
Sublinear-Round Parallel
Matroid Intersection

ICALP 2022

Joakim Blikstad
♠

♣
♣

♣
♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

KTH Royal Institute of Technology



⋅

Matroids

1. Ground set V of n elements
Matroid M = (V, I)



⋅

Matroids

1. Ground set V of n elements
2. Notion of independence I

Eg. Colourful Matroid
“no duplicate colours”

Matroid M = (V, I)



⋅

Matroids

1. Ground set V of n elements
2. Notion of independence I

S ∈ I

Eg. Colourful Matroid
“no duplicate colours”

Matroid M = (V, I)



⋅

Matroids

1. Ground set V of n elements
2. Notion of independence I

S ∉ I

Eg. Colourful Matroid
“no duplicate colours”

Matroid M = (V, I)



⋅

Matroids

1. Ground set V of n elements
2. Notion of independence I

Downward closure

S ∈ I

S
′ ∈ I

Eg. Colourful Matroid
“no duplicate colours”

Matroid M = (V, I)



⋅

Matroids

1. Ground set V of n elements
2. Notion of independence I

Downward closure

S ∈ I

Exchange property

Eg. Colourful Matroid
“no duplicate colours”

S
′ ∈ I

“All maximal independent
sets have the same size”

Matroid M = (V, I)



⋅

Matroids

1. Ground set V of n elements
2. Notion of independence I

Downward closure

S ∈ I

Exchange property

Eg. Colourful Matroid
“no duplicate colours”

S
′ ∈ I

“All maximal independent
sets have the same size”

Matroid M = (V, I)



⋅

Matroids: Examples
Colourful Matroid

I =“no duplicate colours”



⋅

Matroids: Examples
Colourful Matroid

I =“no duplicate colours”

Graphic Matroid

V = edges
I =“no cycles”



⋅

Matroids: Examples
Colourful Matroid

I =“no duplicate colours”

Graphic Matroid

V = edges
I =“no cycles”

Linear Matroid

V = vectors
I =“linear independence”

(2, 1, 4, 2, 3, 3)(1, 0, 1, 0, 1, 0)(3, 1, 5, 2, 4, 3)



⋅

Matroids: Examples
Colourful Matroid

I =“no duplicate colours”

Graphic Matroid

V = edges
I =“no cycles”

Linear Matroid

V = vectors
I =“linear independence”

(2, 1, 4, 2, 3, 3)(1, 0, 1, 0, 1, 0)(3, 1, 5, 2, 4, 3)
Vámos Matroid



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”



⋅

Matroid Intersection

Given two matroids:
M1 = (V, I1)
M2 = (V, I2)

Find a common independent set S ∈ I1 ∩ I2 of maximum size.

♠

♣
♣

♣ ♣

♡

♡

♡

♠ ♠

♠

♢

♢

♢

M1 = “distinct suits”
M2 = “distinct colours”

♣

♢

♠

♡

Blue
Red
Green
Yellow



⋅

Matroid Intersection: Examples
Bipartite matching

Arborescence (directed spanning tree)

Rainbow spanning trees

Tree/Arborescence packing

Directed min-cut

Graph orientation problems

Matroid partitioning & union

. . .

Also connections to Submodular Function Minimization



⋅

Matroid Rank

rk(S) = 3 = #distinct coloursrk(S) = max{∣A∣ ∶ A ⊆ S,A ∈ I}
= size of a maximum independent set in S

= size of a maximal independent set in S



⋅

Matroid Rank

rk(S) = 3 = #distinct coloursrk(S) = max{∣A∣ ∶ A ⊆ S,A ∈ I}
= size of a maximum independent set in S

= size of a maximal independent set in S

S ∈ I ⟺ rk(S) = ∣S∣
Submodular (Diminishing returns)
If A ⊆ B, and x ∉ B then:
rk(A+x)−rk(A) ≥ rk(B+x)−rk(B)

Properties:



⋅

Query Access

How to access a matroid?

