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Abstract

Matchings, Maximum Flow, and Matroid Intersections are fundamental com-
binatorial optimization problems that have been studied extensively since the
inception of computer science. A series of breakthroughs in graph algorithms
and continuous optimization in the past decade has led to exciting almost-
optimal algorithms for maximum flow and bipartite matching. However, we
are still far from fully understanding these problems. First, it remains open
how to solve these problems in modern models of computation, such as parallel,
dynamic, online, and communication models. Second, as algorithms become
more sophisticated in pursuit of efficiency, they often sacrifice simplicity, po-
tentially obscuring valuable combinatorial insights. This raises a fundamental
question: can we develop efficient algorithms that maintain the combinatorial
nature of these problems, rather than relying on linear algebra and continuous
methods?

This thesis returns to the classic augmenting paths framework—the origi-
nal approach to matchings, maximum flow, and matroid intersection—with
the goal of developing new efficient combinatorial algorithms. Our key contri-
butions include the first combinatorial algorithm achieving almost-linear time
for maximum flow on dense graphs, and the first subquadratic independence-
query algorithm for matroid intersection. For modern computational models,
our contributions include an improved online rounding scheme for fractional
matching (leading to an optimal online edge coloring algorithm), a resolution
of the query and communication complexity for bipartite matching, and the
first sublinear-round parallel algorithms for matroid intersection.
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Sammanfattning

Matchningar, Maximala Flöden och Matroidsnitt är grundläggande kombinato-
riska optimeringsproblem som har studerats ing̊aende sedan datorvetenskapens
början. En serie genombrott inom grafalgoritmik och kontinuerlig optimering
under det senaste årentiondet har lett till imponerande nästan optimala al-
goritmer för maximalt flöde och bipartit matchning. Vi är dock fortfarande
l̊angt ifr̊an att fullt först̊a dessa problem. För det första återst̊ar fr̊agan om
hur man kan lösa dessa problem i andra beräkningsmodeller, s̊asom parallell-,
dynamisk-, online- och kommunikationsmodeller. För det andra, när algoritmer
blir allt mer sofistikerade i deras effektivitetsträvan, offrar de ofta enkelhet,
vilket potentiellt kan dölja värdefulla kombinatoriska insikter. Detta motiverar
en grundläggande fr̊aga: kan vi utveckla effektiva algoritmer som bevarar den
kombinatoriska karaktären hos dessa problem, istället för att förlita sig p̊a
linjär algebra och kontinuerliga metoder?

Denna avhandling återg̊ar till de klassiska augmenting-pathsalgoritmerna—
det ursprungliga angreppssättet för matchningar, maximalt flöde och matroid-
snitt—med målet att utveckla nya effektiva kombinatoriska algoritmer. V̊ara
viktigaste bidrag inkluderar den första kombinatoriska algoritmen som uppn̊ar
nästan linjär tid för maximalt flöde p̊a täta grafer, och den första sub-
kvadratiska independence-query-algoritmen för matroidsnitt. För moderna
beräkningsmodeller inkluderar v̊ara bidrag förbättrade onlineavrundningsalgo-
rithmer för fraktionell matchning (vilket leder till en optimal onlinealgoritm
för kantfärgning), en lösning av query- och kommunikationskomplexiteten
för bipartit matchning, och de första sublinjära parallella algoritmerna för
matroidsnitt.
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Chapter 1

Introduction

When we use computers to solve problems—whether it is finding the fastest route
on a map, matching job seekers with employers, or organizing vast amounts of
data—we must give the computers step-by-step instructions to tell them what to
do. These instructions are called algorithms, and serve as the backbone of all our
software. In the field of theoretical computer science, we study these algorithms at
a deep level: developing new algorithms to solve problems efficiently with provable
guarantees, showing that certain problems cannot be solved quickly (or at all), and
trying to understand the fundamental limits and opportunities of what computers
can achieve.

Despite decades of exciting advances in theoretical computer science, many
fundamental computational problems remain far from fully understood. While
efficient algorithms exist for some problems, others have persistently resisted our
best efforts to find fast algorithms. Moreover, computing power is not the only
resource constraint today: new challenges are, for example, how to effectively
distribute computations across multiple devices and manage the communication
channels between them. This motivates modern models of computation that captures
these limitations and opportunities.

