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k-Disjoint Spanning Tree

Given: Graph G = (V,E), integer k ≥ 1;
Goal: Find k disjoint spanning trees.

Open: Õ(∣E∣) time even for k = 2?

Õk(∣V ∣√∣E∣) [Gabow-Westerman STOC’88]
Õk(∣E∣ + ∣V ∣√∣V ∣) Ours†

k = 2

†Also concurrently by [Quanrud’23]
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Graph Problems & Reductions

Want Unified way to design Efficient algorithms.

Min-Cost Max-Flow†

Bipartite Matching
Vertex ConnectivityEdge Connectivity

Gomory-Hu Trees

NWSSSPDirected Cut

†Almost linear time, [Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva FOCS’22]

k-Disjoint Spanning Trees

Arboricity

Colorful Spanning Trees
Tree Packing

Graphic Matroid Intersection
Job Scheduling Matroid Intersection

Matroid Intersection/Union

Airline Scheduling

Closure Problem
Bipartite Matching

Vertex Connectivity

NWSSSP
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Matroid Rank

rk(S) = 3

rk(S) = max{∣A∣ ∶ A ⊆ S,A ∈ I}
= size of a maximum independent set in S

= size of a maximal independent set in S

S ∈ I ⟺ rk(S) = ∣S∣
Submodular (Diminishing returns)
If A ⊆ B, and x ∉ B then:
rk(A+x)−rk(A) ≥ rk(B+x)−rk(B)

Properties:
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Matroids: Examples
Colourful Matroid

I =“no duplicate colours”
rk =“number of distinct colours”

Graphic Matroid

U = edges
I =“no cycles”

rk =“#vertices - #components”

Linear Matroid

U = vectors
I =“linear independence”

rk =rank

(2, 1, 4, 2, 3, 3)(1, 0, 1, 0, 1, 0)(3, 1, 5, 2, 4, 3)
Vámos Matroid
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Matroid Problems

Matroid Intersection:
Given two matroids M1 = (U, I1) and M2 = (U, I2),
find a set S of maximum size in I1 ∩ I2.

Matroid Union: (a.k.a. matroid sum)
Given k matroids Mi = (U, Ii),
find a set S = S1∪S2∪⋯∪Sk of maximum size, where Si ∈ Ii.

k-Fold Matroid Union: (a.k.a. partitioning)
Special case of matroid union where all k matroids are the same.
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k-fold Matroid Union

Given: Matroid M = (U, I), integer k;
Goal: Find S = S1 ∪⋯∪ Sk (where Si ∈ I) of maximum size.

M = graphic matroid
Si ⊆ E is in I iff no cycle.

S1

k = 2

S2

Can solve using Matroid Intersection!
M1 = colorful matroid

M2 = k independent copies of M⋯
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Matroid Intersection & Union: Examples

Bipartite matching
k-disjoint spanning trees
Arborescence (directed spanning tree)
Colourful spanning tree
Tree/Arborescence packing
Some scheduling problems
Some routing problems
Some graph orientation problems
. . .

Also connections to Submodular Function Minimization
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Query Access

How to access a matroid?

Oracle Access
Independence query: “Is S ∈ I?”
Rank query: “What is rk(S)?”

Important:
We do not know the underlying
structure of the matroids!
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Open: Õ(n) possible?



⋅

Traditional Model

Traditional Model:
Minimize number of indep./rank queries measured in terms of:

n = ∣U ∣ = number of elements (= #edges)
r = ∣S∣ = size of answer (≤ #vertices)

State-of-the-art: Matroid Intersection & Union
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Traditional Model

Traditional Model:
Minimize number of indep./rank queries measured in terms of:

n = ∣U ∣ = number of elements (= #edges)
r = ∣S∣ = size of answer (≤ #vertices)

State-of-the-art: Matroid Intersection & Union
Õ(n√r) rank-queries [CLSSW FOCS’19]
Õ(nr3/4) indep-queries [BvdBMN STOC’21, Blikstad ICALP’21]

Caveat:
Does not imply Efficient algorithms.

Query “rk(Q)?” takes O(∣Q∣) time to specify, let alone answer.

Open: Õ(n) possible?

Many papers in the 80s/90s specialize matroid intersection/union framework
to specific problems
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Dynamic Oracle
Q1

Q3 = Q1 ∪ {e}Q2

Q4 = Q3 \ {e′}
Main Motivation:

Cost to answer a query ≈ how different it is to previous queries.

New Dynamic Oracle Model:
Cost to issue the k’th query Qk is mini<k ∣Qk ⊕Qi∣.
⟺
Query Qk = Qi ± {e}.
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Data Structures for Dynamic Rank Oracle

Colourful/partition matroid:
Count colors in O(1) update time.
Graphic matroid:
Count components in O(polylogn) (or O(no(1))) update time.

[KKM’13, GKKKT’15, CGLNPS’20, NSW’17]
(delete / add edges)

O(f(n, r)) dynamic query matroid intersection/union algorithm
+

fast data structures
=

Õ(f(n, r)) time algorithm

Caveat

Need to be worst-case.
Oblivious advesary is okay.
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Our Results

Dynamic-oracle algorithms matching previous query-bounds:
Õ(n√r)-dynamic-rank-query.
Õ(nr3/4)-dynamic-indep.-query.

