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Suprising Open Problem — Triangle Partitions

Triangulation: n − 2 triangles 22

Given polygon (n = #corners),
Partition into few triangle pieces

Not always optimal! 14

Difficulty: Steiner Points
(corner of the solution but not of input polygon)

Open Problem: Polynomial time?
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Star Partitions

StarThis Talk: Partitions

Star Not a Star

Definition: Star iff exists star-center point which can see all of the polygon
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Star Partitions of Polygons

Difficulty: Steiner Points
(corner of the solution but not of input polygon)

With Steiner points: ans = 4
Without Steiner points: ans = Ω(n)Without Steiner Points: Õ(n7) [Kei’85]
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Partition into few star pieces



⋅

Star Partitions of Polygons

Given polygon (n = #corners),
Partition into few star pieces

Difficulty: Steiner Points
(corner of the solution but not of input polygon)

Applications in CNC milling, route planning, etc.
Open for > 40 years if in P (or even NP)
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Main Result

Our Main Result:
Minimum Star Partition of Simple Polygons in O(n107) time

Polynomial!

Works in ≪ 1 sec for n ≤ 5, but n = 6 it is a bit slow…
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Tricky Instances

V0 = corners of P
V1 = intersections of lines between points in V0

∣V1∣ = O(n4)∣V0∣ = n

V2 = intersections of lines between points in V1

∣V2∣ = O(n16) ∣Vk∣ = O(n(4k))
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Tricky Instances

Good News: Exists solution with all (Steiner) points in Vn

Bad News: Some examples require points in VΩ(n); size n
2
Ω(n)(unlike covering!)

Good News: “Tripod” structure is only “tricky” case
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O(n6)
O(n32)

3. Use dynamic programming to find the minimum star partition

A1
B1

Z

B2

A2

Kind of easy
Every piece touches the boundary

O(n13 ⋅ n6 ⋅ n32 ⋅ n6 ⋅ n13) = O(n70) states

Case 0 Case 1 Case 2

Case 4 Case 5Case 3
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n
30-ish transitions
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centers
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Algorithm Outline

3. Use dynamic programming to find the minimum star partition

1. Find small set of potential star-centers: S
centers

2. Find small set of potential “corner” points: S
corners

A1 CAR
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Q2 Q3

Q4

Q5
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Q
′
1

Q
′
2 Q

′
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Q
′
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Q
′
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A2 A3
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A5

R
′

R R
′

AR

Kind of straightforward…
By case analysis…
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Hard part
1. Find small set of potential star-centers: S

centers

Ingredient 1: “Tripods” form rooted trees
Ingredient 2: “Greedy Choice”
Ingredient 3: Bootstrap whole algorithm on smaller polygons

O(n6) candidate star-centers
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Summary

Our Main Result:
Minimum Star Partition of Simple Polygons in O(n107) time

Techniques:
Structural Properties of Optimial Solutions + DP

Open Problems:
Triangle Partition?
Spiral Partition?
Fast (linear/quadratic) Approximation Algorithm?
3D? Thanks!


