
TCS+ talk, fall 2022

Joakim Blikstad
KTH Royal Institute of Technology

Nearly Optimal Communication and
Query Complexity of Bipartite Matching

(P)
(Q)

y

Joint work with: Jan van den Brand, Yuval Efron,
Danupon Nanongkai, and Sagnik Mukhopadhyay.

To appear in FOCS’22

⋅

Biparite Matching

Given: Graph G = (L ∪R,E) with ∣L∣ = ∣R∣ = n, ∣E∣ = m

Goal: Find a maximum matching M ⊆ E of G

L R

⋅

Biparite Matching

Given: Graph G = (L ∪R,E) with ∣L∣ = ∣R∣ = n, ∣E∣ = m

Goal: Find a maximum matching M ⊆ E of G

L R

⋅

Biparite Matching

Given: Graph G = (L ∪R,E) with ∣L∣ = ∣R∣ = n, ∣E∣ = m

Goal: Find a maximum matching M ⊆ E of G

L R

Solve (sequentially) in:
Õ(m + n

√
n) [vdBLNPSSSW’20]

O(m1+o(1)) [CKLPGS’22]

⋅

Two-Party Communication Model
Alice Bob

EA EB

⋅

Two-Party Communication Model
Alice Bob

EA EBE = EA ∪ EB

Goal: Solve matching on the union of their graphs

⋅

Two-Party Communication Model
Alice Bob

EA EBE = EA ∪ EB

Goal: Solve matching on the union of their graphs

⋅

Two-Party Communication Model
Alice Bob

EA EB

Goal: Solve matching on the union of their graphs

With as few bits of communication!

Send messages

⋅

Two-Party Communication Model
Alice Bob

EA EB

Goal: Solve matching on the union of their graphs

With as few bits of communication!

Send messages

⋅

Two-Party Communication Model
Alice Bob

EA EB

Goal: Solve matching on the union of their graphs

With as few bits of communication!

Send messages

⋅

Two-Party Communication Model
Alice Bob

EA EB

Goal: Solve matching on the union of their graphs

With as few bits of communication!

Send messages

Note: Do not care about internal running time

⋅

First tries — Upper Bounds
Alice Bob

EA EB

⋅

First tries — Upper Bounds
Alice Bob

EA EB

Sending an edge: O(log n) bits

⋅

First tries — Upper Bounds
Alice Bob

EA EB

Trivial Protocol:
Alice sends all her edges to Bob:

O(m log n)
O(n2)

Sending an edge: O(log n) bits

⋅

First tries — Upper Bounds
Alice Bob

EA EB

Trivial Protocol:
Alice sends all her edges to Bob:

O(m log n)
O(n2)

Hopcroft-Karp: (Blocking-Flow)
Sequential: O(m√

n) running time

Sending an edge: O(log n) bits

⋅

First tries — Upper Bounds
Alice Bob

EA EB

Trivial Protocol:
Alice sends all her edges to Bob:

O(m log n)
O(n2)

Hopcroft-Karp: (Blocking-Flow)
Sequential: O(m√

n) running time
Communication: O(n√n log n) bits

Sending an edge: O(log n) bits

⋅

First tries — Upper Bounds
Alice Bob

EA EB

Trivial Protocol:
Alice sends all her edges to Bob:

O(m log n)
O(n2)

Hopcroft-Karp: (Blocking-Flow)
Sequential: O(m√

n) running time
Communication: O(n√n log n) bits

Idea: BFS / DFS need only O(n log n) bits of communication

Sending an edge: O(log n) bits

⋅

First tries — Upper Bounds
Alice Bob

EA EB

Trivial Protocol:
Alice sends all her edges to Bob:

O(m log n)
O(n2)