Overall, this points to a deeper question: why can certain problems be solved
efficiently while others appear to require substantial computational resources? The
ultimate quest for a unified theory—both across multiple problems and multiple
models of computation—explaining these differences remains largely open. The
challenge is further complicated by an emerging trend: as algorithms grow more
sophisticated in their pursuit of efficiency, they often become increasingly complex.

1.1 Goals

With regard to the above mentioned challenges, the following ambitious question
has driven the research behind this thesis.

Can we design efficient and simple algorithms in a unified way?

3
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The goal of answering this question is threefold.

• Firstly, we want our algorithms to be efficient. In the classical sense, this
means that they should run fast. In other models of computation considered
in this thesis, efficiency is measured by low parallel depth or fast update time.
The pursuit of efficiency is important because it directly impacts the usability,
scalability, and energy costs of the algorithms. Efficient algorithms can handle
larger datasets, perform under tighter time constraints, and utilize resources
more effectively. These are all essential for real-world applications.

• Secondly, we want to design unified algorithms. We approached this in
two key ways. In the problem-unified sense, algorithmic frameworks are
developed to address a general problem, which can then be used to solve
a wide range of related problems. This reduces the need to create distinct
algorithms for every individual problem, promoting a more abstract, reusable
approach. Similarly, models-unified algorithms work across different models
of computation, such as classical, parallel, or communication models. These
algorithms enable the same core ideas to be applied in various settings, thus
bridging gaps between different models of computation and making solutions
broadly applicable. Both perspectives aim for a high level of generalization
and abstraction, and would lead to algorithms that are versatile across various
problems and models. By developing unified algorithms, we can hope to better
understand the essential characteristics that make certain problems solvable
under certain resource constraints, and others not.

• Thirdly, we aim for simplicity. Out of all the possible techniques for solving
the problems, we prioritize simple ones. Simple algorithms offer several
advantages: they are easier to understand, which makes them more likely to
be adapted and extended to new contexts. Moreover, simplicity of algorithms
gives possibilities to teach to a wider audience, implement, and experiment to
measure the algorithms’ performance on real machines.

Designing efficient algorithms alone is a difficult task—for most problems in
computer science, we do not know algorithms with provably optimal running times.
Designing efficient algorithms that are also simple, and in a problem- or model-
unified way, is hence even harder to achieve, and perhaps even impossible as such
algorithms might not even exist. Nevertheless, this thesis strives to develop efficient,
simple, and unified algorithms.

Matchings, Maxflows, Matroids. Towards the above goals, this dissertation fo-
cuses on three related fundamental combinatorial optimization problems: Matchings,
Maximum Flow, and Matroid Intersection.

The study of these problems is originally motivated by their wide-ranging
real-world application in fields such as resource allocation, route planning, and
network optimization. In the field of theoretical computer science, they have
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been central to the study of efficient algorithms since the inception of the field.
Algorithmic improvements for these problems directly imply similar improvements
to many other problems, making them well-suited for developing efficient problem-
unified algorithms. These problems have also been studied from many different
perspectives and serve as benchmarks for understanding the power of our current
techniques in modern models of computations such as parallel, dynamic, online,
and communication settings. While there have been many exciting advances in the
study of matchings, maximum flow, and matroid intersection over the years, we
remain far from fully understanding these fundamental problems. In the following,
we narrow down our goals to three concrete research questions this thesis focuses on.

1. Combinatorial Algorithms vs. Continuous Optimization. The first
algorithms for maximum flow, bipartite matching, and matroid intersection are
all based on a combinatorial algorithmic framework called augmenting paths. For
example, the famous Ford-Fulkerson [FF56], Edmonds-Karp [EK72], and Hopcroft-
Karp [HK73] bipartite matching or maximum flow algorithms are all examples of
augmenting path based techniques. While there have been many improvements in
augmenting-path-based algorithms since their discovery, this progress has slowed
down in recent decades. Instead, recent exciting research for these problems has
focused on continuous optimization methods, culminating in the almost linear time
algorithm for (minimum cost) maximum flow (or bipartite matching) by [CKLPGS22].
These continuous optimization algorithms are usually guided by an interior point
method, and rely on dynamic data structures for graphs and linear algebra.

