Minimum Star Partitions of Simple Polygons in Polynomial Time

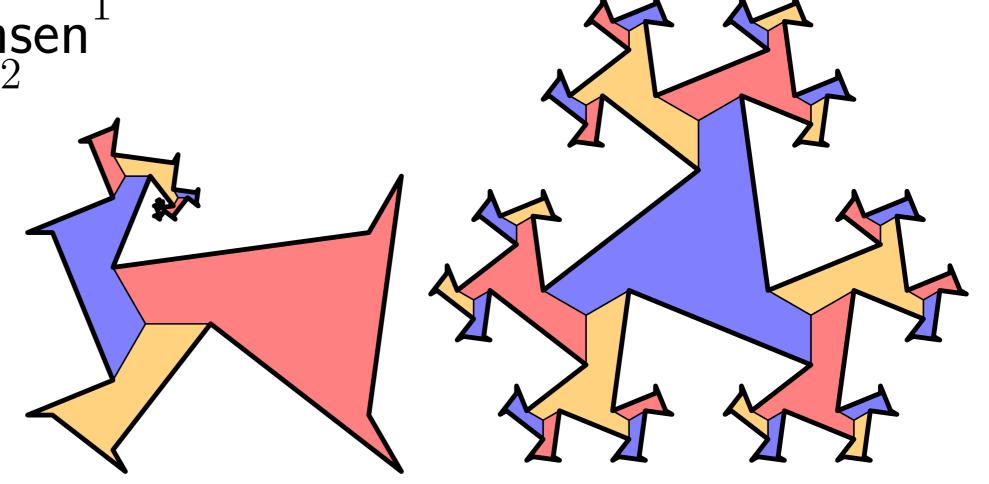
Mikkel Abrahamsen¹
Joakim Blikstad²

André Nusser^{1,3} Hanwen Zhang¹

¹ BARC

² KTH & MPI-INF

³ CNRS



Minimum Star Partitions of Simple Polygons in $O(n^{107})$ Time

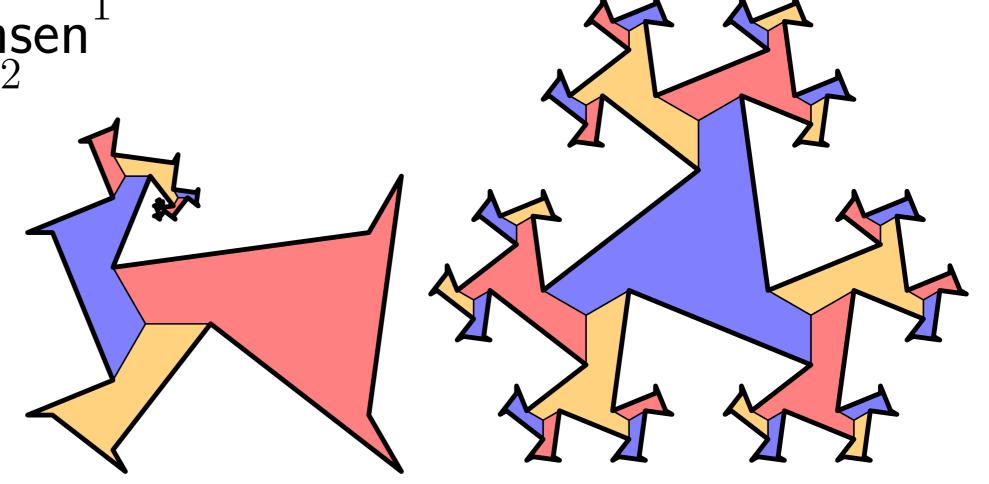
Mikkel Abrahamsen¹
Joakim Blikstad²

André Nusser^{1,3} Hanwen Zhang¹

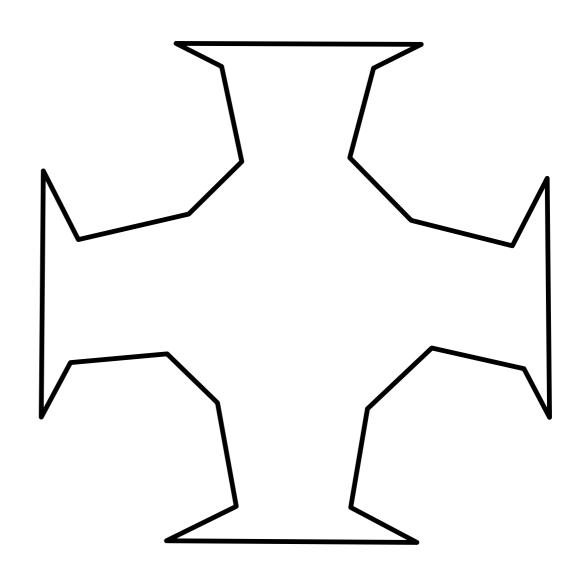
¹ BARC

 2 KTH & MPI-INF

³ CNRS

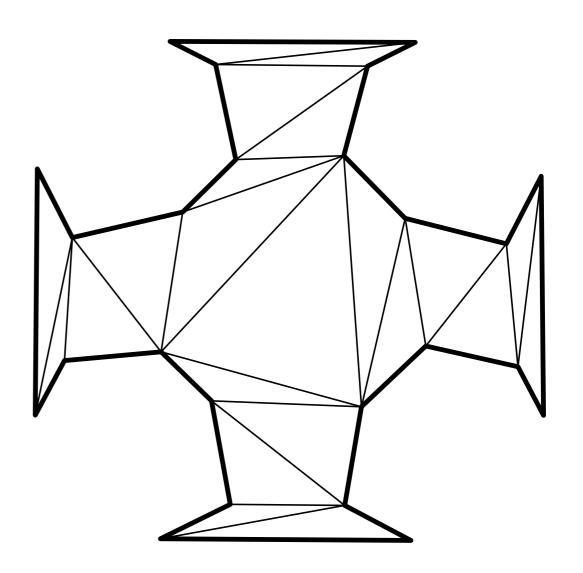


Given polygon (n = #corners), Partition into few triangle pieces



Given polygon (n = #corners), Partition into few triangle pieces

Triangulation: n-2 triangles 22



Given polygon (n = # corners), Partition into few triangle pieces

Triangulation: n-2 triangles 22

Not always optimal! 14



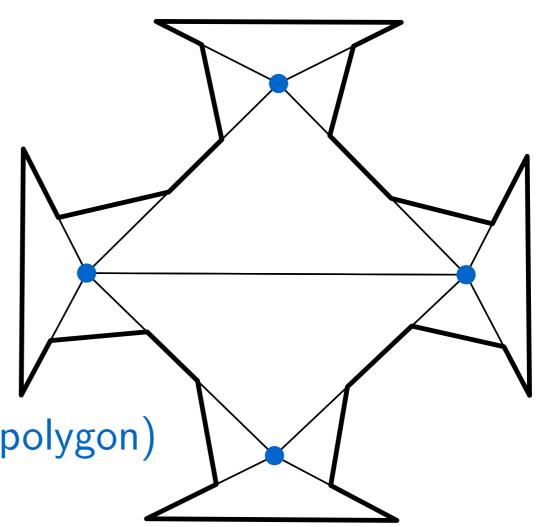
Given polygon (n = # corners), Partition into few triangle pieces

