Online Edge Coloring: Sharp Thresholds

Joakim Blikstad

Ola Svensson

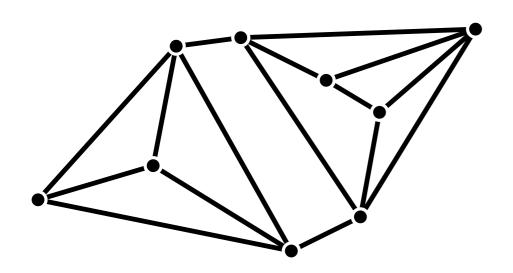
Radu Vintan

David Wajc

Given: Graph G = (V, E)

Goal: Color edges with few colors

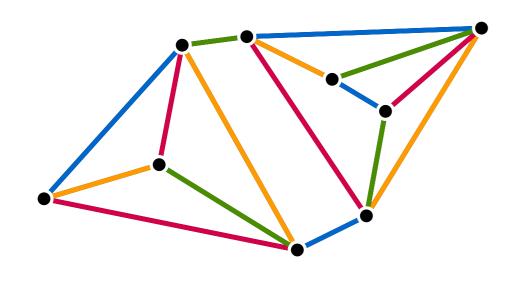
Constraint: No two incident edges get the same color



Given: Graph G = (V, E)

Goal: Color edges with few colors

Constraint: No two incident edges get the same color

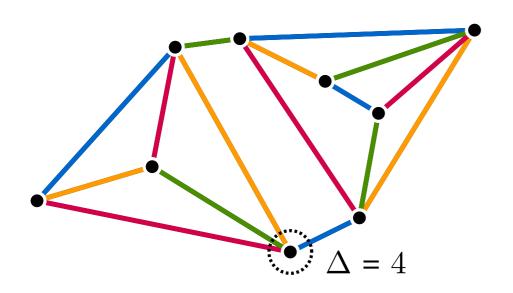


4 colors? Optimal?

Given: Graph G = (V, E)

Goal: Color edges with few colors

Constraint: No two incident edges get the same color



4 colors?

Optimal?

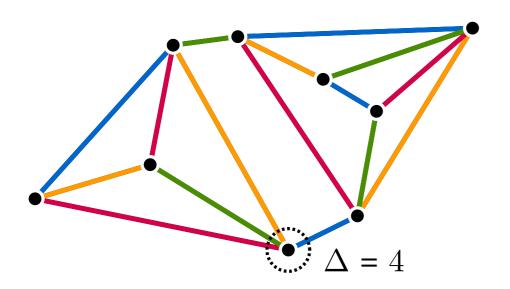
 $\Delta := \max_{v \in V} \deg(v)$

Claim: $\#Colors \ge \Delta$

Given: Graph G = (V, E)

Goal: Color edges with few colors

Constraint: No two incident edges get the same color



4 colors?

Optimal?

 $\Delta := \max_{v \in V} \deg(v)$

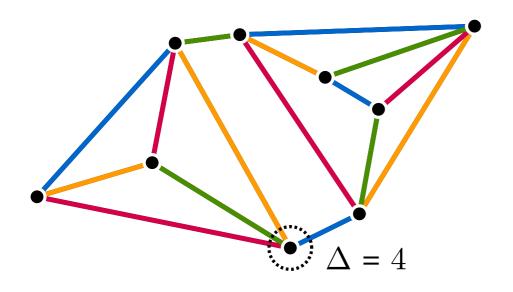
Claim: $\#Colors \ge \Delta$

Theorem: $\#\text{Colors} \leq \Delta + 1$ [Vizing 1964]

Given: Graph G = (V, E)

Goal: Color edges with few colors

Constraint: No two incident edges get the same color



4 colors?

Optimal?

 $\Delta := \max_{v \in V} \deg(v)$

Claim: $\#Colors \ge \Delta$

Theorem: $\#\text{Colors} \leq \Delta + 1$ [Vizing 1964]

Answer = Δ or $(\Delta + 1)$

NP-complete deciding which

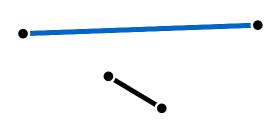
 $O(|E| \log |E|)$ time compute $\Delta + 1$ [ABBCSZ'25]

Online: Graph revealed over time: edge-by-edge. Max-degree Δ known.

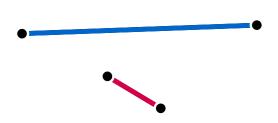
Online: Graph revealed over time: edge-by-edge. Max-degree Δ known.

Online: Graph revealed over time: edge-by-edge. Max-degree Δ known.

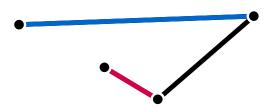
Online: Graph revealed over time: edge-by-edge. Max-degree Δ known.



Online: Graph revealed over time: edge-by-edge. Max-degree Δ known.



Online: Graph revealed over time: edge-by-edge. Max-degree Δ known.



Online: Graph revealed over time: edge-by-edge. Max-degree Δ known.

Online: Graph revealed over time: edge-by-edge. Max-degree Δ known.

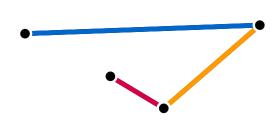
Task: Color edge *irrevocably* when it is revealed.

Two-Player Game:

- Adversary (reveals edges)
- Online Algorithm (colors edges)

Online: Graph revealed over time: edge-by-edge. Max-degree Δ known.

Task: Color edge *irrevocably* when it is revealed.



Two-Player Game:

- Adversary (reveals edges)
- Online Algorithm (colors edges)

How many colors do we need? Still $\approx \Delta$?

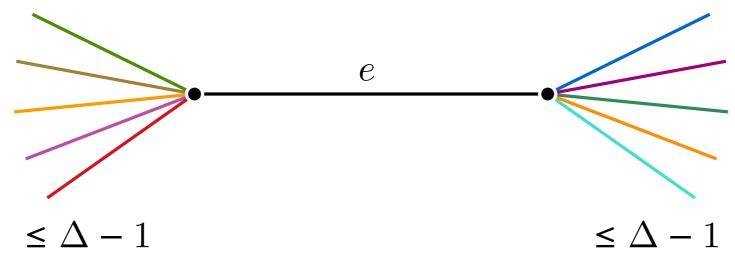
Warm-up: Greedy Algorithm

Greedy: Color edge with "lowest" avaliable color. Colors = $\{1, 2, 3, \ldots\}$

Warm-up: Greedy Algorithm

Greedy: Color edge with "lowest" avaliable color.

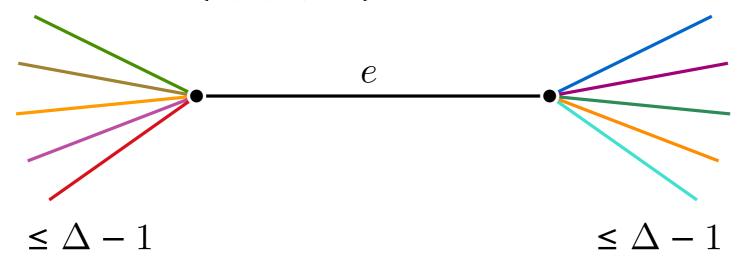
Colors =
$$\{1, 2, 3, ...\}$$



Warm-up: Greedy Algorithm

Greedy: Color edge with "lowest" avaliable color.

Colors =
$$\{1, 2, 3, \ldots\}$$

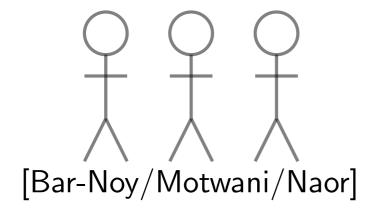


Claim: $\leq 2(\Delta - 1)$ blocked colors

Claim: Greedy uses $\leq 2\Delta - 1$ colors

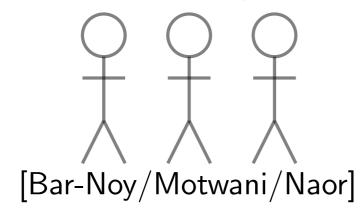
1992:

Can we beat greedy?



1992:

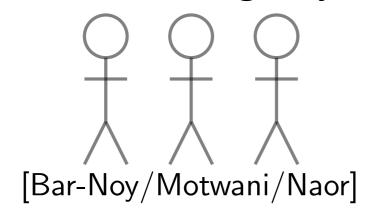
Can we beat greedy?



