Sublinear-Round Parallel
Matroid Intersection

- . & Y
Joakim Blikstad
KTH Royal Institute of Technology .’/ !
¢\ .
ICALP 2022

/
/
|
\

Matroid M = (V, 1) °

1. Ground set V of n elements

Matroids

Matroid M = (V,T)
1. Ground set V' of n elements

2. Notion of independence 7 ©

Eg. Colourful Matroid
“no duplicate colours”

Matroids

Matroid M = (V,T)
1. Ground set V' of n elements

2. Notion of independence 7

————————

Eg. Colourful Matroid
“no duplicate colours”

Matroids

Matroid M = (V,T)
1. Ground set V' of n elements

2. Notion of independence 7

———
- ~

-~
-

Eg. Colourful Matroid
“no duplicate colours”

-

Matroids

Matroid M = (V,T)
1. Ground set V' of n elements
2. Notion of independence 7

®» Downward closure

~-—————_——

Eg. Colourful Matroid
“no duplicate colours”

Matroids

Matroid M = (V,T)
1. Ground set V' of n elements
2. Notion of independence 7

®» Downward closure

m Exchange property

“All maximal independent
sets have the same size”

Se’l
/f”——-N
E I /’—_~\ ’/
R /’\:
-7 pr \ ®
pr- ’ 1
’ /7 I
/]
/ ,I
\~~_ ! /7
—l\.____, ’
AN
\\
\~~ ——————— ”
O
o

Eg. Colourful Matroid
“no duplicate colours”

Matroids

Matroid M = (V,T)
1. Ground set V' of n elements
2. Notion of independence 7

®» Downward closure

m Exchange property

“All maximal independent
sets have the same size”

