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Biparite Matching

Given: Graph G = (LU R, E) with |L| = |R| =n, |E| =m

Goal: Find a maximum matching \/ € E of G
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Solve (sequentially) in:
B O(m + ny/n) [vdBLNPSSSW'20] T

2 O(m' ™M) [CKLPGS'22]
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Two-Party Communication Model
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Goal: Solve matching on the union of their graphs

With as few bits of communication!

Note: Do not care about internal running time
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First tries — Upper Bounds

" : : Alice Bob
Sending an edge: O(logn) bits .\:
Trivial Protocol: ®
Alice sends all her edges to Bob: - > : ~e

® O(mlogn) ®
= O(n") ° Z
EA EB

Hopcroft-Karp: (Blocking-Flow)
m Sequential: O(m+/n) running time
® Communication: O(n+y/nlogn) bits

Idea: BFS / DFS need only O(nlogn) bits of communication

Converting O(m* ") sequential — O(n'**™") communication seems difficult
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Lower Bounds

Alice Bob
If Bob needs to output the matching: ¢ 9
(A(nlogn) bits lower bound e o

/%

B4 Ep

Theorem: [HMT'88]
(2(nlogn) bits are needed to output the size of the maximum matching

T only deterministic

(2(n) randomized



Q(nlogn) O(n+y/nlogn)
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Q(nlogn) O(n+/nlogn)
Major Question': What is the Communication
Complexity of Bipartite Matching?

Main Result:
One can solve bipartite matching in O(nlog” n) bits of communication.

Highlights:

m Follow from simple applications of known techniques (cutting planes method)
®m Very slow runtime, but efficient communication

®m Only “finds” O(nlogn) edges

T[Hajnal, Maass, Turan STOC'88];[lvanyos, Klauck, Lee, Santha, de Wolf FSTTCS'12]; [Dobzinski,
Nisan, Oren STOC'14]; [Nisan SODA’21]; [Beniamini, Nisan STOC'21]; [Zhang ICALP’04]
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Query Models

m Hidden biparite graph G = (LU R, F)

® Query access: Deterministic: Randomized:
s Edge-Query: “Is (u,v) € E?” O(n”) O(n°)
s OR-Query: “Is [SNn E| = 17" Q(n), O(nyn) Q(n), O(nyn)
s XOR-Query: “Is |S N E| odd?” O(n°) Q(n), O(nyn)
s AND-Query: “Is |Sn E| = |S]|” O(n”) Q(n),0(n”)
» Quantum-Edge-Query — Q(n\/ﬁ),é(n7/4)

[Ya0'88], [Zha'04], [DHHM'06], [IKLSdW'12], [LL'15], [BN'15], [Nis'15], [DNO'19], [Ben'22]



Query Models

m Hidden biparite graph G = (LU R, F)

® Query access: Deterministic: Randomized:
s Edge-Query: “Is (u,v) € E?" @(nQ) @(nQ)
s OR-Query: “Is |SNn E| = 17" O(n) O(n)
s XOR-Query: “Is |S N E| odd?” @(nz) O(n)
s AND-Query: “Is [Sn E| = |S|" O(n”) O(n°)

» Quantum-Edge-Query O(nyn)

Green: new tight upper-bound!
Red: new tight lower-bound!

[Ya0'88], [Zha'04], [DHHM'06], [IKLSdW'12], [LL'15], [BN'15], [Nis'15], [DNO'19], [Ben'22]
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Our Algorithms

Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP.
Think “Ellipsoid Method”

m [Vempala, Wang, Woodruff SODA20]:

Solving general LPs in Communication Model with Cutting Planes:
O(dimension3 - #bits per constraint) communication

m Crucial properties of Dual Vertex Cover LP:
» Low dimension (n instead of m)
» Constraints are “short” (low support = cheap to send)
» Volume is small
= ... but not too small
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Dual: Minimum Vertex Cover

Given: Graph G = (LU R, E) with |L| = |R| =n, |E| =m

Goal: Find smallest set (' of vertices covering all edges
0.5 0.5

Konig's Theorem:

|max-matching| = |min-vertex cover 7, 02 0.8 R
(in bipartite graphs!)