"The Greedy Algorithm is Optimal for Online Edge Coloring"

1992:

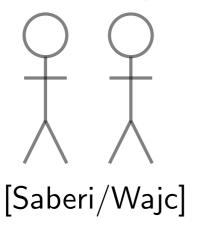
Can we beat greedy?



"The Greedy Algorithm is Optimal for Online Edge Coloring"

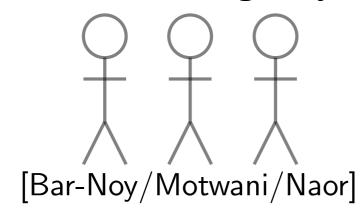
Is it though...?

2021:



1992:

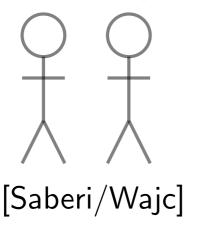
Can we beat greedy?



"The Greedy Algorithm is Optimal for Online Edge Coloring"

Is it though...?

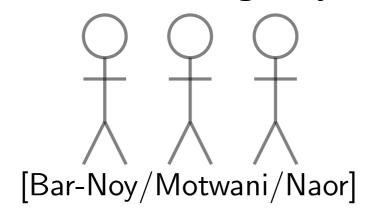
2021:



"The Greedy Algorithm is **Not** Optimal for Online Edge Coloring"

1992:

Can we beat greedy?

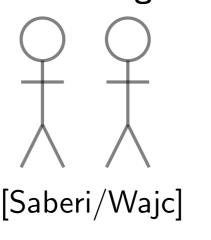


"The Greedy Algorithm is Optimal for Online Edge Coloring" when $\Delta \leq \log n$ (deterministic)

when $\Delta \leq \sqrt{\log n}$ (randomized)

Is it though...?

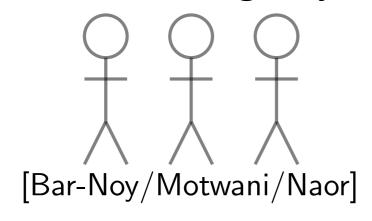
2021:



"The Greedy Algorithm is **Not** Optimal for Online Edge Coloring"

1992:

Can we beat greedy?

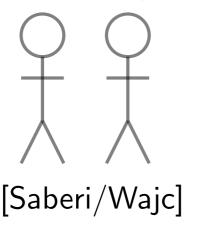


"The Greedy Algorithm is Optimal for Online Edge Coloring" when $\Delta \leq \log n$ (deterministic)

when $\Delta \leq \sqrt{\log n}$ (randomized)

Is it though...?

2021:

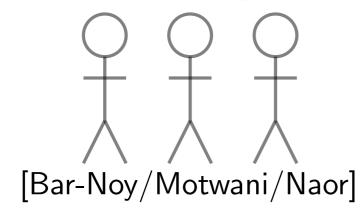


"The Greedy Algorithm is **Not** Optimal for Online Edge Coloring"

when $\Delta \gg \log n$ (randomized) under vertex-arrivals

1992:

Can we beat greedy?



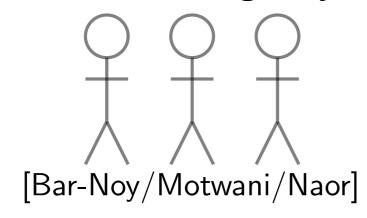
"The Greedy Algorithm is Optimal for Online Edge Coloring" * when $\Delta \leq \log n$ (deterministic) when $\Delta \leq \sqrt{\log n}$ (randomized)

Conjecture:

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

1992:

Can we beat greedy?



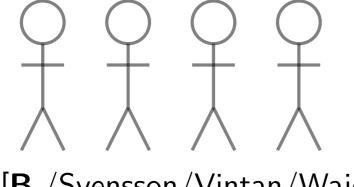
"The Greedy Algorithm is Optimal for Online Edge Coloring"

* when $\Delta \leq \log n$ (deterministic) when $\Delta \leq \sqrt{\log n}$ (randomized)

Conjecture:

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

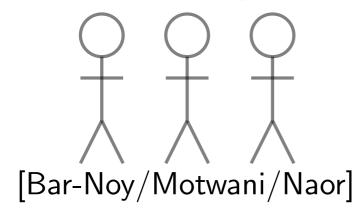
2024:



[B./Svensson/Vintan/Wajc]

1992:

Can we beat greedy?

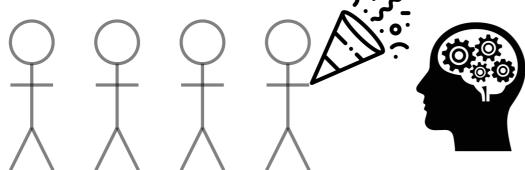


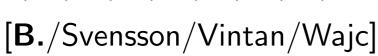
"The Greedy Algorithm is Optimal for Online Edge Coloring" when $\Delta \leq \log n$ (deterministic) when $\Delta \leq \sqrt{\log n}$ (randomized)

Conjecture: Theorem:

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

2024:



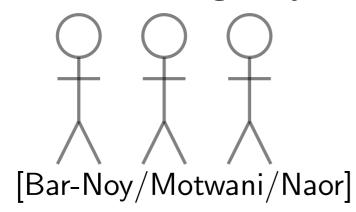


"Online Edge Coloring is (Nearly) as Easy as Offline"

The End?

1992:

Can we beat greedy?

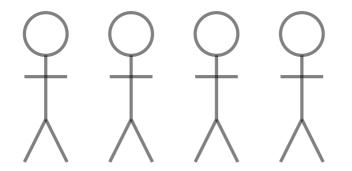


"The Greedy Algorithm is Optimal for Online Edge Coloring" when $\Delta \leq \log n$ (deterministic) when $\Delta \leq \sqrt{\log n}$ (randomized)

Conjecture: Theorem:

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta=\omega(\log n)$.

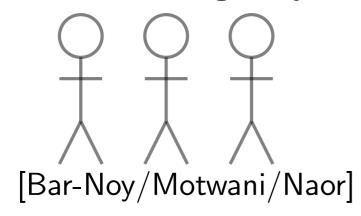
What about Deterministic Algos?



[B./Svensson/Vintan/Wajc]

1992:

Can we beat greedy?



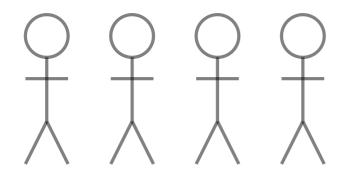
"...less plausible for the deterministic case"

"The Greedy Algorithm is Optimal for Online Edge Coloring" when $\Delta \leq \log n$ (deterministic) when $\Delta \leq \sqrt{\log n}$ (randomized)

Conjecture: Theorem:

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta=\omega(\log n)$.

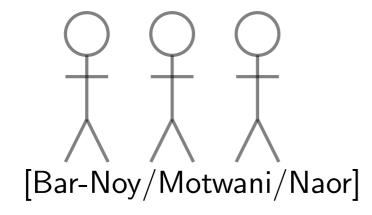
What about Deterministic Algos?



[B./Svensson/Vintan/Wajc]

1992:

Can we beat greedy?



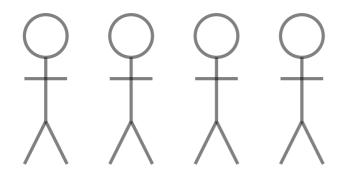
"...less plausible for the deterministic case"

"The Greedy Algorithm is Optimal for Online Edge Coloring" when $\Delta \leq \log n$ (deterministic) when $\Delta \leq \sqrt{\log n}$ (randomized)

Conjecture: Theorem:

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta=\omega(\log n)$.

What about Deterministic Algos?

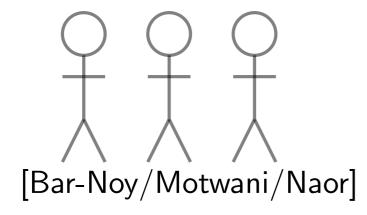


[B./Svensson/Vintan/Wajc]

Can we improve the Lower Bounds?

1992:

Can we beat greedy?



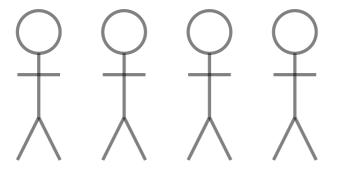
"...less plausible for the deterministic case"

"The Greedy Algorithm is Optimal for Online Edge Coloring" when $\Delta \leq \log n$ (deterministic) when $\Delta \leq \sqrt{\log n}$ (randomized)

Conjecture: Theorem:

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta=\omega(\log n)$.