Oracle Access
Independence query: “Is S ∈ I?”
Rank query: “What is rk(S)?”

S



⋅

Query Access

How to access a matroid?

Oracle Access
Independence query: “Is S ∈ I?”
Rank query: “What is rk(S)?”

S

“NO”
“3”



⋅

Query Access

How to access a matroid?

Oracle Access
Independence query: “Is S ∈ I?”
Rank query: “What is rk(S)?”

Important:
We do not know the underlying
structure of the matroids!

S

“NO”
“3”



⋅

Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
“What is rk(S1)?”, “What is rk(S2)?”, …, “What is rk(Sk)?”

Can only depend on answers to queries in previous rounds!



⋅

Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
“What is rk(S1)?”, “What is rk(S2)?”, …, “What is rk(Sk)?”

Can only depend on answers to queries in previous rounds!

Tradeoff:
Total number of queries used
Number of rounds (adaptivity)



⋅

Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
“What is rk(S1)?”, “What is rk(S2)?”, …, “What is rk(Sk)?”

Can only depend on answers to queries in previous rounds!

Tradeoff:
Total number of queries used
Number of rounds (adaptivity)

O(n3/2)
O(n3/2)



⋅

Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
“What is rk(S1)?”, “What is rk(S2)?”, …, “What is rk(Sk)?”

Can only depend on answers to queries in previous rounds!

Tradeoff:
Total number of queries used
Number of rounds (adaptivity)

O(n3/2)
O(n3/2) O(2n)

1



⋅

Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
“What is rk(S1)?”, “What is rk(S2)?”, …, “What is rk(Sk)?”

Can only depend on answers to queries in previous rounds!

Tradeoff:
Total number of queries used
Number of rounds (adaptivity)

O(n3/2)
O(n3/2) O(2n)

1

Main Question:
How many rounds do we need if we can only use O(poly(n)) queries in total?

?
O(poly(n))



⋅

Can we do. . .

O(n)-rounds?



⋅

Can we do. . .

O(n)-rounds? YES Straightforward (Edmonds 60s)



⋅

Can we do. . .

O(polylog(n))-rounds?

O(n)-rounds? YES Straightforward (Edmonds 60s)



⋅

Can we do. . .

O(polylog(n))-rounds?

O(n)-rounds? YES Straightforward (Edmonds 60s)

YES For bipartite matching and linear matroid intersection
(Lovász’79, KUW’86, FGT’19, GT’20)



⋅

Can we do. . .

O(polylog(n))-rounds?

NO

O(n)-rounds? YES

For general matroids: Ω̃(n1/3)
(indep: KUW’86, rank: CCK’21)

Straightforward (Edmonds 60s)

YES For bipartite matching and linear matroid intersection
(Lovász’79, KUW’86, FGT’19, GT’20)



⋅

Can we do. . .

o(n)-rounds?

O(polylog(n))-rounds?

NO

O(n)-rounds? YES

For general matroids: Ω̃(n1/3)
(indep: KUW’86, rank: CCK’21)

Straightforward (Edmonds 60s)

YES For bipartite matching and linear matroid intersection
(Lovász’79, KUW’86, FGT’19, GT’20)



⋅

Can we do. . .

o(n)-rounds?

O(polylog(n))-rounds?

NO

O(n)-rounds? YES

For general matroids: Ω̃(n1/3)
(indep: KUW’86, rank: CCK’21)

Straightforward (Edmonds 60s)

YES!
Main Theorem:
Matroid Intersection can be solved using poly(n) total queries and:

O(n3/4) = O(n0.75) rounds (rank-oracle)
O(n7/8) = O(n0.875) rounds (independence-oracle)

YES For bipartite matching and linear matroid intersection
(Lovász’79, KUW’86, FGT’19, GT’20)



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

s t

⊆ V \ S ⊆ V \ S ⊆ V \ S⊆ S ⊆ S

Given S ∈ I1 ∩ I2 construct the exchange graph G(S).
s, t-path ⟺ can increase size of S!



