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Biparite Matching

Given: Graph G = (L ∪R,E) with ∣L∣ = ∣R∣ = n, ∣E∣ = m

Goal: Find a maximum matching M ⊆ E of G

L R

Solve (sequentially) in:
Õ(m + n

√
n) [vdBLNPSSSW’20]

O(m1+o(1)) [CKLPGS’22]
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Two-Party Communication Model
Alice Bob

EA EB

Goal: Solve matching on the union of their graphs

With as few bits of communication!

Send messages

Note: Do not care about internal running time



⋅

First tries — Upper Bounds
Alice Bob

EA EB



⋅

First tries — Upper Bounds
Alice Bob

EA EB

Sending an edge: O(log n) bits



⋅

First tries — Upper Bounds
Alice Bob

EA EB

Trivial Protocol:
Alice sends all her edges to Bob:

O(m log n)
O(n2)

Sending an edge: O(log n) bits



⋅

First tries — Upper Bounds
Alice Bob

EA EB

Trivial Protocol:
Alice sends all her edges to Bob:

O(m log n)
O(n2)

Hopcroft-Karp: (Blocking-Flow)
Sequential: O(m√

n) running time

Sending an edge: O(log n) bits



⋅

First tries — Upper Bounds
Alice Bob

EA EB

Trivial Protocol:
Alice sends all her edges to Bob:

O(m log n)
O(n2)

Hopcroft-Karp: (Blocking-Flow)
Sequential: O(m√

n) running time
Communication: O(n√n log n) bits

Sending an edge: O(log n) bits



⋅

First tries — Upper Bounds
Alice Bob

EA EB

Trivial Protocol:
Alice sends all her edges to Bob:

O(m log n)
O(n2)

Hopcroft-Karp: (Blocking-Flow)
Sequential: O(m√

n) running time
Communication: O(n√n log n) bits

Idea: BFS / DFS need only O(n log n) bits of communication

Sending an edge: O(log n) bits



⋅

First tries — Upper Bounds
Alice Bob

EA EB

Trivial Protocol:
Alice sends all her edges to Bob:

O(m log n)
O(n2)

Hopcroft-Karp: (Blocking-Flow)
Sequential: O(m√

n) running time
Communication: O(n√n log n) bits

Idea: BFS / DFS need only O(n log n) bits of communication

Sending an edge: O(log n) bits

Converting O(m1+o(1)) sequential ⟶ O(n1+o(1)) communication seems difficult
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Lower Bounds
Alice Bob

EA EB

If Bob needs to output the matching:
Ω(n log n) bits lower bound

Theorem: [HMT’88]
Ω(n log n) bits are needed to output the size of the maximum matching

↑ only deterministic
Ω(n) randomized
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O(n√n log n)Ω(n log n)
Major Question†: What is the Communication

Complexity of Bipartite Matching?
Main Result:
One can solve bipartite matching in O(n log

2
n) bits of communication.

Highlights:
Follow from simple applications of known techniques (cutting planes method)
Very slow runtime, but efficient communication
Only “finds” O(n log n) edges

†[Hajnal, Maass, Turan STOC’88];[Ivanyos, Klauck, Lee, Santha, de Wolf FSTTCS’12]; [Dobzinski,
Nisan, Oren STOC’14]; [Nisan SODA’21]; [Beniamini, Nisan STOC’21]; [Zhang ICALP’04]
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Hidden biparite graph G = (L ∪R,E)
Query access:

Edge-Query: “Is (u, v) ∈ E?”
OR-Query: “Is ∣S ∩ E∣ ≥ 1?”
XOR-Query: “Is ∣S ∩ E∣ odd?”
AND-Query: “Is ∣S ∩ E∣ = |S|”
Quantum-Edge-Query

Θ(n2)
Ω̃(n), Õ(n√n)
Deterministic:

Θ(n2)
Θ(n2)

—

Θ(n2)
Ω(n), Õ(n√n)
Randomized:

Ω(n), O(n2)Ω(n), Õ(n√n)
Ω̃(n√n), Õ(n7/4)
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Query Models

Hidden biparite graph G = (L ∪R,E)
Query access:

Edge-Query: “Is (u, v) ∈ E?”
OR-Query: “Is ∣S ∩ E∣ ≥ 1?”
XOR-Query: “Is ∣S ∩ E∣ odd?”
AND-Query: “Is ∣S ∩ E∣ = |S|”
Quantum-Edge-Query

Θ(n2)
Θ̃(n)

Deterministic:

Θ(n2)
Θ(n2)

—

Θ(n2)
Θ̃(n)

Randomized:

Θ(n2)Θ̃(n)
Θ̃(n√n)

[Yao’88], [Zha’04], [DHHM’06], [IKLSdW’12], [LL’15], [BN’15], [Nis’15], [DNO’19], [Ben’22]

Green: new tight upper-bound!
Red: new tight lower-bound!
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Our Algorithms
Key Idea: Apply Cutting Planes Method to the Dual Vertex Cover LP.