0.8 0.2

Def: Fractional vertex cover z: 08
r, + x, = 1 for all edges (u,v)

0.2

N\




Dual Linear Program: Minimum Vertex Cover
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m (P) feasible &< No perfect matching exists



Dual Linear Program: Minimum Vertex Cover

ZUEV'CE’U STL—%
r,+x,=1 VY(u,v)€ Ey
T, +x, =1 VY(u,v) € Ejg

O<zx<1

m (P) feasible &< No perfect matching exists

m (P) feasible = Vol(P) > (L>5n

20N

(P)



Cutting Planes Method

Separation Oracle:

Given y € R", return either:
“yisin (P)"
Violated hyperplane: ‘o' <d

valid for all x € (P)
not valid for y
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Center-of-gravity Cutting Planes [Levin'65] [Newman'65]

Goal: Find point in unknown polytope (P)

Given: (()) containing (P)
Separation Oracle

# P-hard to compute 2dz

We don’t carel > 1. Picky = IJQ o = center-of-gravity of (Q))
Q

2. Call separation oracle and update (Q)

Lemma: [Griinbaum]
Vol((Q) decreases by a (1 — %)-fraction

3. Repeat!
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Cutting Planes for Biparite Matching

1

Zvev%sn_% (Q) Z%V%Sn—i (p)
Ty +x, =21 V(u,v) € E4y
Ty +x, =21 V(u,v) € FEp

Alice Common Bob

EA ECOmmon
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Cutting Planes for Biparite Matching

1 1

Zve\/wv =n-3 (Q) Z’UEV:BU =n—g (P)
Ty + 1,21 Y(u,v) € Ey

Ly T Ty 2 1 V(U,,’U) € ECommon
Ty +x, =21 V(u,v) € FEp

Alice Common Bob

° ° .06 ©06 | o
: 0.6 © @ 0.6 :\0
Ep

o . 03e ®03

o . 03e 03

EA ECOmmon



Algorithm

.EcommOTL:@? Qz{xe[()?]‘]vzzajvsn_%}
® While vol(Q) > O:

» Let ¢ = center-of-gravity(())  “fractional vertex cover”

» If either Alice or Bob have an edge (u,v) violating c:
add it to E.,mon and add “z, + z, = 1" to (Q)

m If not, return c as a fractional vertex cover

® F.,mmon Must now contain a perfect matching.
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OR-Query Algorithm

.EcommOTL:@? Qz{xe[()?]‘]vzzajvsn_%}
® While vol(Q) > 0:

» Let ¢ = center-of-gravity(())  “fractional vertex cover”

» Binary search with OR-queries to find violated edge in
S={(u,v) ELXR:c, +c, <1}

m If not, return c as a fractional vertex cover

® F.,mnmon Must now contain a perfect matching.
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Analysis

®» Violated constraint “z, + x, = 1" corresponds to edges. = O(logn) bits

® Terminates when either:

» Fractional vertex cover of size < n is found. — no perfect matching!
® (()) becomes empty. — perfect matching!
® Volume:

= Initially < 1 (contained in [0, 1]2n).

51
» Always > (20%”) whenever (()) is non-empty.