Triangulation: n-2 triangles 22

Not always optimal! 14

Difficulty: Steiner Points

(corner of the solution but not of input polygon)



Given polygon (n = #corners), Partition into few triangle pieces

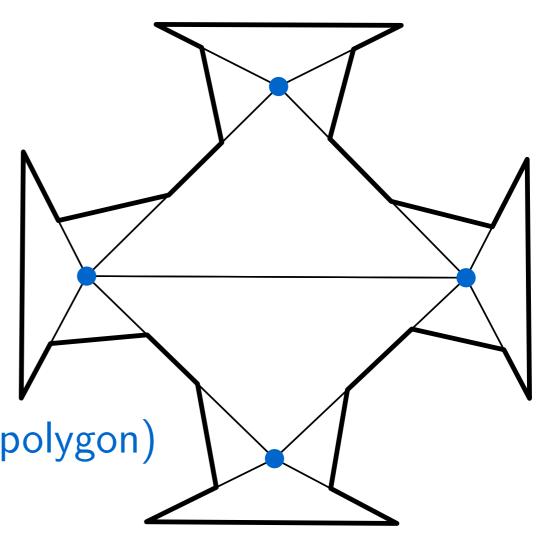
Triangulation: n-2 triangles 22

Not always optimal! 14

Difficulty: Steiner Points

(corner of the solution but not of input polygon)

Open Problem: Polynomial time?



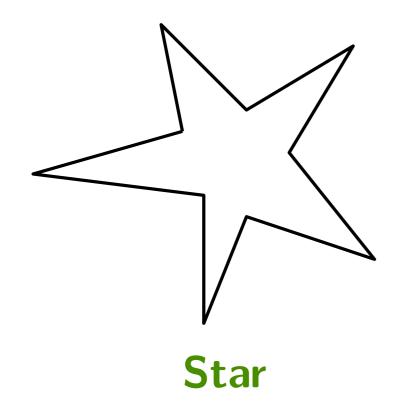
Star Partitions

This Talk: Triangle Partitions

Star Partitions

This Talk: Star Partitions

This Talk: Star Partitions

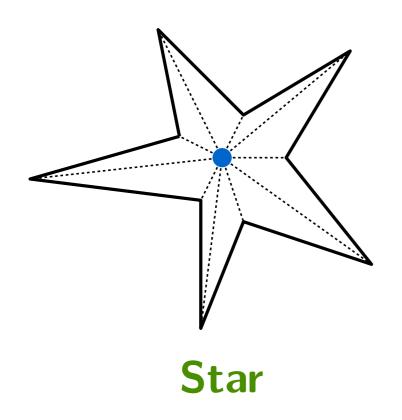


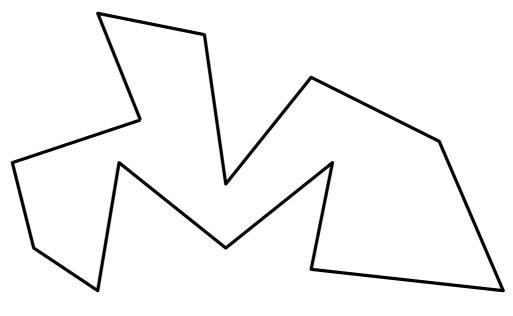
Not a Star

Star Partitions

This Talk: Star Partitions

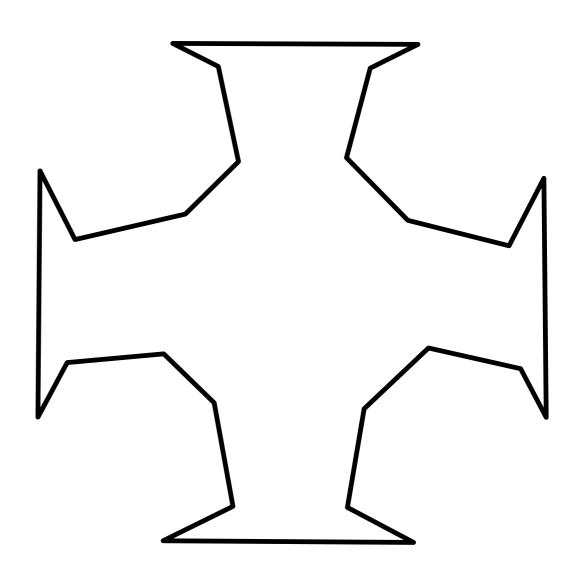
Definition: Star iff exists star-center point which can see all of the polygon



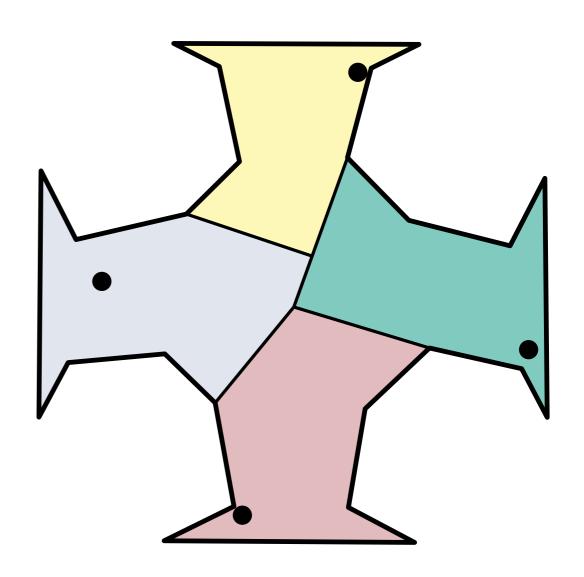


Not a Star

Given polygon (n = #corners), Partition into few star pieces



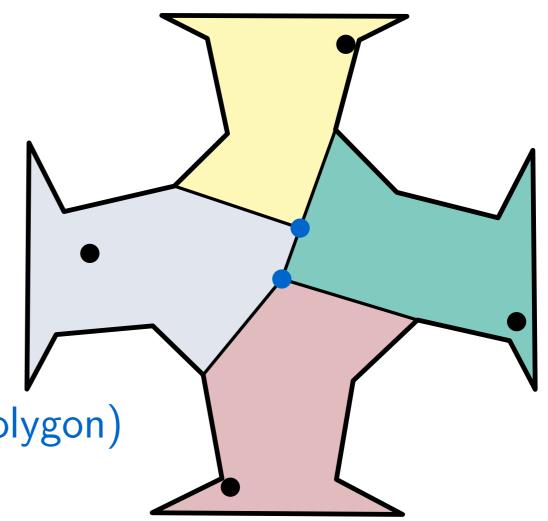
Given polygon (n = #corners), Partition into few star pieces



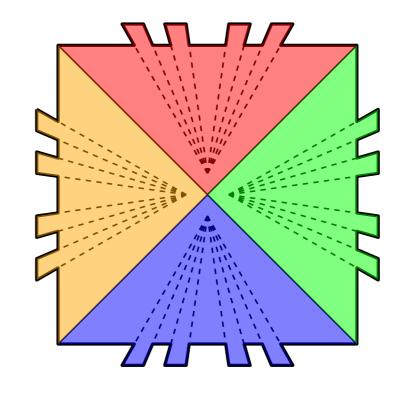
Given polygon (n = #corners), Partition into few star pieces