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

s t
b1 a2

b3

b5a4

S + b1 ∈ I1

S + b1 − a2 ∈ I2

S + b3 − a2 ∈ I1

S + b3 − a4 ∈ I2

S + b5 − a4 ∈ I1

S + b5 ∈ I2

Given S ∈ I1 ∩ I2 construct the exchange graph G(S).
s, t-path ⟺ can increase size of S!



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

s t
b1 a2

b3

b5a4

S + b1 ∈ I1

S + b1 − a2 ∈ I2

S + b3 − a2 ∈ I1

S + b3 − a4 ∈ I2

S + b5 − a4 ∈ I1

S + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I1



⋅

Exchange Graph & Augmenting Paths [Edmonds’60s]

s t
b1 a2

b3

b5a4

S + b1 ∈ I1

S + b1 − a2 ∈ I2

S + b3 − a2 ∈ I1

S + b3 − a4 ∈ I2

S + b5 − a4 ∈ I1

S + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I1
Common independent set S ′ ∶= S + b1 − a2 + b3 − a4 + b5 of size ∣S ′∣ = ∣S∣ + 1



⋅

Linear-round Algorithm [Edmonds’60s]

Algorithm O(n) rounds
1. S = ∅

2. In parallel find all the edges of the exchange graph G(S)
▷ 1 round of O(n2) queries

3. If there is an augmenting path, augment along it and repeat
▷ only repeats O(n) times

s t



⋅

Augmenting in Parallel?

s t

Exchange graph G(S) behaves weirdly. . .



⋅

Augmenting in Parallel?

s t

Exchange graph G(S) behaves weirdly. . .



⋅

Augmenting in Parallel?

s t

Exchange graph G(S) behaves weirdly. . .



⋅

Augmenting in Parallel?

s t

Exchange graph G(S) behaves weirdly. . .



⋅

Augmenting in Parallel?

s t

Exchange graph G(S) behaves weirdly. . .



⋅

Augmenting in Parallel?

s t

Exchange graph G(S) behaves weirdly. . .



⋅

Augmenting in Parallel?

s t

Disjoint paths not necessarily “compatible”
Need to handle the inserted edges

Exchange graph G(S) behaves weirdly. . .



⋅

Augmenting Sets [Chakrabarty-Lee-Sidford-Singla-Wong’19]

s t



⋅

Augmenting Sets [Chakrabarty-Lee-Sidford-Singla-Wong’19]

s t
b1 a2

b3

b5a4

S + b1 ∈ I1

S + b1 − a2 ∈ I2

S + b3 − a2 ∈ I1

S + b3 − a4 ∈ I2

S + b5 − a4 ∈ I1

S + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I2

⟹ S + b1 − a2 + b3 − a4 + b5 ∈ I1



⋅

Augmenting Sets [Chakrabarty-Lee-Sidford-Singla-Wong’19]

s t



⋅

Augmenting Sets [Chakrabarty-Lee-Sidford-Singla-Wong’19]

s t

S +B1 ∈ I1

S +B1 −A2 ∈ I2

S +B3 −A2 ∈ I1

S +B3 −A4 ∈ I2

S +B5 −A4 ∈ I1

S +B5 ∈ I2

⟹ S +B1 −A2 +B3 −A4 +B5 ∈ I1 ∩ I2

B1
A2 B3

A4

B5



⋅

Sublinear-round Algorithm

Key Lemma (“Blocking-Flow” Approximation Algorithm)
We can get a (1 − ε)-approximation of the matroid intersection problem in
O(√n/ε) rounds of poly(n) many rank-queries.



⋅

Sublinear-round Algorithm

Exact Algorithm
1. Run O(√n/ε)-round (1 − ε)-approximation algorithm
2. Now we have ∣S∣ ≥ OPT −O(nε)
3. Do these augmentations one-by-one, in a single round each

Key Lemma (“Blocking-Flow” Approximation Algorithm)
We can get a (1 − ε)-approximation of the matroid intersection problem in
O(√n/ε) rounds of poly(n) many rank-queries.