Hopcroft-Karp: (Blocking-Flow)
Sequential: O(m√

n) running time
Communication: O(n√n log n) bits

Idea: BFS / DFS need only O(n log n) bits of communication

Sending an edge: O(log n) bits

Converting O(m1+o(1)) sequential ⟶ O(n1+o(1)) communication seems difficult

⋅

Lower Bounds
Alice Bob

EA EB

⋅

Lower Bounds
Alice Bob

EA EB

If Bob needs to output the matching:
Ω(n log n) bits lower bound

⋅

Lower Bounds
Alice Bob

EA EB

If Bob needs to output the matching:
Ω(n log n) bits lower bound

Theorem: [HMT’88]
Ω(n log n) bits are needed to output the size of the maximum matching

↑ only deterministic
Ω(n) randomized

O(n√n log n)Ω(n log n)
Major Question†: What is the Communication

Complexity of Bipartite Matching?

†[Hajnal, Maass, Turan STOC’88];[Ivanyos, Klauck, Lee, Santha, de Wolf FSTTCS’12]; [Dobzinski,
Nisan, Oren STOC’14]; [Nisan SODA’21]; [Beniamini, Nisan STOC’21]; [Zhang ICALP’04]

O(n√n log n)Ω(n log n)
Major Question†: What is the Communication

Complexity of Bipartite Matching?
Main Result:
One can solve bipartite matching in O(n log

2
n) bits of communication.

†[Hajnal, Maass, Turan STOC’88];[Ivanyos, Klauck, Lee, Santha, de Wolf FSTTCS’12]; [Dobzinski,
Nisan, Oren STOC’14]; [Nisan SODA’21]; [Beniamini, Nisan STOC’21]; [Zhang ICALP’04]

O(n√n log n)Ω(n log n)
Major Question†: What is the Communication

Complexity of Bipartite Matching?
Main Result:
One can solve bipartite matching in O(n log

2
n) bits of communication.

Highlights:
Follow from simple applications of known techniques (cutting planes method)
Very slow runtime, but efficient communication
Only “finds” O(n log n) edges

†[Hajnal, Maass, Turan STOC’88];[Ivanyos, Klauck, Lee, Santha, de Wolf FSTTCS’12]; [Dobzinski,
Nisan, Oren STOC’14]; [Nisan SODA’21]; [Beniamini, Nisan STOC’21]; [Zhang ICALP’04]

⋅

Query Models

L R

Hidden biparite graph G = (L ∪R,E)

⋅

Query Models

L R

Hidden biparite graph G = (L ∪R,E)

⋅

Query Models

L R

Hidden biparite graph G = (L ∪R,E)
Query access:

⋅

Query Models

L R

Hidden biparite graph G = (L ∪R,E)
Query access:

Edge-Query: “Is (u, v) ∈ E?”
u

v“NO”

⋅

Query Models

L R

Hidden biparite graph G = (L ∪R,E)
Query access:

Edge-Query: “Is (u, v) ∈ E?”
u

v“NO”

⋅

Query Models

L R

Hidden biparite graph G = (L ∪R,E)
Query access:

Edge-Query: “Is (u, v) ∈ E?”
OR-Query: “Is ∣S ∩ E∣ ≥ 1?”
XOR-Query: “Is ∣S ∩ E∣ odd?”
AND-Query: “Is ∣S ∩ E∣ = |S|”

(S ⊆ L ×R)

“YES”

“YES”

“NO”
“NO”

⋅

Query Models

L R

Hidden biparite graph G = (L ∪R,E)
Query access:

Edge-Query: “Is (u, v) ∈ E?”
OR-Query: “Is ∣S ∩ E∣ ≥ 1?”
XOR-Query: “Is ∣S ∩ E∣ odd?”
AND-Query: “Is ∣S ∩ E∣ = |S|”

(S ⊆ L ×R)

“YES”

“YES”

“NO”
“NO”

⋅

Query Models

L R

Hidden biparite graph G = (L ∪R,E)
Query access:

Edge-Query: “Is (u, v) ∈ E?”
OR-Query: “Is ∣S ∩ E∣ ≥ 1?”
XOR-Query: “Is ∣S ∩ E∣ odd?”
AND-Query: “Is ∣S ∩ E∣ = |S|”
Quantum-Edge-Query

⋅

Query Models

Hidden biparite graph G = (L ∪R,E)
Query access:

Edge-Query: “Is (u, v) ∈ E?”
OR-Query: “Is ∣S ∩ E∣ ≥ 1?”
XOR-Query: “Is ∣S ∩ E∣ odd?”
AND-Query: “Is ∣S ∩ E∣ = |S|”
Quantum-Edge-Query

Θ(n2)
Ω̃(n), Õ(n√n)
Deterministic:

Θ(n2)
Θ(n2)

—

Θ(n2)
Ω(n), Õ(n√n)
Randomized:

Ω(n), O(n2)Ω(n), Õ(n√n)
Ω̃(n√n), Õ(n7/4)

[Yao’88], [Zha’04], [DHHM’06], [IKLSdW’12], [LL’15], [BN’15], [Nis’15], [DNO’19], [Ben’22]

⋅

Query Models

Hidden biparite graph G = (L ∪R,E)
Query access:

Edge-Query: “Is (u, v) ∈ E?”
OR-Query: “Is ∣S ∩ E∣ ≥ 1?”
XOR-Query: “Is ∣S ∩ E∣ odd?”
AND-Query: “Is ∣S ∩ E∣ = |S|”
Quantum-Edge-Query

Θ(n2)
Θ̃(n)

Deterministic:

Θ(n2)
Θ(n2)

—

Θ(n2)
Θ̃(n)

Randomized:

Θ(n2)Θ̃(n)
Θ̃(n√n)

[Yao’88], [Zha’04], [DHHM’06], [IKLSdW’12], [LL’15], [BN’15], [Nis’15], [DNO’19], [Ben’22]

Green: new tight upper-bound!
Red: new tight lower-bound!

The Algorithms

⋅

Our Algorithms
Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP.

Think “Ellipsoid Method”

⋅

Our Algorithms
Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP.

[Vempala, Wang, Woodruff SODA’20]:
Solving general LPs in Communication Model with Cutting Planes:
Õ(dimension

3 ⋅#bits per constraint) communication

Think “Ellipsoid Method”

⋅

Our Algorithms
Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP.

[Vempala, Wang, Woodruff SODA’20]:
Solving general LPs in Communication Model with Cutting Planes:
Õ(dimension

3 ⋅#bits per constraint) communication

Crucial properties of Dual Vertex Cover LP:
Low dimension (n instead of m)
Constraints are “short” (low support = cheap to send)
Volume is small
. . . but not too small

Think “Ellipsoid Method”

⋅

Dual: Minimum Vertex Cover

Given: Graph G = (L ∪R,E) with ∣L∣ = ∣R∣ = n, ∣E∣ = m

Goal: Find smallest set C of vertices covering all edges

L R

⋅

Dual: Minimum Vertex Cover

Given: Graph G = (L ∪R,E) with ∣L∣ = ∣R∣ = n, ∣E∣ = m

Goal: Find smallest set C of vertices covering all edges

L R

⋅

Dual: Minimum Vertex Cover

Given: Graph G = (L ∪R,E) with ∣L∣ = ∣R∣ = n, ∣E∣ = m

Goal: Find smallest set C of vertices covering all edges

L R

Kőnig’s Theorem:∣max-matching∣ = ∣min-vertex cover∣
(in bipartite graphs!)

⋅

Dual: Minimum Vertex Cover

Given: Graph G = (L ∪R,E) with ∣L∣ = ∣R∣ = n, ∣E∣ = m

Goal: Find smallest set C of vertices covering all edges

L R

Kőnig’s Theorem:∣max-matching∣ = ∣min-vertex cover∣
(in bipartite graphs!)