Difficulty: Steiner Points

(corner of the solution but not of input polygon)



Given polygon (n = #corners), Partition into few star pieces



Difficulty: Steiner Points

(corner of the solution but not of input polygon)

Without Steiner Points: $\tilde{O}(n^7)$ [Kei'85]

With Steiner points: ans = 4 Without Steiner points: ans = $\Omega(n)$

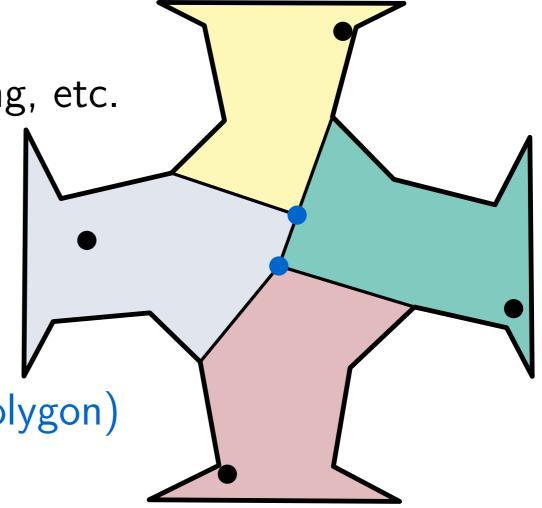
Given polygon (n = #corners), Partition into few star pieces

Applications in CNC milling, route planning, etc.

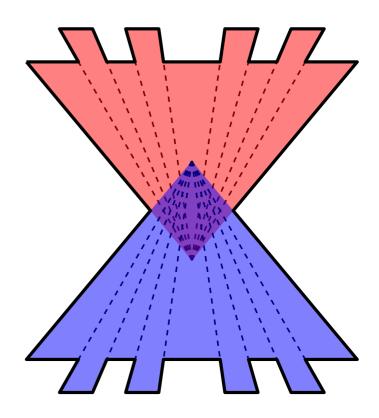
Open for > 40 years if in P (or even NP)

Difficulty: Steiner Points

(corner of the solution but not of input polygon)



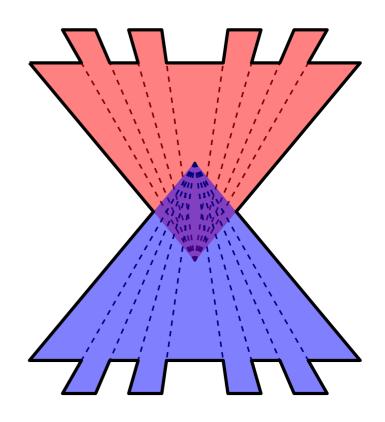
Related Problem: Cover vs Partition



Related Problem: Cover vs Partition

Cover: Pieces can overlap ans=2

Partition: Pieces cannot overlap ans= $\Omega(n)$

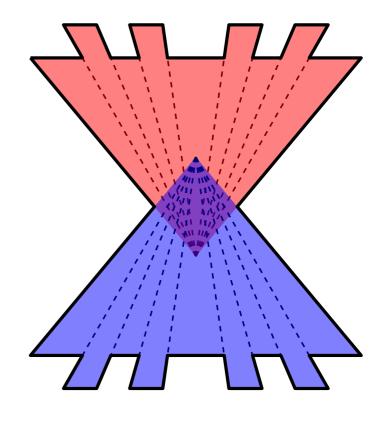


Related Problem: Cover vs Partition

Cover: Pieces can overlap ans=2

Partition: Pieces cannot overlap ans= $\Omega(n)$

Theorem: (Cover) Art Gallery Problem is $\exists \mathbb{R}$ -complete [AAM'22] (i.e., probably not even in NP)

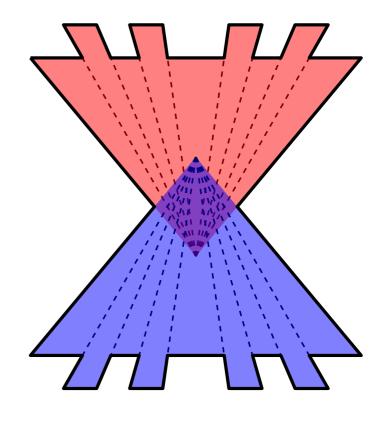


Related Problem: Cover vs Partition

Cover: Pieces can overlap ans=2

Partition: Pieces cannot overlap ans= $\Omega(n)$

Theorem: (Cover) Art Gallery Problem is $\exists \mathbb{R}$ -complete [AAM'22] (i.e., probably not even in NP)



Main Result

Our Main Result:

Minimum Star Partition of Simple Polygons in $O(n^{107})$ time

Main Result

Our Main Result:

Minimum Star Partition of Simple Polygons in $O(n^{107})$ time

Polynomial!

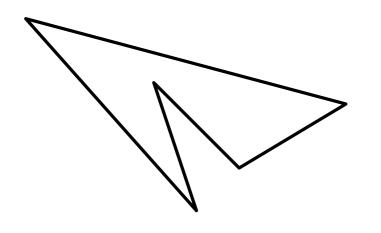
Main Result

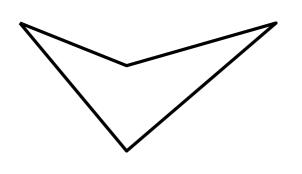
Our Main Result:

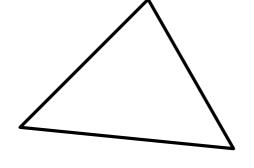
Minimum Star Partition of Simple Polygons in $O(n^{107})$ time

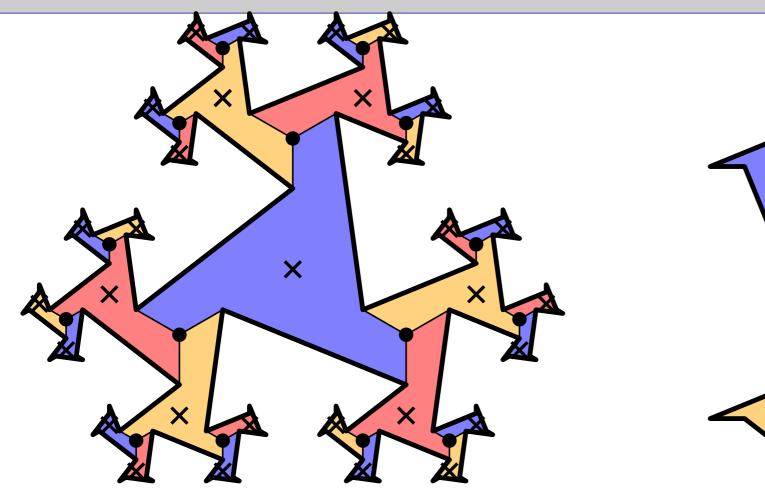
Polynomial!