Se’l
’/
E I =700 ’/
,/’ ,/(
,/’ pr \ ®
7 Ve \
/’ ,/ \
® / 3
/ \
) \
N~~~~J‘ \‘
~~~~
\ See o ]
N -
\~~ ————— ”
O
o

Eg. Colourful Matroid
“no duplicate colours”



Colourful Matroid

Z ="no duplicate colours”



Matroids: Examples

Colourful Matroid

7 ="no duplicate colours”

Graphic Matroid

V = edges
Z ="no cycles”



Matroids: Examples

Colourful Matroid

7 ="no duplicate colours”

Linear Matroid
(2,1,4,2,3,3)
(1,0,1,0,1,0)
(3,1,5,2,4,3)

V = vectors

7 ="linear independence”

Graphic Matroid

V = edges
Z ="no cycles”



Matroids: Examples

Colourful Matroid

7 ="no duplicate colours”

Linear Matroid
(2,1,4,2,3,3)
(1,0,1,0,1,0)
(3,1,5,2,4,3)

V = vectors

7 ="linear independence”

Graphic Matroid

V = edges
Z ="no cycles”

Vamos Matroid



Matroid Intersection

Given two matroids:

= Ml = (Va Il)

= MQ = (V7 IZ)

Find a common independent set S € 7; N Z, of maximum size.



Matroid Intersection

Given two matroids:

= Ml = (Vv Il)

= MQ = (V7 IZ)

Find a common independent set S € 7; N Z, of maximum size.

“distinct suits”
d

“distinct colours”

& ¢ O

M
Mo

¢



Matroid Intersection

Given two matroids:

= Ml = (Vv Il)

= MQ = (V7 IZ)

Find a common independent set S € 7; N Z, of maximum size.

N . . S S S B S
’——— --~~
-

(: & ¢ ':,‘ M = “distinct suits”
N 2 Mo = “distinct colours”
& 4
&
d ¢



Matroid Intersection

Given two matroids:

= Ml = (Vv Il)

= MQ = (V7 IZ)

Find a common independent set S € 7; N Z, of maximum size.

(o ¢ M = “distinct suits”
M, = "distinct colours”



Matroid Intersection

Given two matroids:

O Ml = (Vv Il)

O MQ = (V7 IZ)

Find a common independent set S € 7; N Z, of maximum size.
o ,/"—I) o M, = “distinct suits”
,// I/ My = "distinct colours”
1 1

LI @

\\ \\



Matroid Intersection

Given two matroids:
O Ml — (Vazl)
O MQ = (Va IQ)

Find a common independent set S € 7; N Z, of maximum size.

& ,,/'61) o M = "distinct suits” & Blue
gl / My = “distinct colours”
K ! 4 Red
® \ {
\ \ v é Green
\\ \\‘ * ‘ '
» Y )



Matroid Intersection: Examples

m Bipartite matching

m Arborescence (directed spanning tree)
® Rainbow spanning trees

m Tree/Arborescence packing

® Directed min-cut

m Graph orientation problems

® Matroid partitioning & union

Also connections to Submodular Function Minimization



Matroid Rank

rk(S) = max{|A|: Ac S, AeT}

= size of a maximum independent set in S

rk(S) = 3 = #distinct colours

/”—~\\
7’ \
. . . . ’ \
= size of a maximal independent set in S 7 e \
7 ‘\
O ot \
® / !
/ ® ]
/ 1
/A 4
® ,/ S
II //
! ® .7 e
\ Prad
\\~ ______ ”f’
o



Matroid Rank

k = Al:Ac S Ael
r (S) maX{' | S, A € } rk(S) = 3 = #distinct colours

= size of a maximum independent set in S e
7 AN
= size of a maximal independent set in S e kY
O ot \
. ® / |
Properties: S e :’l
o 7 /
/
mSel < rk(S)=|5] / s
II o ,/’/ o
| PR
m Submodular (Diminishing returns) el =T
If AC B, and = ¢ B then: O

rk(A+z)—rk(A) = tk(B+z)-rk(B) ¢



Query Access

How to access a matroid?

Oracle Access

® Independence query: “Is S € 17"
® Rank query: “What is rk(S)?"

o \\ S
V4
/, . \\

\
4 \
/ \
! 1
1 @ !
1 /

‘\ e

\\ ® e
N i



Query Access

How to access a matroid?

Oracle Access

® Independence query: “Is S € 17"
® Rank query: “What is rk(S)?"

“NOH
H3”

’——\\ S
s LN
’
/ . \
/
/
1
( O
‘\ //
\\ . ,’
N Pid



Query Access

How to access a matroid?

Oracle Access

® Independence query: “Is S € 17"
® Rank query: “What is rk(S)?"

Important:
We do not know the underlying
structure of the matroids!

HNOH
H3H

’——\\ S
s N
’
/ . \
/
/
1
: O
‘\ //
\\ . ,’
N Pid



Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
“What is tk(S;)?", “What is rk(S5)?", .., “What is rk(S,,)?"

Can only depend on answers to queries in previous rounds!



Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
“What is tk(S;)?", “What is rk(S5)?", .., “What is rk(S,,)?"

Can only depend on answers to queries in previous rounds!