Def: Fractional vertex cover x:
xu + xv ≥ 1 for all edges (u, v)

0.5

0.50.5

0.8

0.8

0.8 0.2

0.2

0.2

0.2

⋅

Dual Linear Program: Minimum Vertex Cover

min ∑v∈V xv

s.t. xv + xu ≥ 1 ∀(u, v) ∈ E

0 ≤ x ≤ 1
(P)

⋅

Dual Linear Program: Minimum Vertex Cover

min ∑v∈V xv

s.t. xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

(P)

⋅

Dual Linear Program: Minimum Vertex Cover

∑v∈V xv ≤ n − 1

xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1(P) feasible ⟺ No perfect matching exists

(P)

⋅

Dual Linear Program: Minimum Vertex Cover

(P) feasible ⟺ No perfect matching exists

∑v∈V xv ≤ n − 1

2

xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

(P)
(P) feasible ⟹ Vol(P) ≥ (1

20n
)5n

⋅

Cutting Planes Method

Separation Oracle:
Given y ∈ Rn, return either:

“y is in (P)”
Violated hyperplane: “c⊤x ≤ d”

valid for all x ∈ (P)
not valid for y

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

(Q)

(P)

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)

Separation Oracle

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

(Q) Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)

Separation Oracle

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

(Q) Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

Separation Oracle

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

(Q) Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Separation Oracle

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

Separation Oracle

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

3. Repeat!

Separation Oracle

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

3. Repeat!

Separation Oracle

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

3. Repeat!

Separation Oracle

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

y

3. Repeat!

Separation Oracle

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

(P)

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

y

3. Repeat!

Separation Oracle

⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

Goal: Find point in unknown polytope (P)
Given: (Q) containing (P)
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction

3. Repeat!

#P -hard to compute
We don’t care!