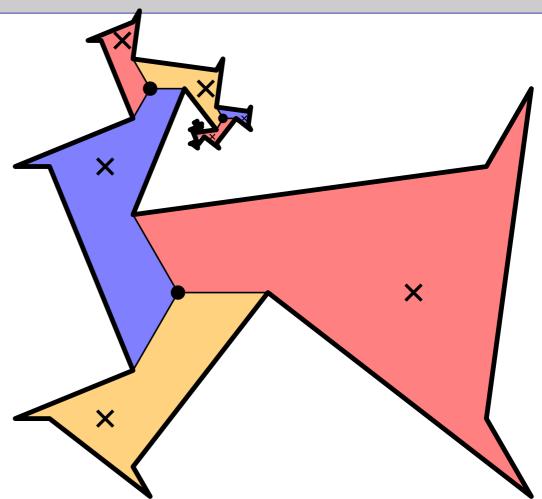
Works in $\ll 1$ sec for $n \leq 5$, but n = 6 it is a bit slow...

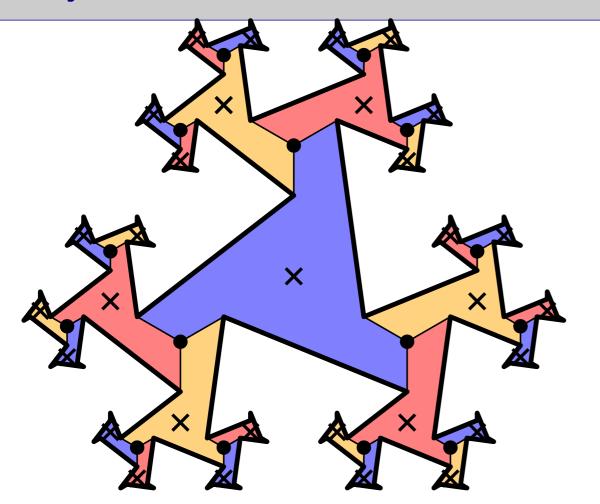


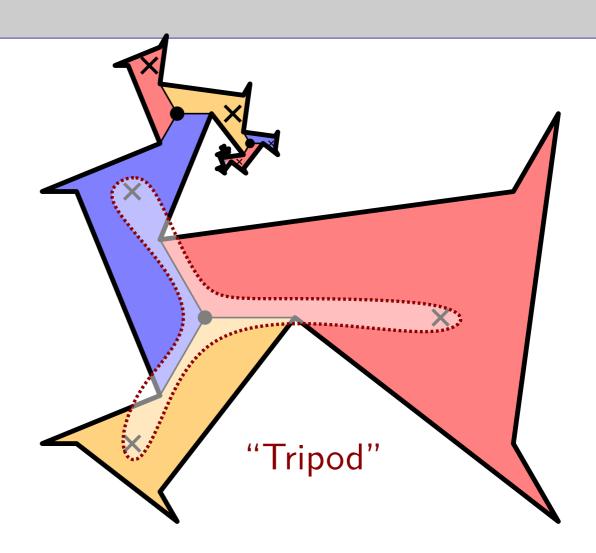


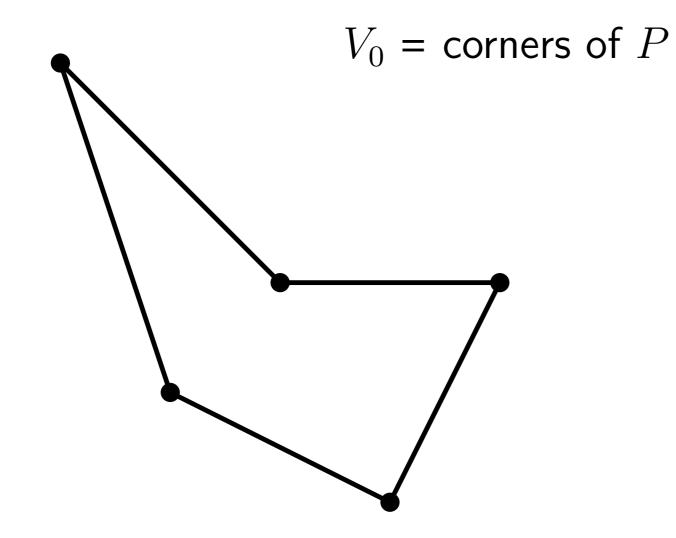




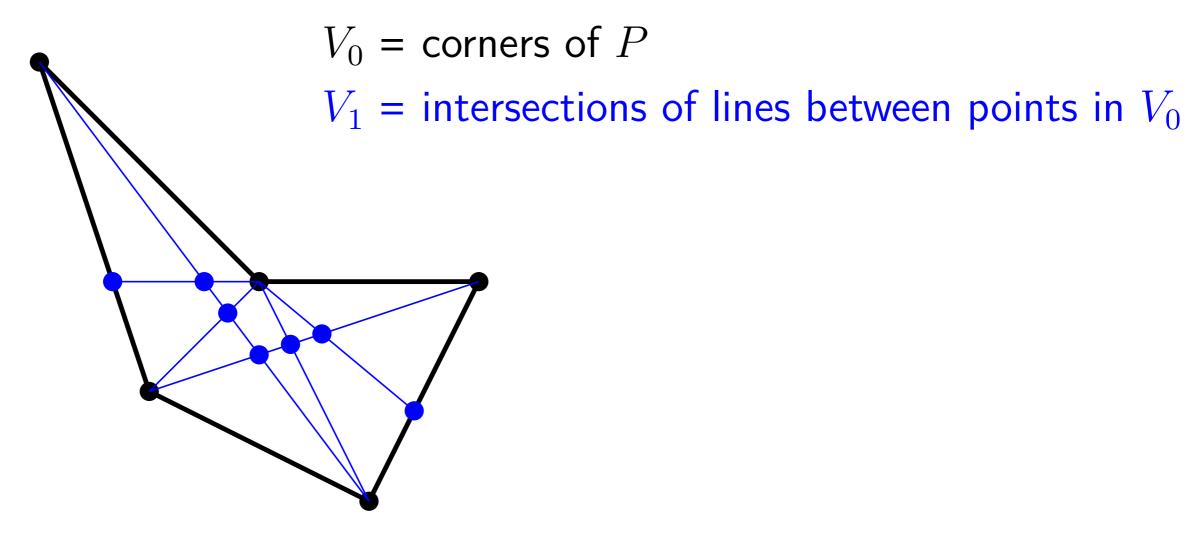