Tradeoff:
®m Total number of queries used

® Number of rounds (adaptivity)



Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
“What is tk(S;)?", “What is rk(S5)?", .., “What is rk(S,,)?"

Can only depend on answers to queries in previous rounds!

Tradeoft:
®m Total number of queries used O(n>?)

® Number of rounds (adaptivity) O(n3?)



Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
“What is tk(S;)?", “What is rk(S5)?", .., “What is rk(S,,)?"

Can only depend on answers to queries in previous rounds!

Tradeoft:
®m Total number of queries used O(n>?)

® Number of rounds (adaptivity) O(n3?)

O(2")



Parallel Query Algorithms

Runs in rounds

Round: Issue a set of k queries simultaneously:
“What is tk(S;)?", “What is rk(S5)?", .., “What is rk(S,,)?"

Can only depend on answers to queries in previous rounds!

Tradeoff:
m Total number of queries used O(n>?) O(poly(n)) o2")
m Number of rounds (adaptivity) O(n3?) ? 1

Main Question:
How many rounds do we need if we can only use O(poly(n)) queries in total?



O(n)-rounds?



O(n)-rounds? YES Straightforward (Edmonds 60s)



O(n)-rounds? YES Straightforward (Edmonds 60s)

O(polylog(n))-rounds?



Can we do. ..

O(n)-rounds? YES Straightforward (Edmonds 60s)

O(polylog(n))-rounds? YES " For bipartite matching and linear matroid intersection
(Lovasz'79, KUW'86, FGT'19, GT'20)



Can we do. ..

O(n)-rounds? YES Straightforward (Edmonds 60s)

O(polylog(n))-rounds? YES " For bipartite matching and linear matroid intersection
(Lovasz'79, KUW'86, FGT'19, GT'20)

NO For general matroids: Q(n'/?)
(indep: KUW'86, rank: CCK'21)



Can we do. ..

O(n)-rounds? YES Straightforward (Edmonds 60s)
O(polylog(n))-rounds? YES " For bipartite matching and linear matroid intersection
(Lovasz'79, KUW'86, FGT'19, GT'20)
NO For general matroids: Q(n'/?)

(indep: KUW'86, rank: CCK'21)

o(n)-rounds?



Can we do. ..

O(n)-rounds? YES Straightforward (Edmonds 60s)

O(polylog(n))-rounds? YES " For bipartite matching and linear matroid intersection
(Lovasz'79, KUW'86, FGT'19, GT'20)

NO For general matroids: Q(n'/?)
(indep: KUW'86, rank: CCK'21)

o(n)-rounds? YES!

Main Theorem:
Matroid Intersection can be solved using poly(n) total queries and:

m O(n3*) = O(n” ™) rounds (rank-oracle)
o O(n7/8) = 0(n”®") rounds (independence-oracle)



Exchange Graph & Augmenting Paths [Edmonds’'60s]

Given S € Z; N7, construct the exchange graph G(S).
s,t-path <= can increase size of S'

cV\ cS cV\S CS cV\S
s _— ‘ \
‘ ‘V » <> >

/




Exchange Graph & Augmenting Paths [Edmonds’'60s]

Given S € Z; N7, construct the exchange graph G(S).
s,t-path <= can increase size of S'

S+bl—a2€I2 S+b3—a4612




Exchange Graph & Augmenting Paths [Edmonds’'60s]

— S+b1—a2+b3—&4+b5 EIQ

— S+b1—a2+b3—a4+b5 EIl



Exchange Graph & Augmenting Paths [Edmonds’'60s]

— S+bl—a2+b3—a4+b5 EIQ

S+b1—a2622 S+b3—a4622

— S+b1—a2+b3—a4+b5 EIl

Common independent set S' := S + by — ag + by — ay + bs of size |S'| = |S| + 1



Linear-round Algorithm [Edmonds’'60s]

Algorithm O(n) rounds
1. =0

2. In parallel find all the edges of the exchange graph G(.5)
> 1 round of O(n”) queries

3. If there is an augmenting path, augment along it and repeat
>  only repeats O(n) times




Augmenting in Parallel?

Exchange graph G(S) behaves weirdly. ..

S //V?\
|

J



Augmenting in Parallel?

Exchange graph G(S) behaves weirdly. ..

<”‘ S .
ARV




Augmenting in Parallel?

Exchange graph G(S) behaves weirdly. ..

‘A‘ S .
ARV v




Augmenting in Parallel?

Exchange graph G(S) behaves weirdly. ..

AWA




Augmenting in Parallel?

Exchange graph G(S) behaves weirdly. ..

. T
N

>

‘ ]
RS =Y




Augmenting in Parallel?

Exchange graph G(S) behaves weirdly. ..

LA AR

<
N Fi.»
N ST N
AN {




Augmenting in Parallel?

Exchange graph G(S) behaves weirdly. ..

s

s “ ‘
> >
A‘» /’ “‘;
VAV aRv/

N