[Vempala, Wang, Woodruff SODA’20]:
Solving general LPs in Communication Model with Cutting Planes:
Õ(dimension

3 ⋅#bits per constraint) communication

Crucial properties of Dual Vertex Cover LP:
Low dimension (n instead of m)
Constraints are “short” (low support = cheap to send)
Volume is small
. . . but not too small

Think “Ellipsoid Method”
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Dual: Minimum Vertex Cover

Given: Graph G = (L ∪R,E) with ∣L∣ = ∣R∣ = n, ∣E∣ = m

Goal: Find smallest set C of vertices covering all edges

L R

Kőnig’s Theorem:∣max-matching∣ = ∣min-vertex cover∣
(in bipartite graphs!)

Def: Fractional vertex cover x:
xu + xv ≥ 1 for all edges (u, v)
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Dual Linear Program: Minimum Vertex Cover

(P ) feasible ⟺ No perfect matching exists

∑v∈V xv ≤ n − 1

2

xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1

(P )
(P ) feasible ⟹ Vol(P ) ≥ ( 1

20n
)5n
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Cutting Planes Method

Separation Oracle:
Given y ∈ Rn, return either:

“y is in (P )”
Violated hyperplane: “c⊤x ≤ d”

valid for all x ∈ (P )
not valid for y
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Given: (Q) containing (P )

Separation Oracle



⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

(Q) Goal: Find point in unknown polytope (P )
Given: (Q) containing (P )

Separation Oracle



⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

(Q) Goal: Find point in unknown polytope (P )
Given: (Q) containing (P )
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

Separation Oracle



⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

(Q) Goal: Find point in unknown polytope (P )
Given: (Q) containing (P )
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Separation Oracle



⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

Goal: Find point in unknown polytope (P )
Given: (Q) containing (P )
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

Separation Oracle



⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

Goal: Find point in unknown polytope (P )
Given: (Q) containing (P )
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

3. Repeat!

Separation Oracle



⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

Goal: Find point in unknown polytope (P )
Given: (Q) containing (P )
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

3. Repeat!

Separation Oracle



⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

y

Goal: Find point in unknown polytope (P )
Given: (Q) containing (P )
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

3. Repeat!

Separation Oracle



⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

Goal: Find point in unknown polytope (P )
Given: (Q) containing (P )
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

y

3. Repeat!

Separation Oracle



⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

(P )

Goal: Find point in unknown polytope (P )
Given: (Q) containing (P )
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction(Q)

y

3. Repeat!

Separation Oracle



⋅

Center-of-gravity Cutting Planes [Levin’65] [Newman’65]

Goal: Find point in unknown polytope (P )
Given: (Q) containing (P )
1. Pick y = ∫

Q
zdz

∫
Q

dz
= center-of-gravity of (Q)

2. Call separation oracle and update (Q)
Lemma: [Grünbaum]
Vol(Q) decreases by a (1 − 1

e
)-fraction

3. Repeat!

#P -hard to compute
We don’t care!

Separation Oracle
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Algorithm

Ecommon = ∅, Q = {x ∈ [0, 1]V ∶ ∑xv ≤ n − 1
2
}

While vol(Q) > 0:
Let c = center-of-gravity(Q) “fractional vertex cover”
If either Alice or Bob have an edge (u, v) violating c:
add it to Ecommon and add “xv + xu ≥ 1” to (Q)
If not, return c as a fractional vertex cover

Ecommon must now contain a perfect matching.
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OR-Query Algorithm

Ecommon = ∅, Q = {x ∈ [0, 1]V ∶ ∑xv ≤ n − 1
2
}

While vol(Q) > 0:
Let c = center-of-gravity(Q) “fractional vertex cover”
If either Alice or Bob have an edge (u, v) violating c:
add it to Ecommon and add “xv + xu ≥ 1” to (Q)
If not, return c as a fractional vertex cover

Ecommon must now contain a perfect matching.