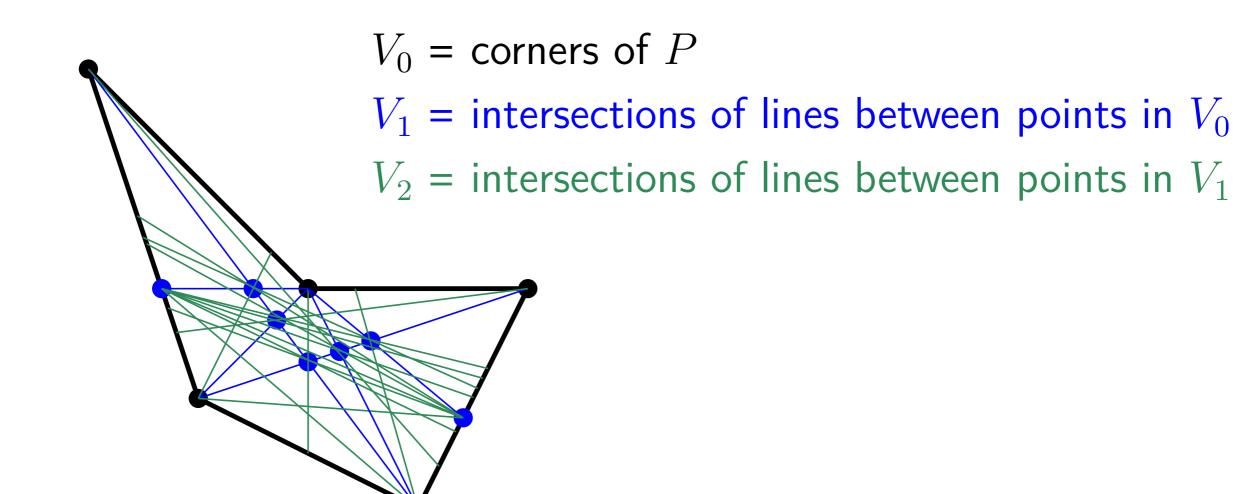




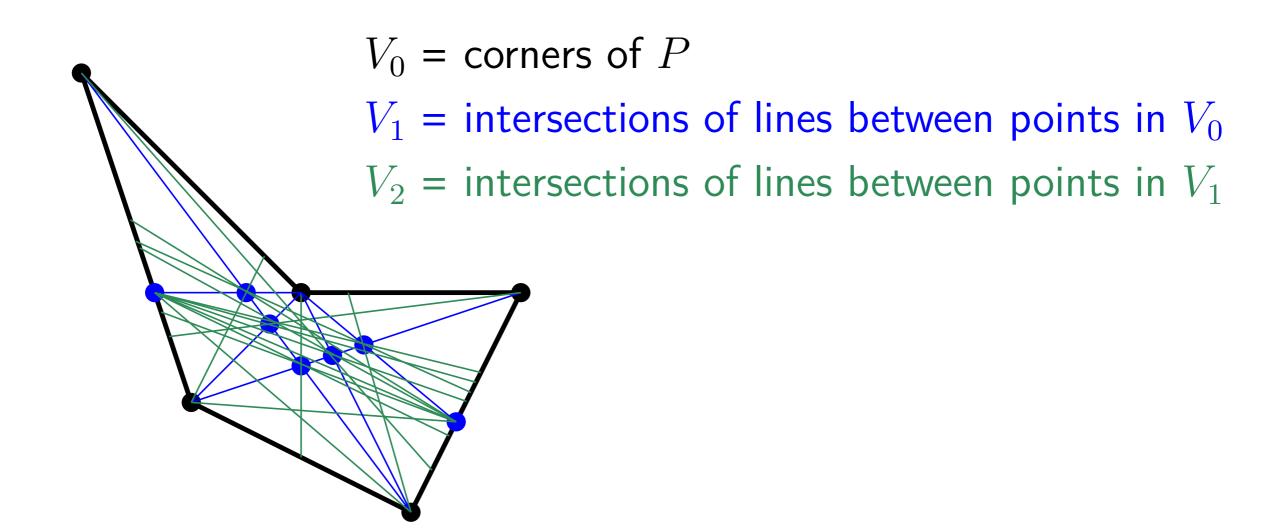
$$|V_0| = n$$



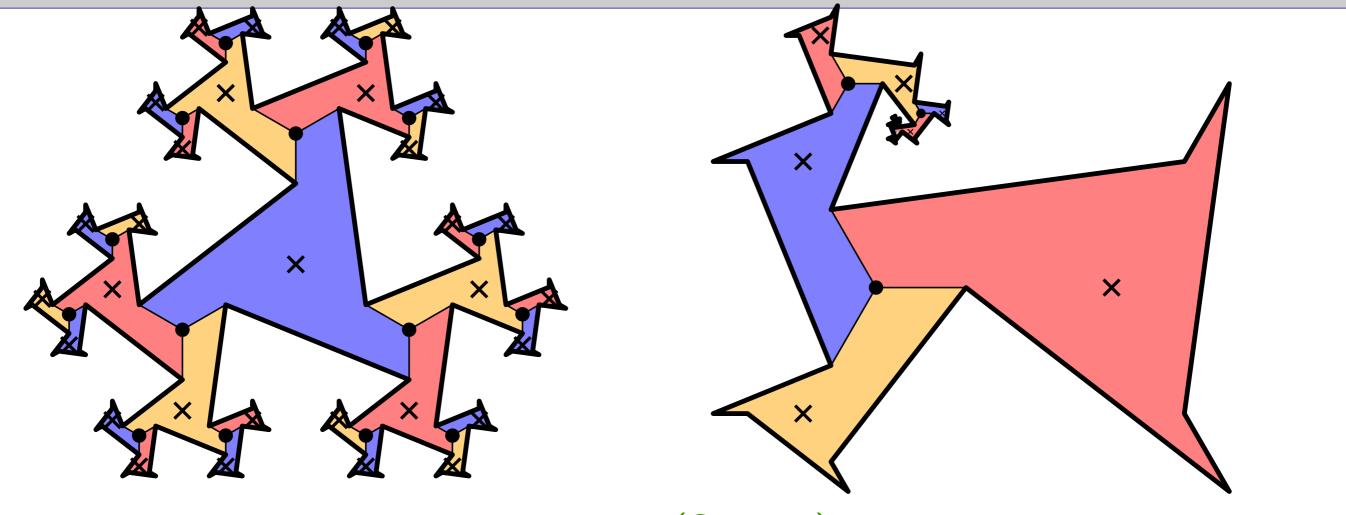
$$|V_0| = n$$
 $|V_1| = O(n^4)$



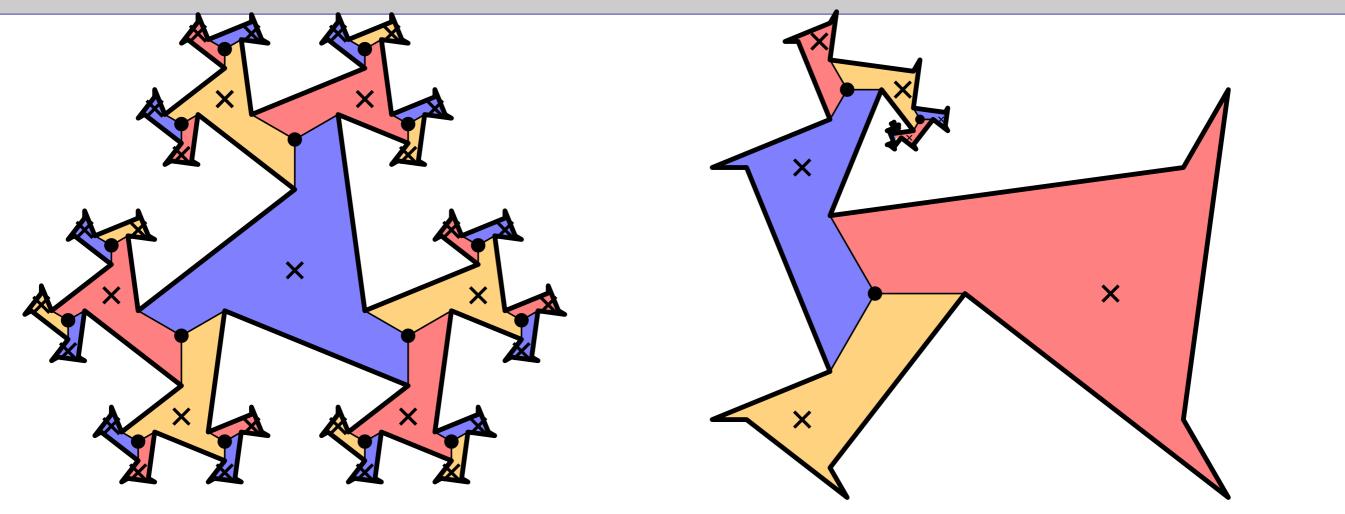
$$|V_0| = n$$
 $|V_1| = O(n^4)$ $|V_2| = O(n^{16})$