What about Deterministic Algos?

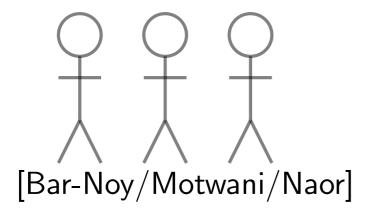


[B./Svensson/Vintan/Wajc]

Can we improve the Lower Bounds?

1992:

Can we beat greedy?



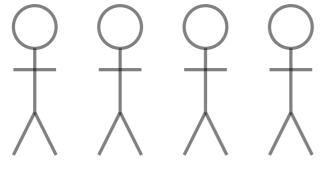
"...less plausible for the deterministic case"

"The Greedy Algorithm is Optimal for Online Edge Coloring" when $\Delta \leq \log n$ (deterministic) when $\Delta \leq \sqrt{\log n}$ (randomized)

Conjecture: Theorem:

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta=\omega(\log n)$.

What about Deterministic Algos?

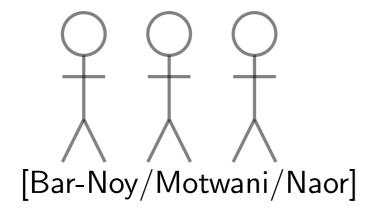


[B./Svensson/Vintan/Wajc]

Can we improve the Lower Bounds?

1992:

Can we beat greedy?



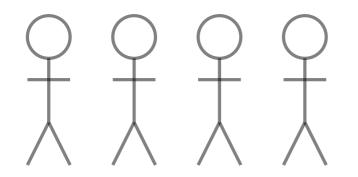
"...less plausible for the deterministic case"

"The Greedy Algorithm is Optimal for Online Edge Coloring" when $\Delta \leq \log n$ (deterministic) when $\Delta \leq \sqrt{\log n}$ (randomized)

Conjecture: Theorem:

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta=\omega(\log n)$.

What about Deterministic Algos?



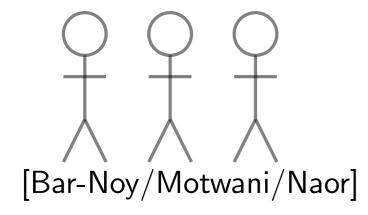
[B./Svensson/Vintan/Wajc]

Can we improve the Lower Bounds?

Design Determinstic Algo?

1992:

Can we beat greedy?



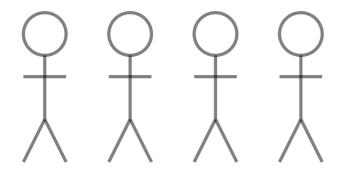
"...less plausible for the deterministic case"

"The Greedy Algorithm is Optimal for Online Edge Coloring" when $\Delta \leq \log n$ (deterministic) when $\Delta \leq \sqrt{\log n}$ (randomized)

Conjecture: Theorem:

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta=\omega(\log n)$.

What about Deterministic Algos?



[B./Svensson/Vintan/Wajc]

Can we improve the Lower Bounds?

Design Determinstic Algo?

SODA 2025: Two partial results

 $\approx \Delta$ colors, when $\Delta = \Theta(n)$ [DGS]

This Paper!

Conjecture:

[Bar-Noy/Motwani/Naor 1992]

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

Go beyond in two ways:

Theorem: [This Paper]

Online deterministic $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$. Online randomized $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\sqrt{\log n})$.

This Paper!

Conjecture:

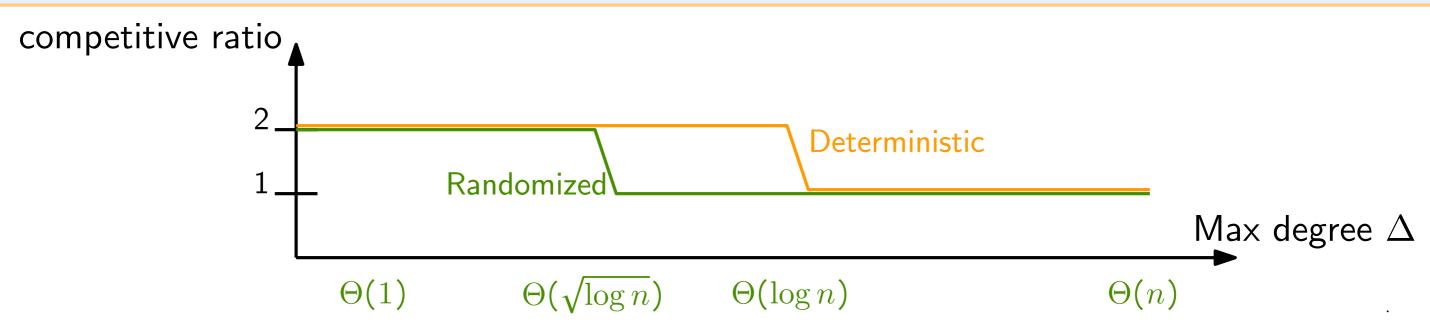
[Bar-Noy/Motwani/Naor 1992]

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

Go beyond in two ways:

Theorem: [This Paper]

Online deterministic $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$. Online randomized $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\sqrt{\log n})$.



This Paper!

Conjecture:

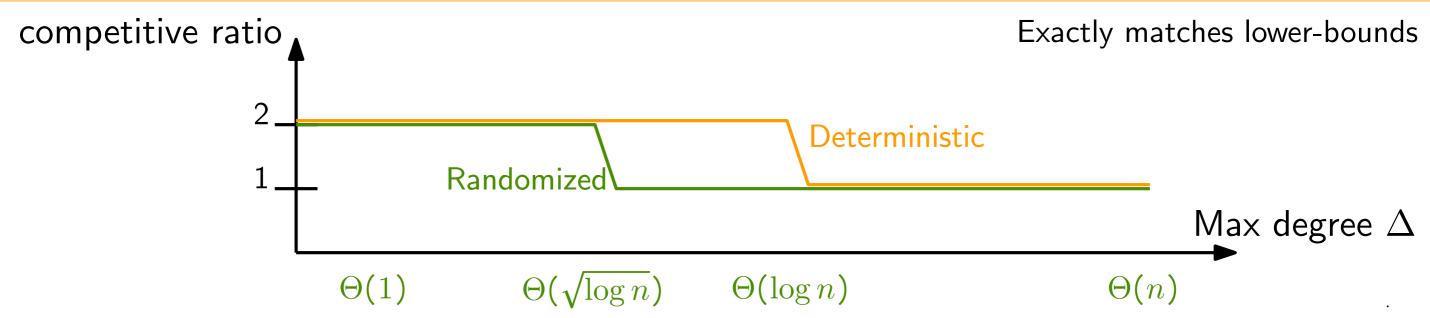
[Bar-Noy/Motwani/Naor 1992]

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

Go beyond in two ways:

Theorem: [This Paper]

Online deterministic $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$. Online randomized $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\sqrt{\log p})$



This Paper!

Conjecture:

[Bar-Noy/Motwani/Naor 1992]

There is an online randomized $(1+o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

Go beyond in two ways:

Theorem: [This Paper]

Online deterministic $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$. Online randomized $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\sqrt{\log p})$.

