}

S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}S + {x1, . . . , xm}
S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}S + {x1, . . . , xm}
S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}



⋅

Matroid Intersection — Main Idea

“rk2(S − v +X) = ∣S∣ ?”
Challenge: Query sets far apart in binary search.

X

Solution: Prebuild sets:
S + {x1, . . . , xm}

S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}
Challenge: S changes when augmenting path found.

S + {x1, . . . , xm}
S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}S + {x1, . . . , xm}
S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}



⋅

Matroid Intersection — Main Idea

“rk2(S − v +X) = ∣S∣ ?”
Challenge: Query sets far apart in binary search.

X

Solution: Prebuild sets:
S + {x1, . . . , xm}

S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}
Challenge: S changes when augmenting path found.

S + {x1, . . . , xm}
S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}S + {x1, . . . , xm}
S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}

Solution:
Lazily rebuild in batched + “Augmenting Sets” Lemma [CLSSW]



⋅

Technical part — Overview

1. Exchange Graph & Augmenting Paths

2. Matroid Intersection
Matching previous algorithms with Dynamic Oracle
Main Idea: “Exchange-Binary-Search-Tree”

3. Matroid Union
Improving Õ(n√r) to Õ(n + r

√
r)

Main Idea: Sparsifying the Exchange Graph

4. Lower Bound
Ω(n log n)
Main Idea: Communication Complexity of Reachability



⋅

Matroid Union — Main Idea

s t

⊆ U \ S ⊆ U \ S ⊆ U \ S⊆ S ⊆ S

Going from O(n√r) to O(n + r
√
r).



⋅

Matroid Union — Main Idea

s t

⊆ U \ S ⊆ U \ S ⊆ U \ S⊆ S ⊆ S

Going from O(n√r) to O(n + r
√
r).

≈ r≈ n



⋅

Matroid Union — Main Idea

s t

⊆ U \ S ⊆ U \ S ⊆ U \ S⊆ S ⊆ S

Going from O(n√r) to O(n + r
√
r).

≈ r≈ n

Only a basis of size ≈ r is relevant



⋅

Matroid Union — Main Idea

s t

⊆ U \ S ⊆ U \ S ⊆ U \ S⊆ S ⊆ S

Going from O(n√r) to O(n + r
√
r).

≈ r≈ n

Only a basis of size ≈ r is relevant
Maintain dynamically when S changes

Binary tree of sqrt-decomposition
similar to early dynamic MST [Fre85 , EGIN97]



⋅

Technical part — Overview

1. Exchange Graph & Augmenting Paths

2. Matroid Intersection
Matching previous algorithms with Dynamic Oracle
Main Idea: “Exchange-Binary-Search-Tree”

3. Matroid Union
Improving Õ(n√r) to Õ(n + r

√
r)

Main Idea: Sparsifying the Exchange Graph

4. Lower Bound
Ω(n log n)
Main Idea: Communication Complexity of Reachability



⋅

Lower Bound — Main Idea

Communication game

Alice

M1 = (U, I1) Bob

M2 = (U, I2)
How many bits of communication necessary?



⋅

Lower Bound — Main Idea

Communication game

Alice

M1 = (U, I1) Bob

M2 = (U, I2)
How many bits of communication necessary?

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

indep. queries
rank queries / log(n)
dynamic rank queries



⋅

Lower Bound — Main Idea

Communication game

Alice

M1 = (U, I1) Bob

M2 = (U, I2)
How many bits of communication necessary?

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

indep. queries
rank queries / log(n)
dynamic rank queries

Carefully choose matroids (gammoids) to model Graph Reachability

Ω(n log n) bit lower-bound† [Hajnal-Maass-Turán STOC’88]
†(unconditionally for deterministic, and conjectured to hold for randomized algorithms)



⋅

Open Problems

k-Disjoint Spanning Trees in Õ(∣E∣) time?



⋅

Open Problems

k-Disjoint Spanning Trees in Õ(∣E∣) time?
Matroid Intersection / Union in Õ(n) time?

Dynamic or traditional query model; or communication.
Or any n

1+Ω(1) lower-bounds?



⋅

Open Problems

k-Disjoint Spanning Trees in Õ(∣E∣) time?

What about weighted matroid intersection?
Currently slower than unweighted.
Match using the dynamic oracle model?

Matroid Intersection / Union in Õ(n) time?
Dynamic or traditional query model; or communication.
Or any n

1+Ω(1) lower-bounds?



⋅

Open Problems

k-Disjoint Spanning Trees in Õ(∣E∣) time?

What about weighted matroid intersection?
Currently slower than unweighted.
Match using the dynamic oracle model?

Other problems where a “Dynamic Oracle” model is relevant?
Submodular function minimization/maximization?
Cut-queries in graphs?
…

Matroid Intersection / Union in Õ(n) time?
Dynamic or traditional query model; or communication.
Or any n

1+Ω(1) lower-bounds?



⋅

Open Problems

k-Disjoint Spanning Trees in Õ(∣E∣) time?

What about weighted matroid intersection?
Currently slower than unweighted.
Match using the dynamic oracle model?

Other problems where a “Dynamic Oracle” model is relevant?
Submodular function minimization/maximization?
Cut-queries in graphs?
…

Thanks!

Matroid Intersection / Union in Õ(n) time?
Dynamic or traditional query model; or communication.
Or any n

1+Ω(1) lower-bounds?


	Technical part --- Overview
	Technical part --- Overview
	Technical part --- Overview
	Technical part --- Overview