= (O(nlogn) iterations

Main Result:
One can solve bipartite matching in O(nlog2 n) bits of communication.
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Weights and Demands!

min ZUEV Ly
st. x,+x,=21 V(u,v)€E,
r,+x,=1 VY(u,v)€ Ejg

O<x<1



Weights and Demands!

min ) _, bz,
s.t. x,+tx,=cCy,
T, + Ty = Cyy
O<z<W
s W = max{|cy, [by], 1}

» Maximum-cost b-matching

V(u,v) € Ey
V(u,v) € Ep

-100

10




Weights and Demands!

min ) _, bz,

st. x,+x,=c, V(uv) € Ey

T, + Ty =Cyy Y(u,v) € Ejp

O<z<W

s W= max{|cyul, |by], 1}

» Maximum-cost b-matching




Other (Equivalent & Weaker) Problems

Theorem:
If weights/costs/capacities/demands are poly(n), then we can solve

the following using O(nlog2 n) communication:

» Maximum-cost bipartite perfect b-matching

m Maximum-cost bipartite b-matching

m Vertex-capacitated minimum-cost (s, ¢)-flow
m Transshipment

= Negative-weight single source shortest path

® Minimum mean cycle



Other (Equivalent & Weaker) Problems

Theorem:
If weights/costs/capacities/demands are poly(n), then we can solve

the following using O(nlog2 n) communication:

» Maximum-cost bipartite perfect b-matching

m Maximum-cost bipartite b-matching

m Vertex-capacitated minimum-cost (s, ¢)-flow
m Transshipment

= Negative-weight single source shortest path

® Minimum mean cycle

Note: All these have O(n) edges in their answer!



m AND-query S ={(u,v) € L X R}:
“Is |SnE|=|S|7?"



Query Lower-Bounds

® AND-query S ={(u,v) € L X R}:
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Query Lower-Bounds

® AND-query S ={(u,v) € L X R}:

“Is |SnE| =|S|?"

® AND-query algorithm =—
communication protocol on
intersection graph

Alice

E 4

0

E=EAOEB

Bob

Ep
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® AND-query S ={(u,v) € L X R}:
“Is |SnE|=|S|7?"




Query Lower-Bounds

® AND-query S ={(u,v) € L X R}:
“Is |SnE|=|S|7?"

m Perfect matching < edges intersect
m Set-Intersection on = n° bits. Needs Q(n2) communication!



Summary — Results

Models Previous papers This paper
Lower bounds Upper bounds
‘Two-party communication ng(g I'r{z;lrgiét O(n1°5) O(nlog®n), Det
patty S ’ [DNO19, IKL*12] Theorem 1.1
Footnote 1 and 2
Q(n1‘5) O(’nl'75) O(n1‘5)
Quantum edge query Zha04, Ben22b] LL15) Theorem 1.3
query [Bi o] ) [Nis21] Theorem 1.3
(2(n) Rand O(n'®) Rand O(nlog®n), Rand
XOR-query ((n?) Det [BN21] | Lemma 2.14 and [Nis21] | Theorem 1.3
2(n) Rand, O(n?) Q(n?), Rand
AND-query Q(n?) Det [BN21] Trivial Theorem 1.3




Open Problems :)



Open Problem — Round vs Communication Tradeoff

®m Restricting the #rounds:

» Streaming

» Distributed

s MPC
| ...
Rounds Communication
trivial: 1 O(n°)
? ?

cutting-planes:  O(nlogn) O(nlog” n)



Open Problem — Approximation

® Finding an a-approximation instead? (size version)

Approximation Communication
1 O(nlog”n)
? ?

2 O(logn)



Open Problems — General Matching

m Communication and Query complexity of General Matching?

m Interplay between general and bipartite matching unclear. ..
» Optimal fractional matching by same approach.
» Answer also has only O(n) edges.

= Unwieldy Linear Program...




Open Problems — Max Flow

m Communication and Query complexity of s,t-(min-cost)-max-flow?

= Both the dual & primal have = n’ variables
= Answer may include all = n’ edges

» Nondeterministic (certificate) complexity are still low: O(n)




Open Problems

® Rounds vs Communication tradeoff
® Approximate bipartite matching

® Communication complexity of other problems?
» General Matching
= Max flow
m Matroid intersection
o

m Other query models, e.g. demand queries (one-sided OR)

® Multiparty communication

Thanks!