Our algo: $\Delta + O(\Delta^{15/16} \log^{1/16}(n))$ colors

Open: close gap

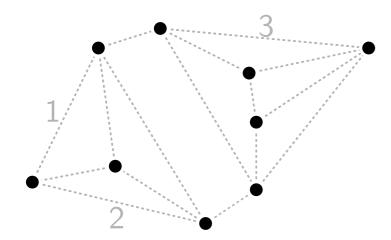
Exactly matches lower-bounds

Lowerbound: $\Delta + \Omega(\log n + \sqrt{\Delta})$

Oblivious

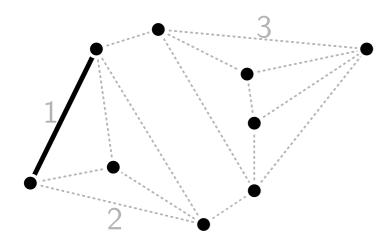
Oblivious

Fixes graph and arrival order in advance



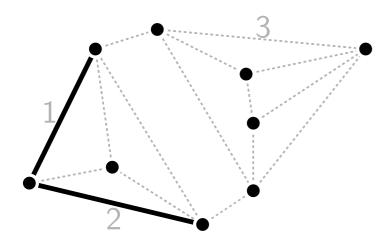
Oblivious

Fixes graph and arrival order in advance



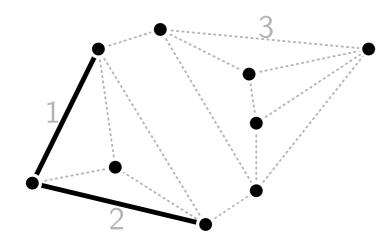
Oblivious

Fixes graph and arrival order in advance



Oblivious

Fixes graph and arrival order in advance

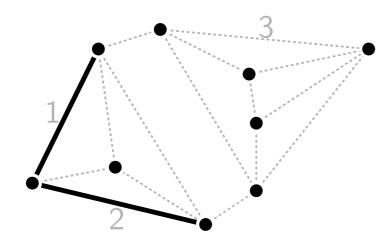


Adaptive

Generates graph adaptively based on algorithms decisions/randomness

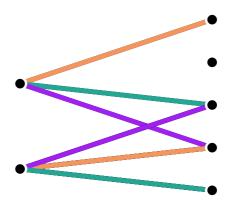
Oblivious

Fixes graph and arrival order in advance



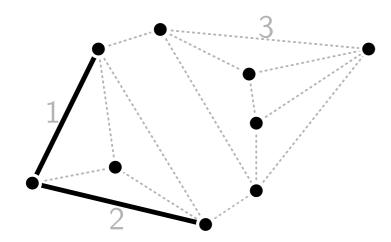
Adaptive

Generates graph adaptively based on algorithms decisions/randomness



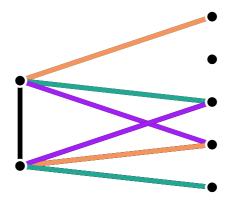
Oblivious

Fixes graph and arrival order in advance



Adaptive

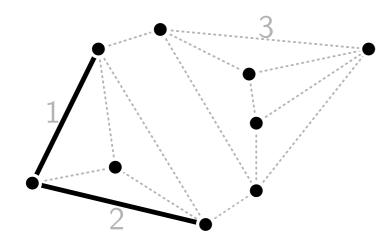
Generates graph adaptively based on algorithms decisions/randomness



"I will connect to two vertices where purple is taken"

Oblivious

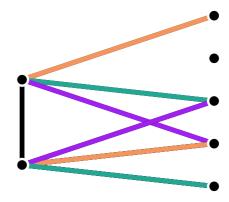
Fixes graph and arrival order in advance



one (unknown) future

Adaptive

Generates graph adaptively based on algorithms decisions/randomness



"I will connect to two vertices where purple is taken"

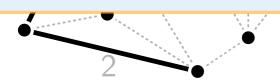
many ($\gg n^{\Delta}$) possible futures

Oblivious

Fixes graph and arrival order in advance

Generates graph adaptively based on algorithms decisions/randomness

Randomness does not help against Adaptive adversary!



one (unknown) future

"I will connect to two vertices where purple is taken"

many ($\gg n^{\Delta}$) possible futures

Oblivious

Fixes graph and arrival order in advance

Generates graph adaptively based on algorithms decisions/randomness

Randomness does not help against Adaptive adversary!

∃ randomized online algorithm against adaptive adversary ⇒ ∃ determinstic online algorithm

"I will connect to two vertices where purple is taken"

many ($\gg n^{\Delta}$) possible futures

one (unknown) future

Deterministic

Randomized Against Adaptive Adversary

ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

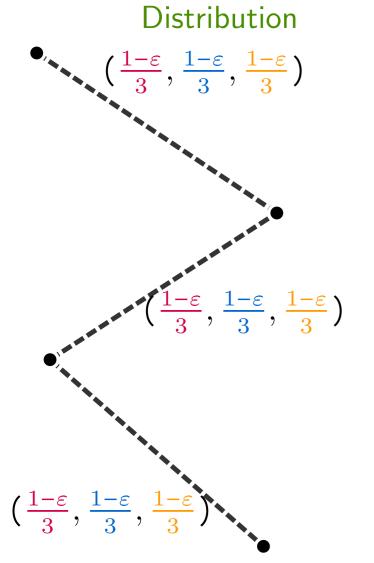
When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Main palette $\{1,2,\ldots,\Delta\}$ Emergency palette $\{\Delta + 1, \dots, \Delta + 2\varepsilon\Delta\}$ (only use when necessary)



ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

Main palette $\{1,2,\ldots,\Delta\}$ Emergency palette $\{\Delta+1,\ldots,\Delta+2\varepsilon\Delta\}$

(only use when necessary)

ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

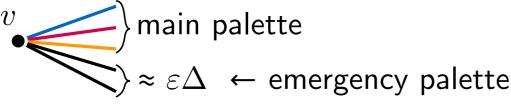
When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

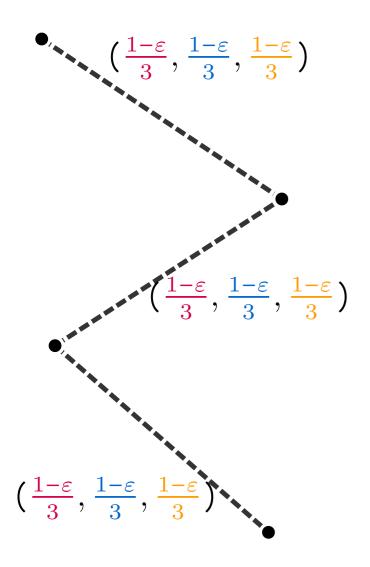
For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Goal: $\Pr[\text{we assign } e \text{ color from main palette}] = 1 - \varepsilon$



"Forward to greedy"



ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \dots, \Delta\}$

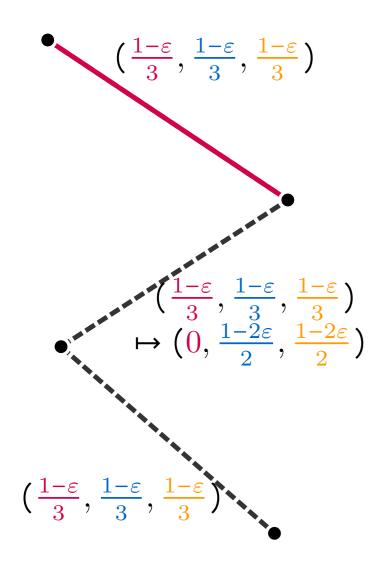
When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$



ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \dots, \Delta\}$

When e arrives:

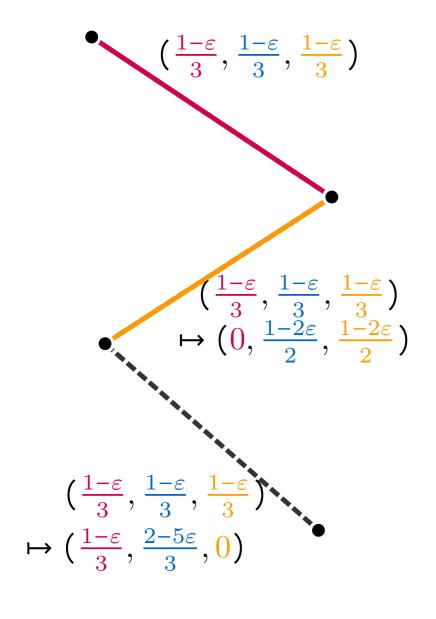
Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

"Bayesian Update"



ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \dots, \Delta\}$

When e arrives:

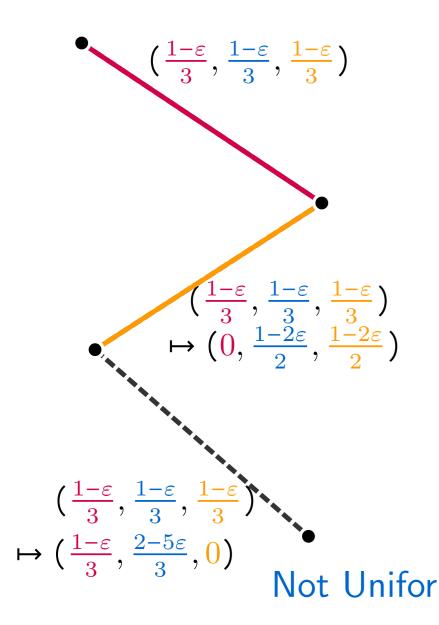
Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

"Bayesian Update"



ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

"Bayesian Update"

Not Uniform! Depends on execution

- Fail if $\sum_{c} P_{e,c} > 1$
- Fail if $\sum_{c} P_{e,c} < 1 2\varepsilon$ ____ main palette emergency palette

ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

- Fail if $\sum_{c} P_{e,c} > 1$

At time t = 0:

$$\forall e \in E, \quad \sum_{c} P_{e,c}^{(0)} = 1 - \varepsilon$$

ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

Goal: Show $\sum_{c} P_{e,c}^{(t)} \in [1 - 2\varepsilon, 1]$ for all times t, and edges e

- Fail if $\sum_{c} P_{e,c} > 1$

At time t = 0:

$$\forall e \in E, \quad \sum_{c} P_{e,c}^{(0)} = 1 - \varepsilon$$

ALGO: (simplified)

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

Goal: Show $\sum_{c} P_{e,c}^{(t)} \in [1 - 2\varepsilon, 1]$ for all times t, and edges e

ALGO:

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \dots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

ALGO:

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

"Exercise": oblivious adversary and $\Delta \ge 10^4 \log n$

ALGO:

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

"Exercise": oblivious adversary and $\Delta \ge 10^4 \log n$

 $\Pr[\text{edge } e \text{ bad}] \leq [\text{Azuma's}] \leq e^{-\Delta} \ll \frac{1}{n^{100}}$

simultaneously none of the $\leq n^2$ edges are bad, with high probability

ALGO:

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

 $\Pr[\mathsf{bad}\;\mathsf{event}] = e^{-\Delta}$

$$\Delta \approx \sqrt{\log n}$$
 one (unknown) future

$$\Delta \approx \log n$$

$$n^{\Delta} \le e^{\Delta^2} \text{ futures}$$

"Exercise": oblivious adversary and $\Delta \ge 10^4 \log n$

 $\Pr[\text{edge } e \text{ bad}] \leq [\text{Azuma's}] \leq e^{-\Delta} \ll \frac{1}{n^{100}}$

simultaneously none of the $\leq n^2$ edges are bad, with high probability

ALGO:

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for $e \in E$ and $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Set
$$P_{f,c}^{\mathsf{new}} \leftarrow 0$$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

$$\Pr[\mathsf{bad}\;\mathsf{event}] = e^{-\Delta^2}$$

$$\Delta \approx \sqrt{\log n}$$
 one (unknown) future

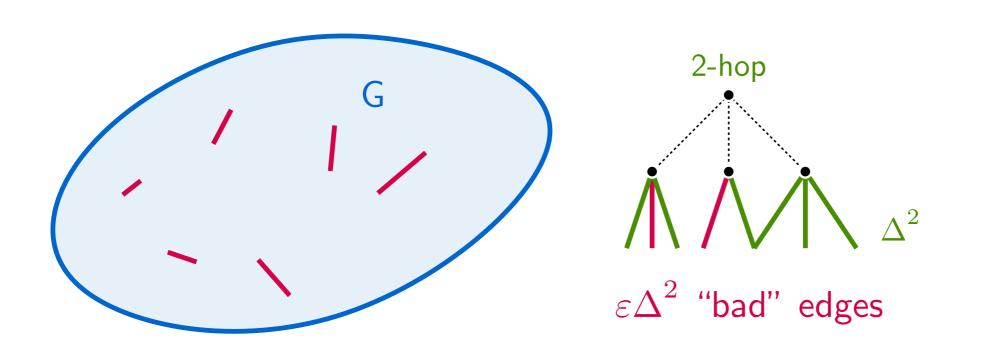
$$\Delta \approx \log n$$

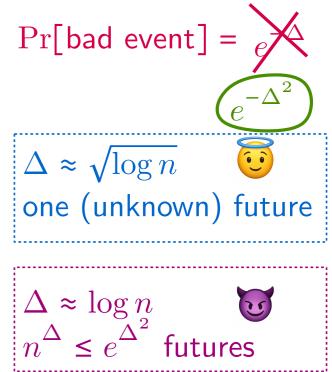
$$n^{\Delta} \le e^{\Delta^2} \text{ futures}$$

"Exercise": oblivious adversary and $\Delta \ge 10^4 \log n$

$$\Pr[\mathsf{edge}\; e\; \mathsf{bad}] \leq [\mathsf{Azuma's}] \leq e^{-\Delta} \ll \tfrac{1}{n^{100}}$$

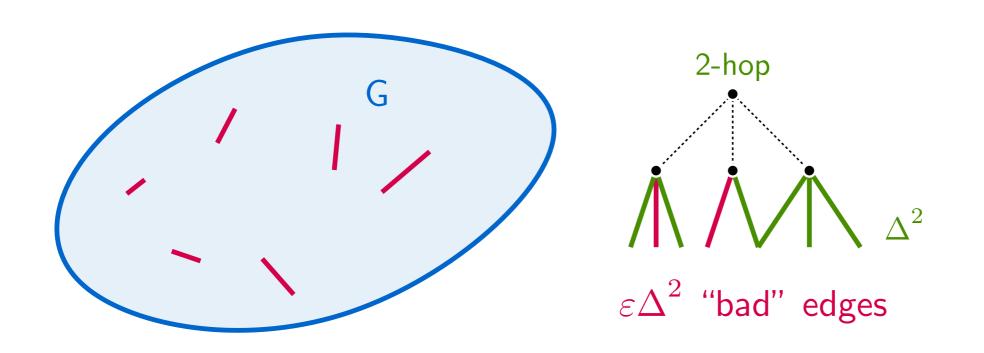
simultaneously none of the $\leq n^2$ edges are bad, with high probability

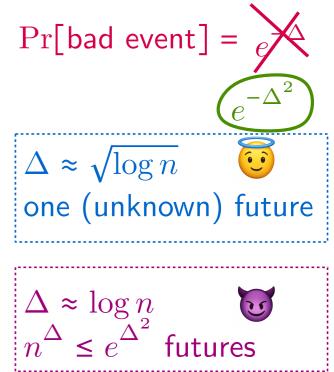




Main Idea to Fix: Bad events do happen, but they are spread out

Theorem:

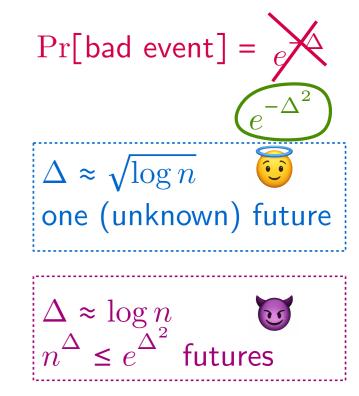




Main Idea to Fix: Bad events do happen, but they are spread out Add special-case handling for various bad events

Theorem:

Synonyms for "bad" events bad color



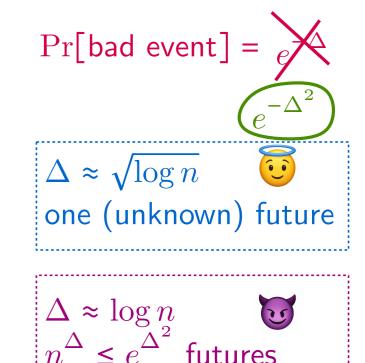
Main Idea to Fix: Bad events do happen, but they are spread out Add special-case handling for various bad events

Theorem:

Synonyms for "bad" events

bad color

bad vertex



Main Idea to Fix: Bad events do happen, but they are spread out Add special-case handling for various bad events

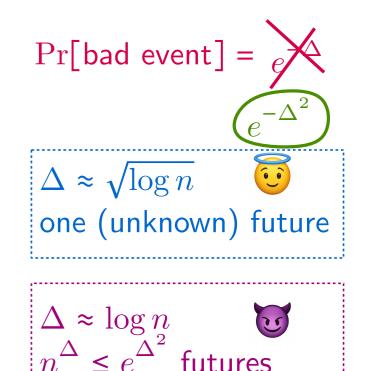
Theorem:

Synonyms for "bad" events

bad color

bad vertex

dangerous vertex



Main Idea to Fix: Bad events do happen, but they are spread out Add special-case handling for various bad events

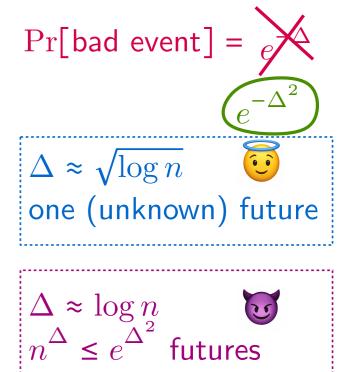
Theorem:

Synonyms for "bad" events

bad color hot vertex

bad vertex

dangerous vertex



Main Idea to Fix: Bad events do happen, but they are spread out Add special-case handling for various bad events

Theorem:

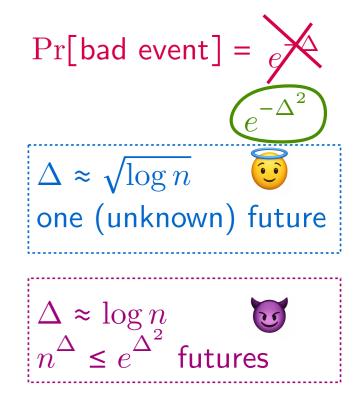
Analysis: Continuation + Adversaries

Synonyms for "bad" events

bad color hot vertex

bad vertex annoying edge

dangerous vertex



Main Idea to Fix: Bad events do happen, but they are spread out Add special-case handling for various bad events

Theorem:

There is an $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\sqrt{\log n})$ against oblivious There is an $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$ against adaptive

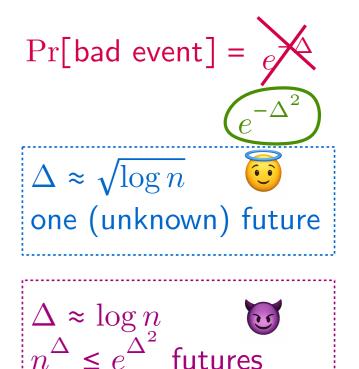
Analysis: Continuation + Adversaries

Synonyms for "bad" events

bad color hot vertex

bad vertex annoying edge

dangerous vertex unlucky edge

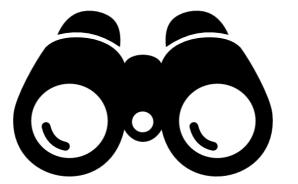


Main Idea to Fix: Bad events do happen, but they are spread out Add special-case handling for various bad events

Theorem:

There is an $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\sqrt{\log n})$ against oblivious There is an $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$ against adaptive

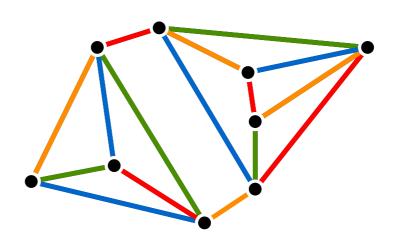
Summary and Future Thoughts



Greedy $2\Delta-1$ coloring optimal when Δ small

Conjecture: [Bar-Noy/Motwani/Naor 1992]

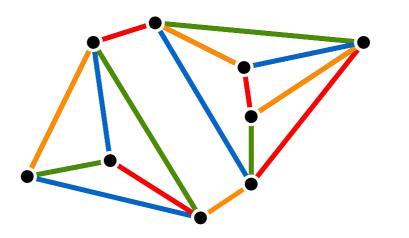
There is an online randomized $\approx \Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.



Greedy $2\Delta-1$ coloring optimal when Δ small

Conjecture: [Bar-Noy/Motwani/Naor 1992] Theorem: [BSVW 2024]

There is an online randomized $\approx \Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

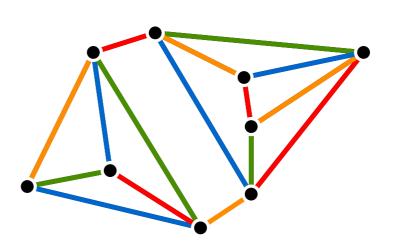


Greedy $2\Delta-1$ coloring optimal when Δ small

Conjecture: [Bar-Noy/Motwani/Naor 1992] **Theorem:** [BSVW 2024] There is an online randomized $\approx \Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

Theorem: [This Paper]

Online deterministic $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$. Online randomized $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\sqrt{\log n})$.



Greedy $2\Delta-1$ coloring optimal when Δ small

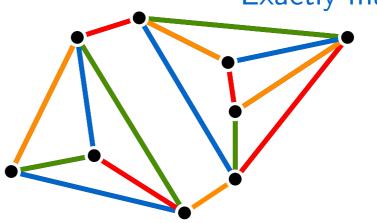
Conjecture: [Bar-Noy/Motwani/Naor 1992] Theorem: [BSVW 2024]

There is an online randomized $\approx \Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

Theorem: [This Paper]

Online deterministic $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$. Online randomized $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\sqrt{\log n})$.

Exactly matches lower bounds



Greedy $2\Delta-1$ coloring optimal when Δ small

Conjecture: [Bar-Noy/Motwani/Naor 1992] **Theorem:** [BSVW 2024]

There is an online randomized $\approx \Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

Theorem: [This Paper]

Online deterministic $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

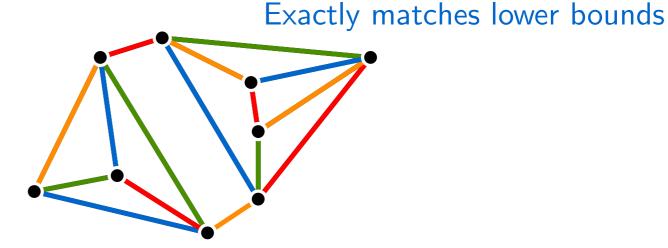
Online randomized $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\sqrt{\log n})$.

Techniques:

Bayesian algorithm

Deterministic = Randomized vs Adaptive

Martingale concentration $e^{-\Delta^2}$



Greedy $2\Delta-1$ coloring optimal when Δ small

Conjecture: [Bar-Noy/Motwani/Naor 1992] **Theorem:** [BSVW 2024]

There is an online randomized $\approx \Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

Theorem: [This Paper]

Online deterministic $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\log n)$.

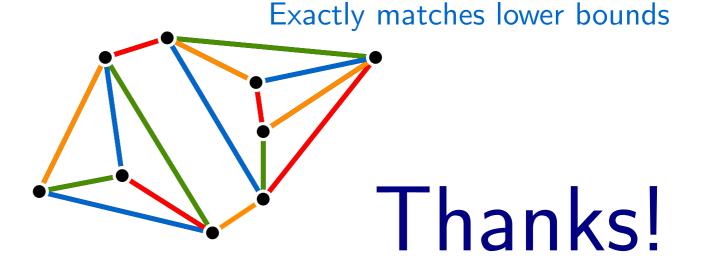
Online randomized $(1 + o(1))\Delta$ -edge-coloring algorithm when $\Delta = \omega(\sqrt{\log n})$.

Techniques:

Bayesian algorithm

Deterministic = Randomized vs Adaptive

Martingale concentration $e^{-\Delta^2}$



Extra Slides

Edge Coloring Open Problems:

- Hypergraphs & Multigraphs
- Pinpoint the o(1) term:

Our algo: $\Delta^{15/16} \log^{1/16}(n)$ extra colors

Lowerbound: $\log n + \sqrt{\Delta}$

- Rounding fractional matchings
- Similar techniques for other problems: online weighted matching?
- List-Edge-Coloring Conjecture

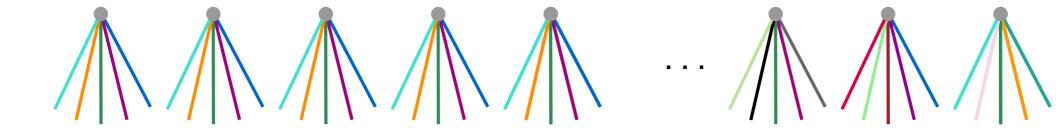
Theorem: No online algorithm can $(2\Delta - 2)$ -edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Theorem: No online algorithm can $(2\Delta - 2)$ -edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Idea (Adversary): Create lots of $(\Delta - 1)$ -stars

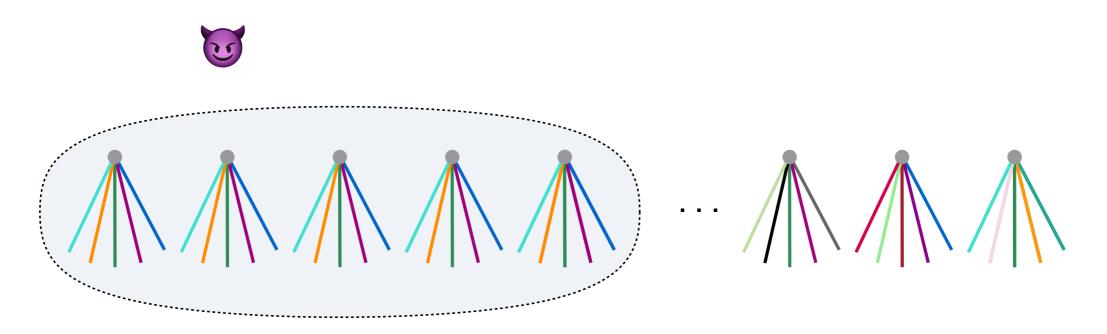


Theorem: No online algorithm can $(2\Delta - 2)$ -edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Idea (Adversary): Create lots of $(\Delta - 1)$ -stars