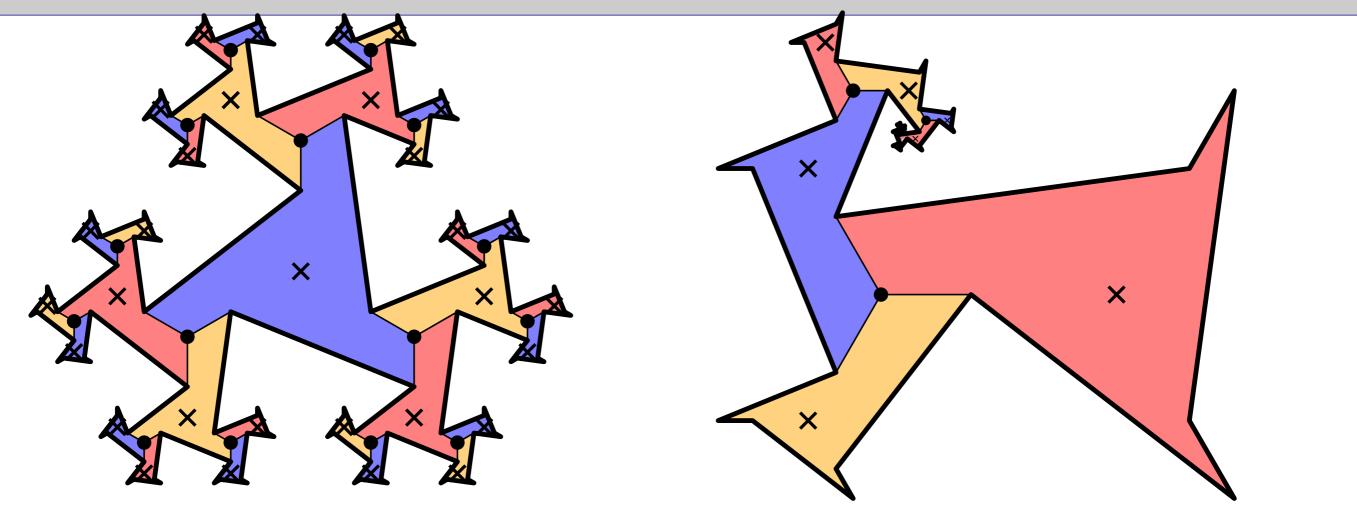
$$|V_0| = n$$
 $|V_1| = O(n^4)$ $|V_2| = O(n^{16})$ $|V_k| = O(n^{(4^k)})$



Good News: Exists solution with all (Steiner) points in V_n (unlike covering!)

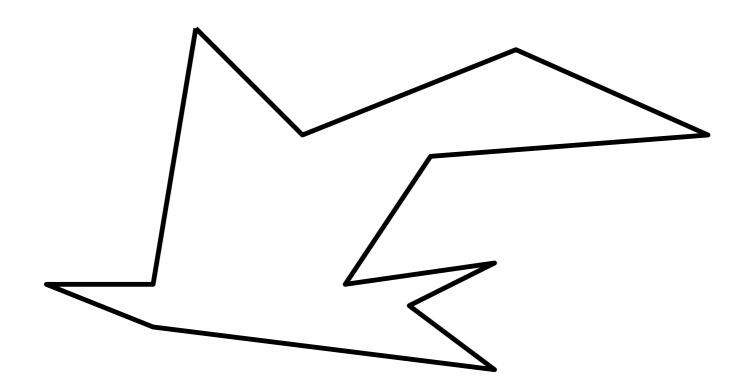


Good News: Exists solution with all (Steiner) points in V_n (unlike covering!) Bad News: Some examples require points in $V_{\Omega(n)}$; size $n^{2^{\Omega(n)}}$

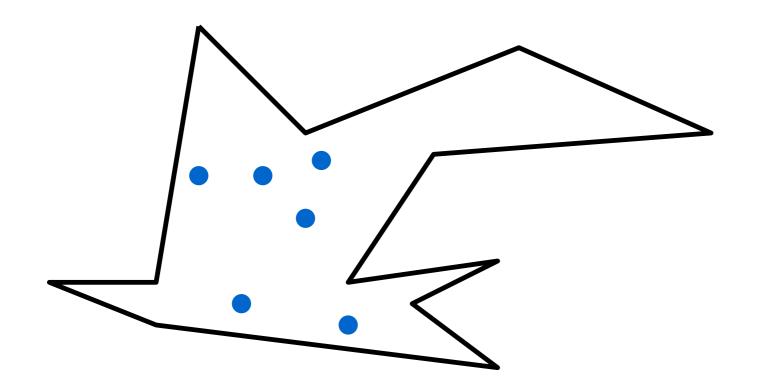


Good News: Exists solution with all (Steiner) points in V_n (unlike covering!) Bad News: Some examples require points in $V_{\Omega(n)}$; size $n^{2^{\Omega(n)}}$