Binary search with OR-queries to find violated edge in
S = {(u, v) ∈ L ×R ∶ cu + cv < 1}
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Analysis

Violated constraint “xv + xu ≥ 1” corresponds to edges. ⟹ O(log n) bits

Terminates when either:
Fractional vertex cover of size < n is found. ⟹ no perfect matching!(Q) becomes empty. ⟹ perfect matching!

Volume:
Initially ≤ 1 (contained in [0, 1]2n).
Always ≥ ( 1

20n
)5n whenever (Q) is non-empty.

⟹ O(n log n) iterations

Main Result:
One can solve bipartite matching in O(n log

2
n) bits of communication.
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Weights and Demands!

min ∑v∈V xv

s.t. xv + xu ≥ 1 ∀(u, v) ∈ EA

xv + xu ≥ 1 ∀(u, v) ∈ EB

0 ≤ x ≤ 1
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s.t. xv + xu ≥ cuv ∀(u, v) ∈ EA
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0 ≤ x ≤ W

W ∶= max{∣cuv∣, ∣bv∣, 1}
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Weights and Demands!

min ∑v∈V bvxv

s.t. xv + xu ≥ cuv ∀(u, v) ∈ EA

xv + xu ≥ cuv ∀(u, v) ∈ EB

0 ≤ x ≤ W

W ∶= max{∣cuv∣, ∣bv∣, 1}
Maximum-cost b-matching

3 2

21

-100

105

5

×1×2
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Other (Equivalent & Weaker) Problems

Maximum-cost bipartite perfect b-matching
Maximum-cost bipartite b-matching
Vertex-capacitated minimum-cost (s, t)-flow
Transshipment
Negative-weight single source shortest path
Minimum mean cycle

Theorem:
If weights/costs/capacities/demands are poly(n), then we can solve
the following using O(n log

2
n) communication:
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Other (Equivalent & Weaker) Problems

Maximum-cost bipartite perfect b-matching
Maximum-cost bipartite b-matching
Vertex-capacitated minimum-cost (s, t)-flow
Transshipment
Negative-weight single source shortest path
Minimum mean cycle

Theorem:
If weights/costs/capacities/demands are poly(n), then we can solve
the following using O(n log

2
n) communication:

Note: All these have O(n) edges in their answer!
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Query Lower-Bounds
AND-query S ={(u, v) ∈ L ×R}:
“Is ∣S ∩ E∣ = ∣S∣ ?”
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Alice Bob

EA EBE = EA ∪ EB
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Query Lower-Bounds

Alice Bob

EA EB

AND-query S ={(u, v) ∈ L ×R}:
“Is ∣S ∩ E∣ = ∣S∣ ?”

E = EA ∩ EB

AND-query algorithm ⟹
communication protocol on
intersection graph
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Query Lower-Bounds
AND-query S ={(u, v) ∈ L ×R}:
“Is ∣S ∩ E∣ = ∣S∣ ?”

Perfect matching ⟺ edges intersect
Set-Intersection on ≈ n

2 bits. Needs Ω(n2) communication!
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Summary — Results



Open Problems :)
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Open Problem — Round vs Communication Tradeoff
Restricting the #rounds:

Streaming
Distributed
MPC
. . .

Rounds Communication
1 Θ(n2)
O(n log n) O(n log

2
n)

trivial:

cutting-planes:
? ?
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Open Problem — Approximation
Finding an α-approximation instead? (size version)

Approximation Communication
1 O(n log

2
n)

2 O(log n)? ?
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Open Problems — General Matching
Communication and Query complexity of General Matching?

Interplay between general and bipartite matching unclear. . .
Optimal fractional matching by same approach.
Answer also has only O(n) edges.
Unwieldy Linear Program. . .
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Open Problems — Max Flow
Communication and Query complexity of s,t-(min-cost)-max-flow?

Both the dual & primal have ≈ n
2 variables

Answer may include all ≈ n
2 edges

Nondeterministic (certificate) complexity are still low: Õ(n)
s

t
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Open Problems

Rounds vs Communication tradeoff
Approximate bipartite matching
Communication complexity of other problems?

General Matching
Max flow
Matroid intersection
. . .

Other query models, e.g. demand queries (one-sided OR)
Multiparty communication
. . . Thanks!