Eventually have Δ stars colored the same (pigeonhole principle)

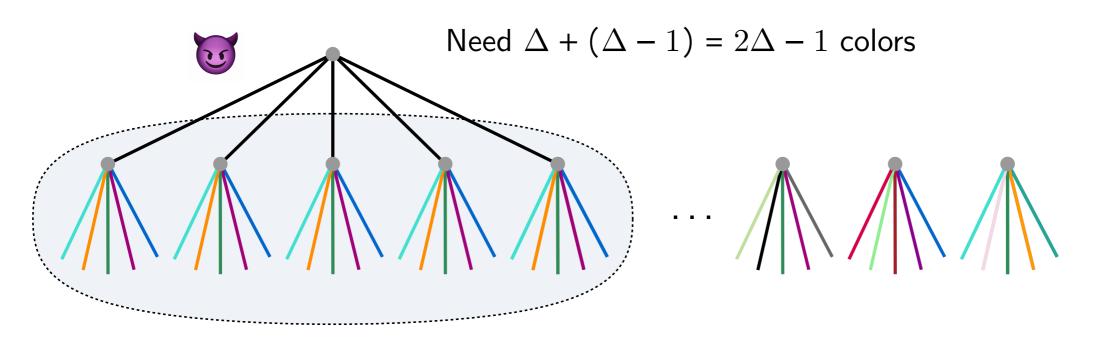


Theorem: No online algorithm can $(2\Delta - 2)$ -edge-color every graph.

[Bar-Noy/Motwani/Naor 1992]

Idea (Adversary): Create lots of $(\Delta - 1)$ -stars

Eventually have Δ stars colored the same (pigeonhole principle)

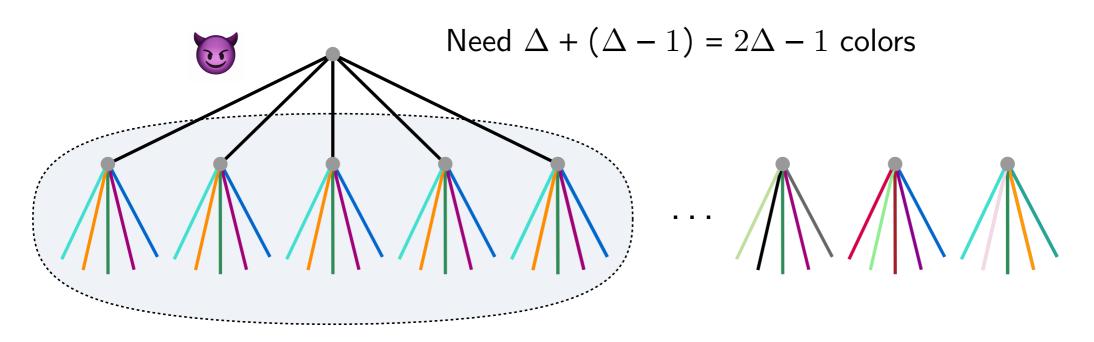


Theorem: No online algorithm can $(2\Delta - 2)$ -edge-color every graph.

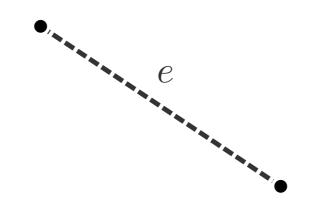
[Bar-Noy/Motwani/Naor 1992]

Idea (Adversary): Create lots of $(\Delta - 1)$ -stars

Eventually have Δ stars colored the same (pigeonhole principle)

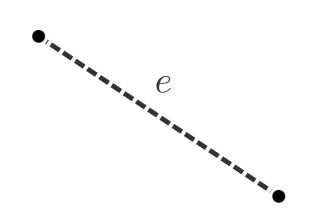


Focus on arriving edge e



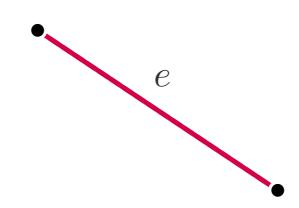
Focus on arriving edge e

Goal: $\Pr[\text{we assign } e \text{ color } c] = \frac{1-\varepsilon}{\Delta}$



Focus on arriving edge e

Goal: $\Pr[\text{we assign } e \text{ color } c] = \frac{1-\varepsilon}{\Delta}$



Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for each color $c \in \{1, 2, \ldots, \Delta\}$

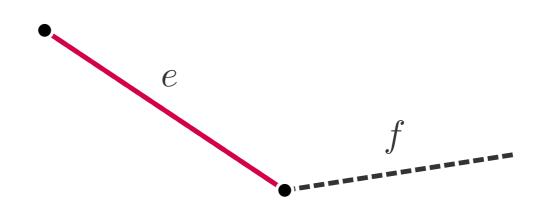
When e arrives:

Pr left uncolored → emergency palette

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

Focus on arriving edge e

Goal: $\Pr[\text{we assign } e \text{ color } c] = \frac{1-\varepsilon}{\Delta}$



Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for each color $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Pr left uncolored → emergency palette

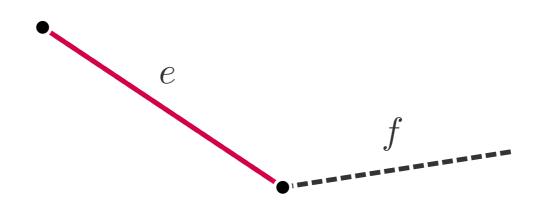
Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Need to set $P_{f,c}^{\text{new}} \leftarrow 0$

Focus on arriving edge e

Goal: $\Pr[\text{we assign } e \text{ color } c] = \frac{1-\varepsilon}{\Lambda}$



Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for each color $c \in \{1, 2 \dots, \Delta\}$

When e arrives:

Pr left uncolored → emergency palette

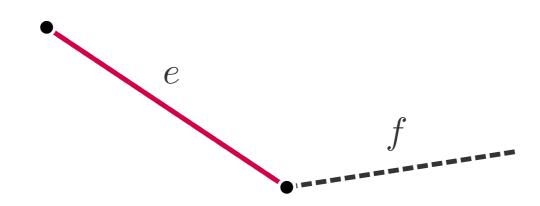
Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Need to set $P_{f,c}^{\text{new}} \leftarrow 0$ Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

Focus on arriving edge e

Goal: $\Pr[\text{we assign } e \text{ color } c] = \frac{1-\varepsilon}{\Delta}$



Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for each color $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Need to set $P_{f,c}^{\text{new}} \leftarrow 0$

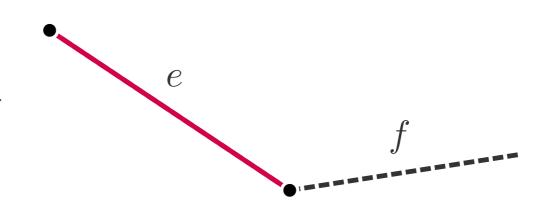
Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

Pr left uncolored → emergency palette

"Bayesian update"
$$\begin{aligned}
& \text{Pr}[f \text{ col } k] = \\
& = \Pr[f \text{ col } k \mid e \text{ col } k] \Pr[e \text{ col } k] \\
& + \Pr[f \text{ col } k \mid e \text{ not col } k] \Pr[e \text{ not col } k] \\
& = 0 \cdot P_{e,k} + P_{f,k}^{\text{new}} \cdot (1 - P_{e,k}) \\
& = P_{f,k}^{\text{old}}
\end{aligned}$$

Focus on arriving edge e

Goal: $\Pr[\text{we assign } e \text{ color } c] = \frac{1-\varepsilon}{\Delta}$ \Longrightarrow OK



Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for each color $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

 \Pr left uncolored \rightarrow emergency palette

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Need to set $P_{f,c}^{\text{new}} \leftarrow 0$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{e,k}}$ for all colors $k \neq c$