Good News: "Tripod" structure is only "tricky" case

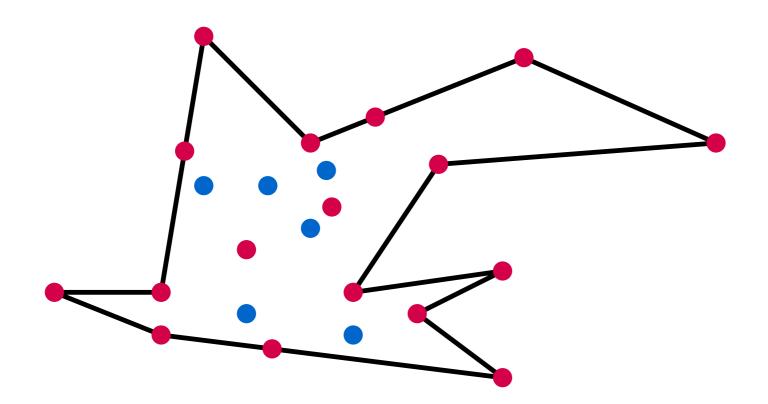


1. Find small set of potential star-centers: S^{centers}

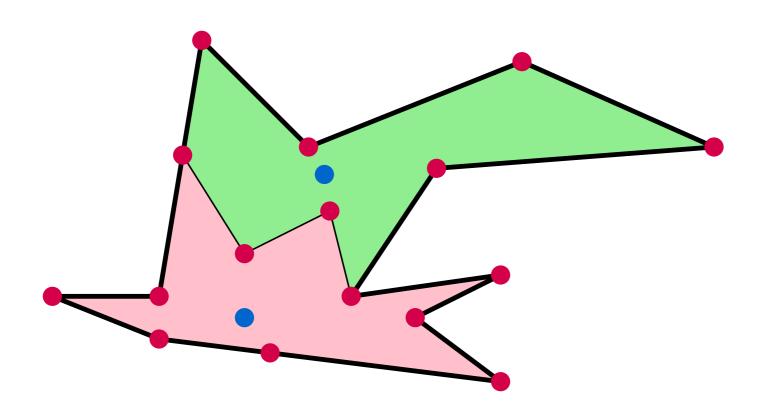


1. Find small set of potential star-centers: S^{centers}

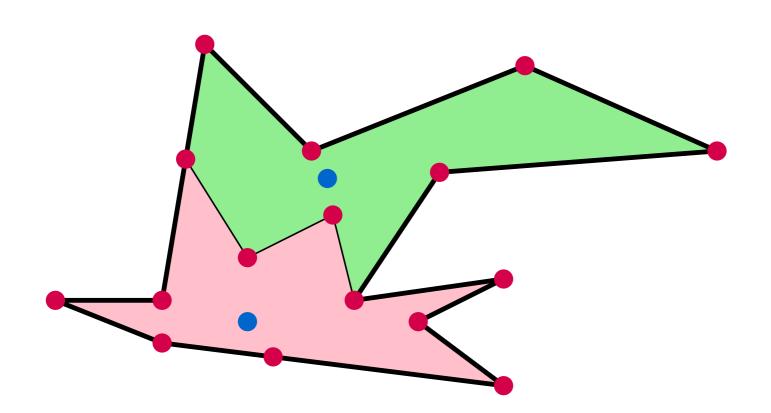
2. Find small set of potential "corner" points: S^{corners}



- 1. Find small set of potential star-centers: S^{centers}
- 2. Find small set of potential "corner" points: S^{corners}
- 3. Use dynamic programming to find the minimum star partition



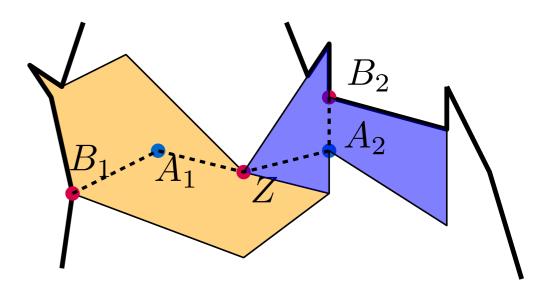
- 1. Find small set of potential star-centers: S^{centers} $O(n^6)$
- 2. Find small set of potential "corner" points: S^{corners} $O(n^{32})$
- 3. Use dynamic programming to find the minimum star partition



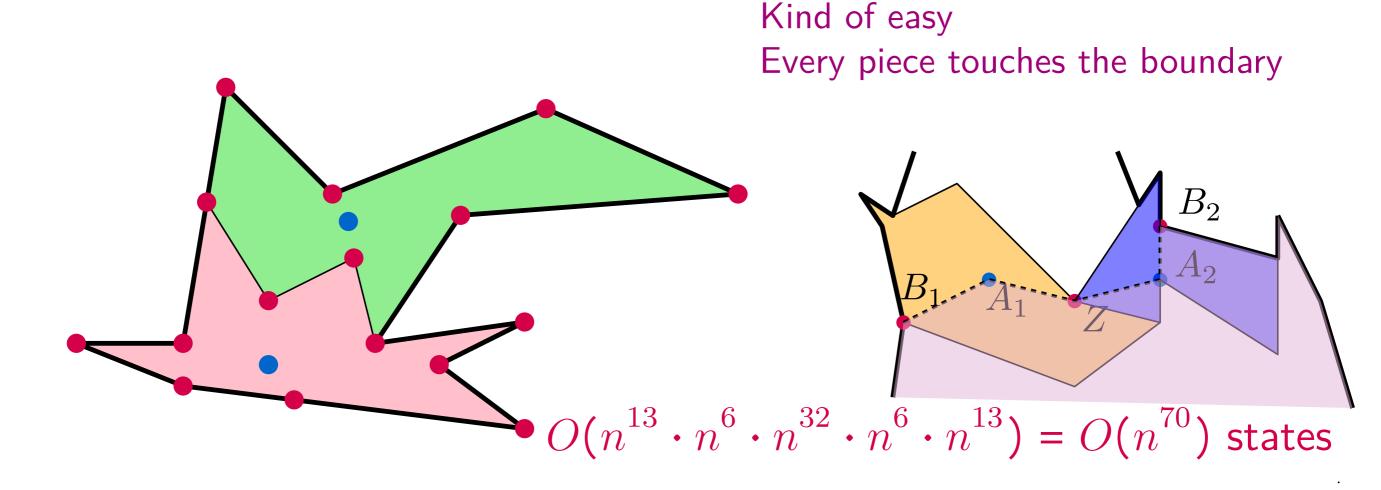
.

- $O(n^6)$ $O(n^{32})$ 1. Find small set of potential star-centers: S^{centers}
- 2. Find small set of potential "corner" points: S^{corners}
- 3. Use dynamic programming to find the minimum star partition

Kind of easy Every piece touches the boundary



- 1. Find small set of potential star-centers: S^{centers} $O(n^6)$
- 2. Find small set of potential "corner" points: S^{corners} $O(n^{32})$
- 3. Use dynamic programming to find the minimum star partition



1. Find small set of potential star-centers: S^{centers} Find small set of notential "corner" noints. ım star partition easy iece touches the boundary Case 0 Case 2 Case 1 Case 3 Case 4 Case 5 n^{30} -ish transitions • $O(n^{13} \cdot n^6 \cdot n^{32} \cdot n^6 \cdot n^{13}) = O(n^{70})$ states

- 1. Find small set of potential star-centers: S^{centers}
- 2. Find small set of potential "corner" points: $\boldsymbol{S}^{\text{corners}}$
- 3. Use dynamic programming to find the minimum star partition

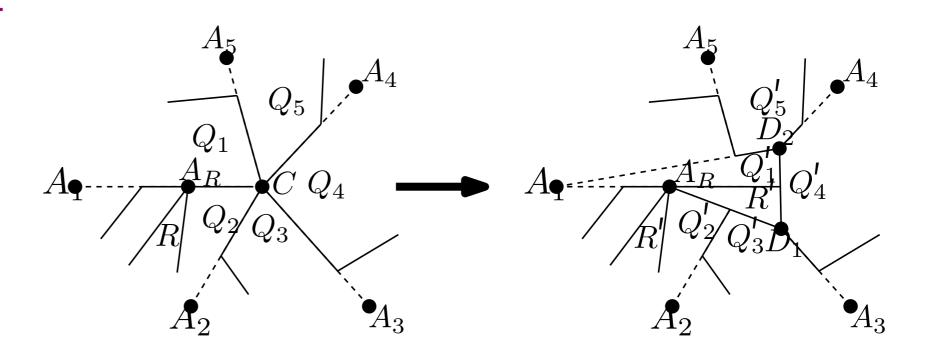
Kind of straightforward...