Separation Oracle

⋅

Cutting Planes for Biparite Matching

∑v∈V xv ≤ n − 1
2

xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

(P)
Alice Bob

EA EB

∑v∈V xv ≤ n − 1
2

0 ≤ x ≤ 1

(Q)
Common

ECommon

⋅

Cutting Planes for Biparite Matching

∑v∈V xv ≤ n − 1
2

xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

(P)
Alice Bob

EA EB

∑v∈V xv ≤ n − 1
2

0 ≤ x ≤ 1

(Q)
Common

ECommon

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

⋅

Cutting Planes for Biparite Matching

∑v∈V xv ≤ n − 1
2

xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

(P)
Alice Bob

EA EB

∑v∈V xv ≤ n − 1
2

0 ≤ x ≤ 1

(Q)
Common

ECommon

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

xv + xu ≥ 1 ∀(u, v) ∈ ECommon

⋅

Cutting Planes for Biparite Matching

∑v∈V xv ≤ n − 1
2

xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

(P)
Alice Bob

EA EB

∑v∈V xv ≤ n − 1
2

0 ≤ x ≤ 1

(Q)
Common

ECommon

xv + xu ≥ 1 ∀(u, v) ∈ ECommon

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.650.65

⋅

Cutting Planes for Biparite Matching

∑v∈V xv ≤ n − 1
2

xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

(P)
Alice Bob

EA EB

∑v∈V xv ≤ n − 1
2

0 ≤ x ≤ 1

(Q)
Common

ECommon

xv + xu ≥ 1 ∀(u, v) ∈ ECommon

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.650.65

⋅

Cutting Planes for Biparite Matching

∑v∈V xv ≤ n − 1
2

xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

(P)
Alice Bob

EA EB

∑v∈V xv ≤ n − 1
2

0 ≤ x ≤ 1

(Q)
Common

ECommon

xv + xu ≥ 1 ∀(u, v) ∈ ECommon

0.3

0.6

0.3

0.3

0.3

0.6

0.3

0.3

0.60.6

⋅

Cutting Planes for Biparite Matching

∑v∈V xv ≤ n − 1
2

xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

(P)
Alice Bob

EA EB

∑v∈V xv ≤ n − 1
2

0 ≤ x ≤ 1

(Q)
Common

ECommon

xv + xu ≥ 1 ∀(u, v) ∈ ECommon

0.3

0.6

0.3

0.3

0.3

0.6

0.3

0.3

0.60.6

⋅

Algorithm

Ecommon = ∅, Q = {x ∈ [0, 1]V ∶ ∑xv ≤ n − 1
2
}

While vol(Q) > 0:
Let c = center-of-gravity(Q) “fractional vertex cover”
If either Alice or Bob have an edge (u, v) violating c:
add it to Ecommon and add “xv + xu ≥ 1” to (Q)
If not, return c as a fractional vertex cover

Ecommon must now contain a perfect matching.

⋅

OR-Query Algorithm

Ecommon = ∅, Q = {x ∈ [0, 1]V ∶ ∑xv ≤ n − 1
2
}

While vol(Q) > 0:
Let c = center-of-gravity(Q) “fractional vertex cover”
If either Alice or Bob have an edge (u, v) violating c:
add it to Ecommon and add “xv + xu ≥ 1” to (Q)
If not, return c as a fractional vertex cover

Ecommon must now contain a perfect matching.

⋅

OR-Query Algorithm

Ecommon = ∅, Q = {x ∈ [0, 1]V ∶ ∑xv ≤ n − 1
2
}

While vol(Q) > 0:
Let c = center-of-gravity(Q) “fractional vertex cover”
If either Alice or Bob have an edge (u, v) violating c:
add it to Ecommon and add “xv + xu ≥ 1” to (Q)
If not, return c as a fractional vertex cover

Ecommon must now contain a perfect matching.

⋅

OR-Query Algorithm

Ecommon = ∅, Q = {x ∈ [0, 1]V ∶ ∑xv ≤ n − 1
2
}

While vol(Q) > 0:
Let c = center-of-gravity(Q) “fractional vertex cover”
If either Alice or Bob have an edge (u, v) violating c:
add it to Ecommon and add “xv + xu ≥ 1” to (Q)
If not, return c as a fractional vertex cover

Ecommon must now contain a perfect matching.

Binary search with OR-queries to find violated edge in
S = {(u, v) ∈ L ×R ∶ cu + cv < 1}

⋅

Analysis

Violated constraint “xv + xu ≥ 1” corresponds to edges. ⟹ O(log n) bits

⋅

Analysis

Violated constraint “xv + xu ≥ 1” corresponds to edges. ⟹ O(log n) bits

Terminates when either:
Fractional vertex cover of size < n is found. ⟹ no perfect matching!(Q) becomes empty. ⟹ perfect matching!

⋅

Analysis

Violated constraint “xv + xu ≥ 1” corresponds to edges. ⟹ O(log n) bits

Terminates when either:
Fractional vertex cover of size < n is found. ⟹ no perfect matching!(Q) becomes empty. ⟹ perfect matching!

Volume:
Initially ≤ 1 (contained in [0, 1]2n).
Always ≥ (1

20n
)5n whenever (Q) is non-empty.

⟹ O(n log n) iterations

⋅

Analysis

Violated constraint “xv + xu ≥ 1” corresponds to edges. ⟹ O(log n) bits

Terminates when either:
Fractional vertex cover of size < n is found. ⟹ no perfect matching!(Q) becomes empty. ⟹ perfect matching!

Volume:
Initially ≤ 1 (contained in [0, 1]2n).
Always ≥ (1

20n
)5n whenever (Q) is non-empty.

⟹ O(n log n) iterations

Main Result:
One can solve bipartite matching in O(n log

2
n) bits of communication.