There are reasons to return and further study the augmenting paths framework.
Firstly, for other problems such as matroid intersection or matching on general
graphs, the state-of-the-art techniques are based on augmenting paths, and it is
unclear if these problems allow for efficient continuous optimization-based methods.
Secondly, augmenting-path algorithm are often simple to reason about since their
progress is combinatorial, and improved augmenting path algorithms would possibly
involve new combinatorial insights for the underlying problem. Thirdly, in practice,
when run on real-world input, classic augmenting path algorithms often outperform1

the continuous optimization methods, despite having worse theoretical guarantees.2
Thus studying augmenting path bases techniques poses a promising avenue to

develop potentially simple, efficient, and unified algorithms. This discussion raises
the question of whether continuous techniques are essential for solving maximum
flow fast:3

1For example, Google’s OR-tools [PF24] maximum flow implementation is based on the classic
push-relabel augmenting paths approach [GT88]. Moreover, benchmarks show that versions of
augmenting paths algorithms perform well in practice, see e.g. [GHKKTW15] and, to date, all
the fast implementations for both the maximum flow and bipartite matching problems on the
benchmarking website [Yos] are all based on augmenting paths.

2We do note, however, that it is not necessary that continuous methods are complicated, nor
that augmenting-path algorithms are inherently simple or practical.

3With combinatorial we mean approaches, such as augmenting paths, that do not depend on
continuous optimization or linear algebra techniques—we discuss this further in Chapter 2.
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Question 1. Can we design optimal maximum flow algorithms that are
combinatorial?

2. Another Problem-Unified Approach. While many problems reduce to
maximum flow, other problems—including k-disjoint spanning trees [GW88; Gab91],
colorful spanning tree [GS85], graphic matroid intersection [GS85; GX89], and many
more (see Chapter 3)—have seen little to no progress in the past decades. It is
unclear if these reduce to maximum flow4 or not, and hence a natural question is:

Question 2. Is there a problem-unified approach to simultaneously improve
the bounds for problems such as k-disjoint spanning trees, colorful spanning
tree, and graphic matroid intersection?

These mentioned problems can be reduced to matroid problems. Hence we study
the matroid intersection and union problems in order to develop problem-unified and
efficient algorithms to answer the above question. Questions 1 and 2 are related to
each other: studying the power of augmenting paths algorithms—both for maximum
flow and matroid intersection—can shed light on both questions.

3. Models Of Computations. Modern computational models extend beyond
the traditional paradigm (which focuses on running time) to address other real-
world resource constraints and opportunities. For example, dynamic and online
algorithms adapt to inputs changing over time. Parallel computing captures how
well a problem can be split up and solved fast in distributed settings such as with
multi-core processors. Communication complexity reflects the costs of data transfer,
which is often the bottleneck in many distributed systems. Understanding how
our fundamental problems—maximum flow, matchings, and matroid intersection—
behave in other models, and how those models relate to each other, remains largely
open. This motivates the following research question.

Question 3. Under what resource limitations are our combinatorial optimiza-
tion problems still efficiently solvable; specifically, can we develop matching
algorithms that work in modern models of computation?

Progress on the above three questions would further our understanding of
the three fundamental problems we study. In the remainder of this chapter, we
describe these problems and their connections briefly, and then summarize our main
contributions towards these questions and our goals.

4After the original submission of this thesis, the paper [AK24] was announced, that, by using
problem-specialized matroid intersection techniques, managed to reduce k-disjoint spanning trees
to k maximum flow instances—hence achieving O(poly(k)m1+o(1)) running time.



1.2. MATCHINGS, MAXFLOWS, MATROIDS 7

1.2 Matchings, Maxflows, Matroids

This section describes the three key topics of this thesis: Matchings, Maximum Flow,
and Matroid Intersection. Figure 1.1 illustrates some examples of these problems.
Formal definitions of the problems can be found in Chapter 2 (maximum flow),
Chapter 3 (matroid intersection), and Chapter 4 (two matching problems: bipartite
matching and edge coloring).