⋅

Sublinear-round Algorithm

Exact Algorithm
1. Run O(√n/ε)-round (1 − ε)-approximation algorithm with ε = n

−1/4
2. Now we have ∣S∣ ≥ OPT −O(nε) = OPT − n

3/4
3. Do these augmentations one-by-one, in a single round each

O(n3/4)-round algorithm!

Key Lemma (“Blocking-Flow” Approximation Algorithm)
We can get a (1 − ε)-approximation of the matroid intersection problem in
O(√n/ε) rounds of poly(n) many rank-queries.



⋅

Sublinear-round Algorithm

Exact Algorithm
1. Run O(√n/ε)-round (1 − ε)-approximation algorithm with ε = n

−1/4
2. Now we have ∣S∣ ≥ OPT −O(nε) = OPT − n

3/4
3. Do these augmentations one-by-one, in a single round each

O(n3/4)-round algorithm!

Key Lemma (“Blocking-Flow” Approximation Algorithm)
We can get a (1 − ε)-approximation of the matroid intersection problem in
O(√n/ε) rounds of poly(n) many rank-queries.



⋅

Refining: Combining algorithms of [CLSSW’19] and [KUW’86]

s t

Partial Augmenting Set, “Staircase”

B1 A2 B3 A4 B5



⋅

Refining: Combining algorithms of [CLSSW’19] and [KUW’86]

s t

In O(1) rounds accessing M2:

B1 A2 B3 A4 B5



⋅

Refining: Combining algorithms of [CLSSW’19] and [KUW’86]

s t

In O(1) rounds accessing M2:

Roughly ∣B1∣ − ∣Bℓ∣ elements are newly discarded or selected

B1 A2 B3 A4 B5



⋅

Refining: Combining algorithms of [CLSSW’19] and [KUW’86]

s t

Roughly ∣B1∣ − ∣Bℓ∣ elements are newly discarded or selected

B1 A2 B3 A4 B5



⋅

Refining: Combining algorithms of [CLSSW’19] and [KUW’86]

s t

Roughly ∣B1∣ − ∣Bℓ∣ elements are newly discarded or selected

In O(1) rounds accessing M1:

B1 A2 B3 A4 B5



⋅

Refining: Combining algorithms of [CLSSW’19] and [KUW’86]

s t

Roughly ∣B1∣ − ∣Bℓ∣ elements are newly discarded or selected

In O(1) rounds accessing M1:

Each element can go free → selected → discarded

B1 A2 B3 A4 B5



⋅

Refining: Combining algorithms of [CLSSW’19] and [KUW’86]

s t

Roughly ∣B1∣ − ∣Bℓ∣ elements are newly discarded or selected

In O(1) rounds accessing M1:

Each element can go free → selected → discarded
Only √

n rounds until ∣B1∣ − ∣Bℓ∣ ≤ √
n

B1 A2 B3 A4 B5



⋅

Falling back to paths

s t



⋅

Falling back to paths

s t

Can define a graph with respect to our “staircase”



⋅

Falling back to paths

s t

Can define a graph with respect to our “staircase”
In a single round we can find an “augmenting path”



⋅

Falling back to paths

s t

Can define a graph with respect to our “staircase”
In a single round we can find an “augmenting path”



⋅

Falling back to paths

s t

Can define a graph with respect to our “staircase”
In a single round we can find an “augmenting path”

Only need to repeat O(√n) times



⋅

Open Problems

What is the actual number of rounds required?
Somewhere between Ω̃ (n1/3) and O (n3/4).

What about weighted matroid intersection?
Similar O(n) one-by-one algorithm works.
Can we also acheive sublinear number of rounds?

What about submodular function minimization (SFM)?

√
n?

Thanks!