Extensions

⋅

Weights and Demands!

min ∑v∈V xv

s.t. xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

⋅

Weights and Demands!

min ∑v∈V bvxv

s.t. xv + xu ≥ cuv ∀(u, v) ∈ EA

xv + xu ≥ cuv ∀(u, v) ∈ EB

0 ≤ x ≤ W

W ∶= max{∣cuv∣, ∣bv∣, 1}
Maximum-cost b-matching

3 2

21

-100

105

5

⋅

Weights and Demands!

min ∑v∈V bvxv

s.t. xv + xu ≥ cuv ∀(u, v) ∈ EA

xv + xu ≥ cuv ∀(u, v) ∈ EB

0 ≤ x ≤ W

W ∶= max{∣cuv∣, ∣bv∣, 1}
Maximum-cost b-matching

3 2

21

-100

105

5

×1×2

⋅

Other (Equivalent & Weaker) Problems

Maximum-cost bipartite perfect b-matching
Maximum-cost bipartite b-matching
Vertex-capacitated minimum-cost (s, t)-flow
Transshipment
Negative-weight single source shortest path
Minimum mean cycle

Theorem:
If weights/costs/capacities/demands are poly(n), then we can solve
the following using O(n log

2
n) communication:

⋅

Other (Equivalent & Weaker) Problems

Maximum-cost bipartite perfect b-matching
Maximum-cost bipartite b-matching
Vertex-capacitated minimum-cost (s, t)-flow
Transshipment
Negative-weight single source shortest path
Minimum mean cycle

Theorem:
If weights/costs/capacities/demands are poly(n), then we can solve
the following using O(n log

2
n) communication:

Note: All these have O(n) edges in their answer!

⋅

Query Lower-Bounds
AND-query S ={(u, v) ∈ L ×R}:
“Is ∣S ∩ E∣ = ∣S∣ ?”

⋅

Query Lower-Bounds

Alice Bob

EA EBE = EA ∪ EB

AND-query S ={(u, v) ∈ L ×R}:
“Is ∣S ∩ E∣ = ∣S∣ ?”

⋅

Query Lower-Bounds

Alice Bob

EA EB

AND-query S ={(u, v) ∈ L ×R}:
“Is ∣S ∩ E∣ = ∣S∣ ?”

E = EA ∩ EB

AND-query algorithm ⟹
communication protocol on
intersection graph

⋅

Query Lower-Bounds
AND-query S ={(u, v) ∈ L ×R}:
“Is ∣S ∩ E∣ = ∣S∣ ?”

⋅

Query Lower-Bounds
AND-query S ={(u, v) ∈ L ×R}:
“Is ∣S ∩ E∣ = ∣S∣ ?”

Perfect matching ⟺ edges intersect
Set-Intersection on ≈ n

2 bits. Needs Ω(n2) communication!

⋅

Summary — Results

Open Problems :)

⋅

Open Problem — Round vs Communication Tradeoff
Restricting the #rounds:

Streaming
Distributed
MPC
. . .

Rounds Communication
1 Θ(n2)
O(n log n) O(n log

2
n)

trivial:

cutting-planes:
? ?

⋅

Open Problem — Approximation
Finding an α-approximation instead? (size version)

Approximation Communication
1 O(n log

2
n)

2 O(log n)? ?

⋅

Open Problems — General Matching
Communication and Query complexity of General Matching?

Interplay between general and bipartite matching unclear. . .
Optimal fractional matching by same approach.
Answer also has only O(n) edges.
Unwieldy Linear Program. . .

⋅

Open Problems — Max Flow
Communication and Query complexity of s,t-(min-cost)-max-flow?

Both the dual & primal have ≈ n
2 variables

Answer may include all ≈ n
2 edges

Nondeterministic (certificate) complexity are still low: Õ(n)
s

t

⋅

Open Problems

Rounds vs Communication tradeoff
Approximate bipartite matching
Communication complexity of other problems?

General Matching
Max flow
Matroid intersection
. . .

Other query models, e.g. demand queries (one-sided OR)
Multiparty communication
. . . Thanks!