These problems are not only significant in their own right but are also intercon-
nected with a wide array of other problems. As illustrated in Figure 1.2, numerous
other combinatorial optimization problems, including bipartite matching, can be
reduced to either maximum flow, matroid intersection problem, or both. Via these
reductions, new algorithms for maximum flow and matroid intersection have the
potential to simultaneously address multiple related problems. By studying these
key problems, we hence aim to develop new problem-unified and efficient algorithms.

s t

(a) Maximum Flow

(c) Edge Coloring

(b) Disjoint Spanning Tree

(d) Bipartite Matching/ Matroid Union

Figure 1.1: Illustrations of the graph problems we consider in this thesis.
(a) A (unit-capacitated) maximum flow instance, with an optimal solution in orange.
(b) A special case of the matroid intersection/union problem, namely decom-
posing a graph into two disjoint spanning trees (one in black, one in orange).
(c) An edge coloring instance, the answer uses an optimal number of four colors.
(d) A bipartite matching instance, with a maximum matching marked in orange.

Matchings. A matching in a graph is a set of edges where no two edges share the
same vertex. The bipartite matching problem asks to find a maximum size matching
in a bipartite graph, for example, matching job applicants to job positions. The
bipartite matching problem plays a central role in this thesis together with two
generalizations in different directions: maximum flow and matroid intersection. This
thesis also studies another variant of the matching problem, namely edge coloring,
which this thesis solves using improved matching algorithms. The edge coloring
problem asks us to color the edges of a graph using a minimum number of colors
such that no two edges sharing a vertex get the same color (or equivalently, covering
a graph with the fewest number of matchings).
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Maximum Flow

Bipartite Matching

Vertex Connectivity

Edge Connectivity

Gomory-Hu Trees
k-Disjoint Spanning Trees

Arboricity

Colorful Spanning Trees

Tree Packing

Graphic Matroid Intersection

Job Scheduling Matroid Intersection

Matroid Intersection/Union

Airline Scheduling

Closure Problem

Transhipment

Negative Weight Shortest Path

Densest Subgraph

Baseball Elimination

Directed Cut

Path Cover

Figure 1.2: Many problems reduce to the maximum flow or matroid intersection
problems, including the bipartite matching problem. A reduction (arrow) from
problem A to problem B means that if one can (efficiently) solve problem B one
can also (efficiently) solve problem A. Some of these reductions are only for the
weighted variants (i.e., minimum cost maximum flow, max-cost bipartite b-matching,
and weighted matroid intersections).

Maximum Flow. The maximum flow problem involves finding the maximum
amount of flow that can be routed through a network from a source to a sink,
respecting edge capacities. This fundamental problem has numerous applications in
transportation, networking, and scheduling. For example, how much throughput
of traffic that can be routed between two cities in a road network is an example
of a maximum flow problem. Maximum flow serves as a cornerstone for many
other graph algorithms and can be used to solve various related problems, including
bipartite matching.

Matroid Intersections. Matroids are fundamental combinatorial objects that
capture a notion of independence, for example spanning trees in graphs or linear
independence in vector spaces. Matroid intersection (and the special case of matroid
union) is a generalization of many combinatorial optimization problems, including
bipartite matching, arborescences, and colorful spanning trees. It involves finding
the largest set that is simultaneously independent in two different matroids defined
on the same ground set. This problem captures many scenarios where one needs to
optimize over two or more constraints at the same time. As a nontrivial example, it
models the problem of finding two edge-disjoint spanning trees in a graph.

1.3 Summary of Contributions

This thesis designs novel and efficient augmenting-path algorithms for the maximum
flow and matroid intersection problems. Further, we give algorithms for matchings—
specifically for the bipartite matching and edge coloring problems—in various models
of computations.
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1.3.1 Augmenting Path Algorithms
This thesis tackles Question 1, i.e. the power of combinatorial algorithms, by
developing augmenting-path-based algorithms for the maximum flow and matroid
intersection problems. Our improved algorithms for matroid intersection together
with a new dynamic-oracle model address Question 2 by showing a problem-unified
approach to design efficient algorithms.