Improved Matroid Union:
Õ(n + r

√
r)-dynamic-rank-query.

Concurrently & independently shown† by [Quanrud’23]
Compare O(∣E∣√∣V ∣) vs O(∣E∣ + ∣V ∣1.5) for graph problems.

First super-linear lower-bounds:
Ω(n log n) dynamic-rank-queries needed
Ω(n log n) traditional-indep.-queries needed
Improves log2(3)n− o(n) ≈ 1.58n lower-bound by [Harvey SODA’08]

†In traditional model + specialized to graphic and partition matroids.
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Technical part — Overview

1. Exchange Graph & Augmenting Paths

2. Matroid Intersection
Matching previous algorithms with Dynamic Oracle
Main Idea: “Exchange-Binary-Search-Tree”

3. Matroid Union
Improving Õ(n√r) to Õ(n + r

√
r)

Main Idea: Sparsifying the Exchange Graph

4. Lower Bound
Ω(n log n)
Main Idea: Communication Complexity of Reachability
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Definition:
The Exchange Graph G(S) for a common independent set S ∈
I1 ∩ I2 looks as follows:

U \ S S

s

t

b1

S + b1 ∈ I1
S + b1 − a2 ∈ I2

a2

b3
S + b3 − a2 ∈ I1

S + b3 ∈ I2
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s t
b1 a2

b3

b5a4

S + b1 ∈ I1

S + b1 − a2 ∈ I2

S + b3 − a2 ∈ I1

S + b3 − a4 ∈ I2

S + b5 − a4 ∈ I1

S + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I1
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Exchange Graph & Augmenting Paths [Edmonds’60s]

s t
b1 a2

b3

b5a4

S + b1 ∈ I1

S + b1 − a2 ∈ I2

S + b3 − a2 ∈ I1

S + b3 − a4 ∈ I2

S + b5 − a4 ∈ I1

S + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I1
Common independent set S ′ ∶= S+b1−a2+b3−a4+b5 of size ∣S ′∣ = ∣S∣+1
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Exchange graph G(S) behaves weirdly. . .

s t

Disjoint paths not necessarily “compatible”
Need recompute to handle inserted and deleted edges.

Θ(nr) edges — expensive to compute
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Graph Exploration — Exchange Pairs

v

X

?
“rk1(S + v −X) = ∣S + v −X∣ ?”
“rk2(S − v +X) = ∣S∣ ?”

Binary-Search! [CLSSW, Nguyễn]
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2. Matroid Intersection
Matching previous algorithms with Dynamic Oracle
Main Idea: “Exchange-Binary-Search-Tree”

3. Matroid Union
Improving Õ(n√r) to Õ(n + r

√
r)

Main Idea: Sparsifying the Exchange Graph

4. Lower Bound
Ω(n log n)
Main Idea: Communication Complexity of Reachability
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Challenge: Query sets far apart in binary search.

X

Solution: Prebuild sets:
S + {x1, . . . , xm}

S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}
Challenge: S changes when augmenting path found.

S + {x1, . . . , xm}
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Matroid Intersection — Main Idea

“rk2(S − v +X) = ∣S∣ ?”
Challenge: Query sets far apart in binary search.

X

Solution: Prebuild sets:
S + {x1, . . . , xm}

S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}
Challenge: S changes when augmenting path found.

S + {x1, . . . , xm}
S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}S + {x1, . . . , xm}
S + {x1, . . . , xm/2} S + {xm/2+1, . . . , xm}

Solution:
Lazily rebuild in batched + “Augmenting Sets” Lemma [CLSSW]
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Matroid Union — Main Idea

s t

⊆ U \ S ⊆ U \ S ⊆ U \ S⊆ S ⊆ S

Going from O(n√r) to O(n + r
√
r).

≈ r≈ n

Only a basis of size ≈ r is relevant
Maintain dynamically when S changes

Binary tree of sqrt-decomposition
similar to early dynamic MST [Fre85 , EGIN97]
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Lower Bound — Main Idea

Communication game

Alice

M1 = (U, I1) Bob

M2 = (U, I2)
How many bits of communication necessary?

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

indep. queries
rank queries / log(n)
dynamic rank queries

Carefully choose matroids (gammoids) to model Graph Reachability

Ω(n log n) bit lower-bound† [Hajnal-Maass-Turán STOC’88]
†(unconditionally for deterministic, and conjectured to hold for randomized algorithms)
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What about weighted matroid intersection?
Currently slower than unweighted.
Match using the dynamic oracle model?

Other problems where a “Dynamic Oracle” model is relevant?
Submodular function minimization/maximization?
Cut-queries in graphs?
…

Matroid Intersection / Union in Õ(n) time?
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Open Problems

k-Disjoint Spanning Trees in Õ(∣E∣) time?

What about weighted matroid intersection?
Currently slower than unweighted.
Match using the dynamic oracle model?

Other problems where a “Dynamic Oracle” model is relevant?
Submodular function minimization/maximization?
Cut-queries in graphs?
…

Thanks!

Matroid Intersection / Union in Õ(n) time?
Dynamic or traditional query model; or communication.
Or any n

1+Ω(1) lower-bounds?
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