® Disjoint paths not necessarily “compatible”
® Need to handle the inserted edges



Augmenting Sets [Chakrabarty-lLee-Sidford-Singla-Wong'19]

) D
W
i

/
X
AN
Al
)
/\
\J/



Augmenting Sets [Chakrabarty-lLee-Sidford-Singla-Wong'19]

— S+b;—ay+by3—as+bs €Ly
— S+b1—&2+b3—&4+b5 EIQ



Augmenting Sets [Chakrabarty-lLee-Sidford-Singla-Wong'19]




Augmenting Sets [Chakrabarty-lLee-Sidford-Singla-Wong'19]




Sublinear-round Algorithm

Key Lemma (“Blocking-Flow" Approximation Algorithm)
We can get a (1 — ¢)-approximation of the matroid intersection problem in
O(+/n/e) rounds of poly(n) many rank-queries.



Sublinear-round Algorithm

Key Lemma (“Blocking-Flow" Approximation Algorithm)
We can get a (1 — ¢)-approximation of the matroid intersection problem in
O(+/n/e) rounds of poly(n) many rank-queries.

Exact Algorithm
1. Run O(y/n/e)-round (1 — ¢)-approximation algorithm

2. Now we have |S| = OPT — O(ne)
3. Do these augmentations one-by-one, in a single round each



Sublinear-round Algorithm

Key Lemma (“Blocking-Flow" Approximation Algorithm)
We can get a (1 — ¢)-approximation of the matroid intersection problem in
O(+/n/e) rounds of poly(n) many rank-queries.

Exact Algorithm

1. Run O(y/n/e)-round (1 — ¢)-approximation algorithm with ¢ = n
2. Now we have |S| = OPT — O(ne) = OPT — 3/

3. Do these augmentations one-by-one, in a single round each

_1/4

O(n3/4)—round algorithm!



Sublinear-round Algorithm

Key Lemma (“Blocking-Flow" Approximation Algorithm)
We can get a (1 — ¢)-approximation of the matroid intersection problem in
O(+/n/e) rounds of poly(n) many rank-queries.

Exact Algorithm

1. Run O(y/n/e)-round (1 — ¢)-approximation algorithm with ¢ = n
2. Now we have |S| = OPT — O(ne) = OPT — n3/4

3. Do these augmentations one-by-one, in a single round each

O(n3/4)—round algorithm!

_1/4



Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

Partial Augmenting Set, “Staircase”

by Az b3 Ay B
| . . . O O |



Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

In O(1) rounds accessing M:




Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

In O(1) rounds accessing M:

_____________________
____________________________
————————————
’’’’’’’’’
..........

-
-
—————

Roughly |By| — | B,| elements are newly discarded or



Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

by Az b3 Ay B
| . . . . O |

Roughly |By| — | B,| elements are newly discarded or



Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

In O(1) rounds accessing Mj:

Roughly |By| — | B,| elements are newly discarded or



Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

In O(1) rounds accessing Mj:

.........
-------------
——————————
—————
‘‘‘‘‘
~~~~~~
~e———

)
" -
—————

Roughly |By| — | B,| elements are newly discarded or
Each element can go free — — discarded

Refining: Combining algorithms of [CLSSW'19] and [KUW'86]

In O(1) rounds accessing Mj:

Roughly |By| — | B,| elements are newly discarded or
Each element can go free — — discarded

Only y/n rounds until |B;| — |Bs| < v/n

Falling back to paths

S t

Falling back to paths

m Can define a graph with respect to our “staircase”

Falling back to paths

m Can define a graph with respect to our “staircase”

® In a single round we can find an “augmenting path”

Falling back to paths

m Can define a graph with respect to our “staircase”

® In a single round we can find an “augmenting path”

Falling back to paths

m Can define a graph with respect to our “staircase”

® In a single round we can find an “augmenting path”

®m Only need to repeat O(4/n) times

Open Problems

® What is the actual number of rounds required?
= Somewhere between () (nl/g) and O (n3/4). Vn?

®m What about submodular function minimization (SFM)?

m What about weighted matroid intersection?
» Similar O(n) one-by-one algorithm works.
= Can we also acheive sublinear number of rounds?

Thanks!