- 1. Find small set of potential star-centers: S^{centers}
- 2. Find small set of potential "corner" points: S^{corners}
- 3. Use dynamic programming to find the minimum star partition

Kind of straightforward...

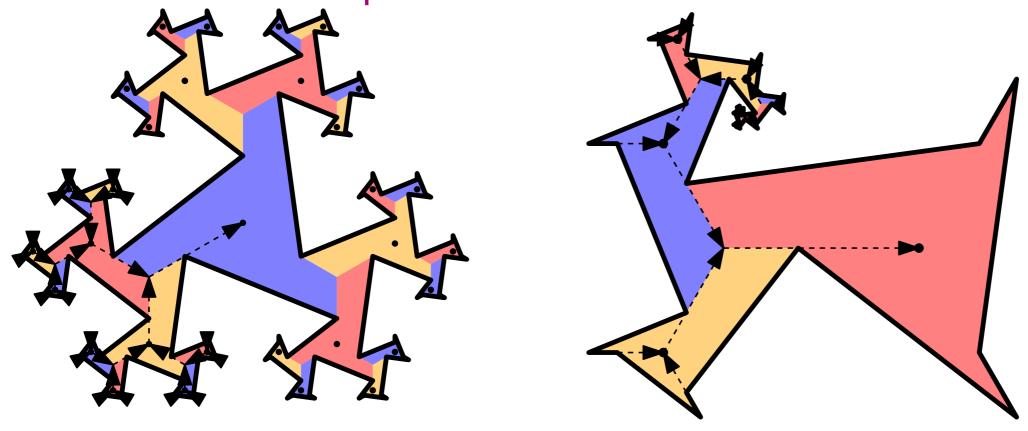
By case analysis...

```
\{r_1, \dots, r_i\} \setminus \{r_j, r_m\} if such a Case 2.2.2.1: U does no Case 2.2.2.1.1: j = 1. He Case 2.2.2.1.2: m = 1. He Case 2.2.2.1.3: 1 \neq j and Case 2.2.2.2: Q_1 has lower of U increase.
```



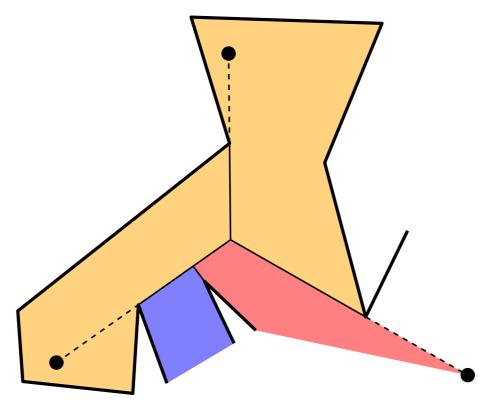
1. Find small set of potential star-centers: S^{centers}

1. Find small set of potential star-centers: $\boldsymbol{S}^{\text{centers}}$



Ingredient 1: "Tripods" form rooted trees

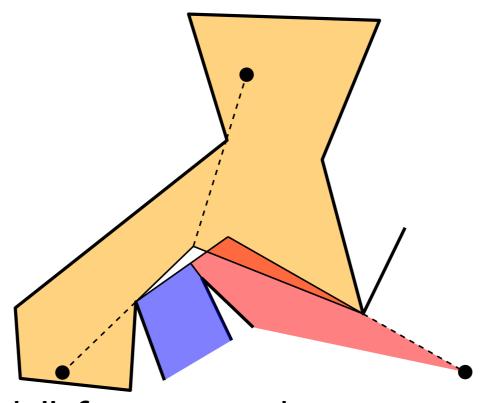
1. Find small set of potential star-centers: $\boldsymbol{S}^{\text{centers}}$



Ingredient 1: "Tripods" form rooted trees

Ingredient 2: "Greedy Choice"

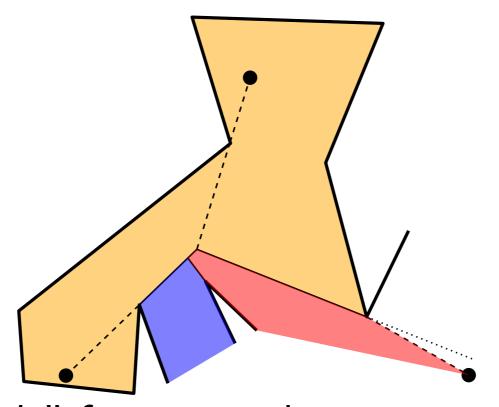
1. Find small set of potential star-centers: $\boldsymbol{S}^{\text{centers}}$



Ingredient 1: "Tripods" form rooted trees

Ingredient 2: "Greedy Choice"

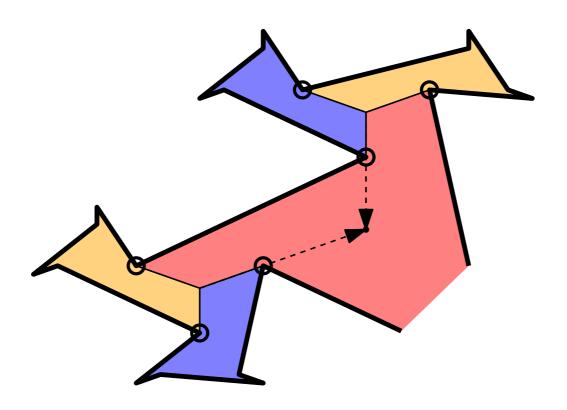
1. Find small set of potential star-centers: $\boldsymbol{S}^{\text{centers}}$



Ingredient 1: "Tripods" form rooted trees

Ingredient 2: "Greedy Choice"

1. Find small set of potential star-centers: S^{centers}



 $O(n^6)$ candidate star-centers

Ingredient 1: "Tripods" form rooted trees

Ingredient 2: "Greedy Choice"

Ingredient 3: Bootstrap whole algorithm on smaller polygons

Our Main Result:

Minimum Star Partition of Simple Polygons in $O(n^{107})$ time

Our Main Result:

Minimum Star Partition of Simple Polygons in $O(n^{107})$ time

Techniques:

Structural Properties of Optimial Solutions + DP

Our Main Result:

Minimum Star Partition of Simple Polygons in $O(n^{107})$ time

Techniques:

Structural Properties of Optimial Solutions + DP

Open Problems:

Triangle Partition?

Spiral Partition?

Fast (linear/quadratic) Approximation Algorithm?

3D?

Our Main Result:

Minimum Star Partition of Simple Polygons in $O(n^{107})$ time

Techniques:

Structural Properties of Optimial Solutions + DP

Open Problems:

Triangle Partition?

Spiral Partition?

Fast (linear/quadratic) Approximation Algorithm?

3D?

Thanks!