"Bayesian update" $\begin{cases}
\Pr[f \text{ col } k] = \\
= \Pr[f \text{ col } k \mid e \text{ col } k] \Pr[e \text{ col } k] \\
+ \Pr[f \text{ col } k \mid e \text{ not col } k] \Pr[e \text{ not col } k]
\end{cases}$ $= 0 \cdot P_{e,k} + P_{f,k}^{\text{new}} \cdot (1 - P_{e,k})$ $= P_{f,k}^{\text{old}}$

Focus on arriving edge \boldsymbol{e}

Goal: $\Pr[\text{we assign } e \text{ color } c] = \frac{1-\varepsilon}{\Delta}$ \Longrightarrow OK

Initialize $P_{e,c} \leftarrow \frac{1-\varepsilon}{\Delta}$ for each color $c \in \{1, 2, \ldots, \Delta\}$

When e arrives:

Sample color c from $(P_{e,1}, P_{e,2}, \dots, P_{e,\Delta}, 1 - \sum_{c} P_{e,c})$

For potential future incident edges f:

Need to set $P_{f,c}^{\text{new}} \leftarrow 0$

Update $P_{f,k}^{\text{new}} \leftarrow P_{f,k}^{\text{old}} \cdot \frac{1}{1 - P_{g,k}}$ for all colors $k \neq c$

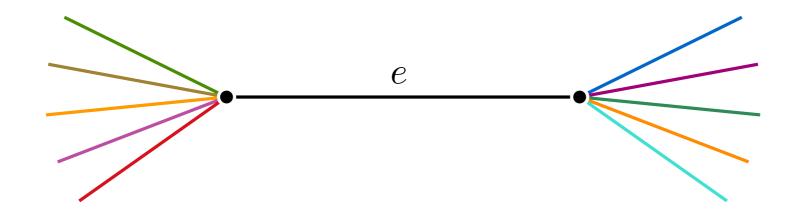
Pr left uncolored → emergency palette

"Bayesian update"
$$\begin{aligned}
&\left\{ \begin{array}{l} \Pr[f \text{ col } k] = \\ &= \Pr[f \text{ col } k \mid e \text{ col } k] \Pr[e \text{ col } k] \\ &+ \Pr[f \text{ col } k \mid e \text{ not col } k] \Pr[e \text{ not col } k] \end{aligned} \right.$$

$$= 0 \cdot P_{e,k} + P_{f,k}^{\text{new}} \cdot (1 - P_{e,k}) \\ &= P_{f,k}^{\text{old}}$$

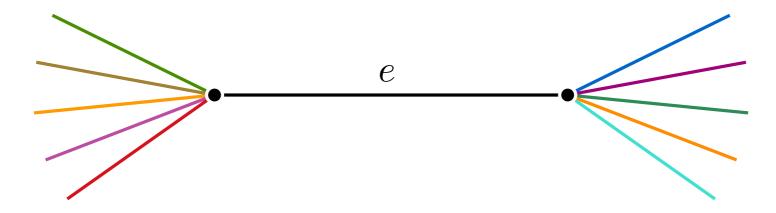
Use palette $\{1, 2, \dots, (1 + \varepsilon)\Delta\}$

Color arriving edge e with an available color uniformly at random



Use palette $\{1, 2, \dots, (1 + \varepsilon)\Delta\}$

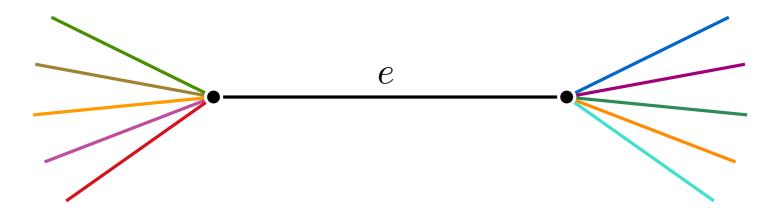
Color arriving edge e with an available color uniformly at random



Does it work? (fail if no available color)

Use palette $\{1, 2, \dots, (1 + \varepsilon)\Delta\}$

Color arriving edge e with an available color uniformly at random

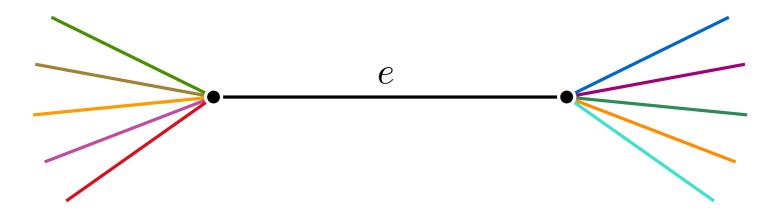


Does it work? (fail if no available color)

NO! two subtle problematic reasons:

Use palette $\{1, 2, \dots, (1 + \varepsilon)\Delta\}$

Color arriving edge e with an available color uniformly at random



Does it work? (fail if no available color)

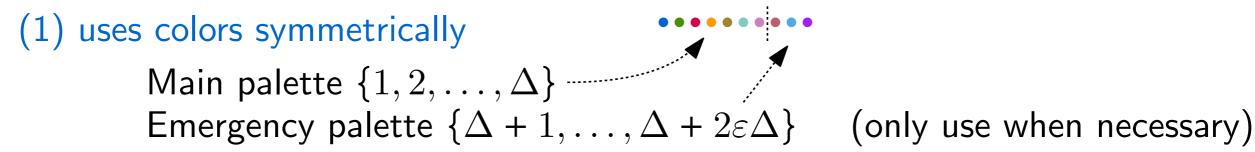
NO! two subtle problematic reasons:

- (1) uses colors symmetrically (even fails in trees)
- (2) "uniformly at random" allows adversary to amplify bias

Two subtle problematic reasons:

(1) uses colors symmetrically

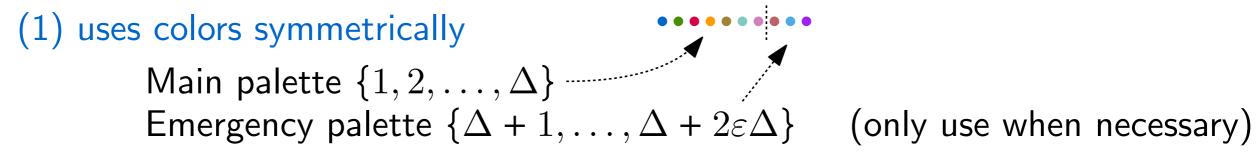
Two subtle problematic reasons:



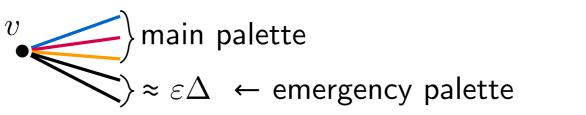
Two subtle problematic reasons:

Goal: $\Pr[\text{we assign } e \text{ color from main palette}] = 1 - \varepsilon$

Two subtle problematic reasons:



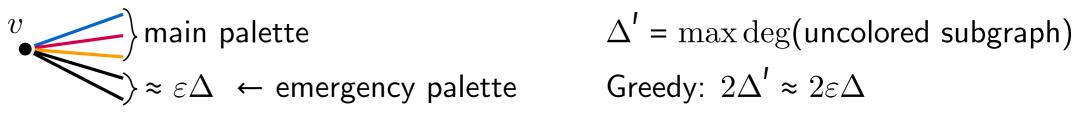
Goal: $\Pr[\text{we assign } e \text{ color from main palette}] = 1 - \varepsilon$



Two subtle problematic reasons:

Emergency palette $\{\Delta + 1, \dots, \Delta + 2\varepsilon\Delta\}$ (only use when necessary)

Goal: $\Pr[\text{we assign } e \text{ color from main palette}] = 1 - \varepsilon$

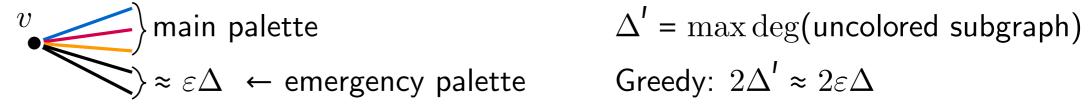


$$\Delta' = \max \deg(\text{uncolored subgraph})$$

Greedy:
$$2\Delta' \approx 2\varepsilon\Delta$$

Two subtle problematic reasons:

Goal: $\Pr[\text{we assign } e \text{ color from main palette}] = 1 - \varepsilon$



(2) "uniformly at random" allows adversary to amplify bias

Two subtle problematic reasons:

Goal: $\Pr[\text{we assign } e \text{ color from main palette}] = 1 - \varepsilon$

(2) "uniformly at random" allows adversary to amplify bias

Use a Bayesian "execution dependent" approach