The basic idea behind augmenting paths is quite straightforward, see Figure 1.3
for an example of the concept applied to the maximum flow problem. How to apply
augmenting paths to the bipartite matching and matroid intersection problems is
similar.

s t s t

Figure 1.3: Execution of an augmenting-path algorithm for the maximum flow
problem where all capacities are 1. On the left, one (s, t)-path is found, marked in
orange. After augmenting along this path, the edges of this path become saturated
so they are removed, and corresponding backward edges are added to form the
residual graph, on the right. These backward edges allow for “un-sending” the flow
along those edges, in case they were not part of the optimal solution. Then another
augmenting path (marked in orange) is found in this residual graph. Note that this
path uses previously reversed edges, effectively canceling out the old flow on those
edges. The resulting flow of the two augmenting paths is exactly the flow depicted
in Figure 1.1 (a).

The earliest augmenting path algorithms are often referred to as the Hungarian (or
Kuhn-Munkres) algorithm [Kuh55; Mun57] that solves the assignment problem—also
known as the min-cost perfect bipartite matching problem—or the Ford-Fulkerson
algorithm [FF56] for the maximum flow problem. However, Jacobi might have
invented a version of the Hungarian algorithm as early as 1836, although it was
only published posthumously [JB65].5 In the 1960’s, Edmonds [EDVJ68; Edm70]
showed a version of augmenting paths for the matroid intersection problem.

Next, we describe our key contributions new augmenting path algorithms for
maximum flow and matroid intersection.

Combinatorial Maximum Flow. We make progress on Question 1 by developing
a new combinatorial maximum flow algorithm. In particular, ours is the first such
algorithm that runs in almost linear time on dense graphs, hence answering Question 1
when the input graph is dense. The new algorithm is based on iteratively finding
augmenting paths and runs in n2+o(1) logU time on directed n-vertex graphs with
edge capacities in {1, 2, . . . , U}. Even in unit capacitated graphs, this represents the

5Since this was before the invention of (theoretical) computer science as a field, there were no
proofs of correctness or of polynomial running time.
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first improvement in combinatorial maximum flow algorithms since the augmenting
path based algorithms of [Kar73; ET75]. Similarly, for the special case of bipartite
matching, our algorithm together with the independent work of [CK24a; CK24b], is
the first combinatorial improvement since the well-known O(m

√
n)-time Hopcroft-

Karp algorithm [HK73].
In order to achieve this result, we develop a new variant of the classic push-

relabel algorithm [GT88] that is guided by additional edge lengths as a hint, allowing
it to focus on finding “short” augmenting paths. To find suitable edge lengths,
we introduce and construct directed expander hierarchies, a generalization of a
powerful graph decomposition technique previously for undirected graphs [Räc02;
PT07; RST14; GRST21]. While our new maximum flow algorithm is conceptually
simple, our construction of the expander hierarchy is complicated, although there
is hope that future work can significantly simplify this step as directed expander
decomposition techniques mature.

For further discussion about our maximum flow algorithm, and contributions
towards Question 1, see Chapter 2 or Paper A [BBST24].

Faster Matroid Intersection and Union. Towards answering Question 2, this
thesis gives several improved algorithms for the matroid intersection and the related
matroid union problem. Since many other problems reduce to matroid intersection
(recall Figure 1.2 on page 8), our improved algorithms give a problem-unified
framework to solve many problems simultaneously, such as the k-disjoint spanning
tree, colorful spanning tree, and graphic matroid intersection problems. All our
matroid algorithms are based on a version of the augmenting paths framework, and
are hence also combinatorial, in the spirit of Question 1.

Since it in general requires an exponential number of bits to represent a matroid,
algorithms for matroid intersection usually assume query access to an oracle instead.
As an conceptual contribution, we introduce a new dynamic oracle model for matroid
optimization, giving a clearer understanding on how one can preserve efficiency of
the algorithms through the aforementioned reductions from other problems.

We develop both new exact and approximation algorithms, in various oracle
models. We also extend algorithms to work in the parallel setting. Our main
contributions include

(i) the first matroid intersection algorithm using a subquadratic number of inde-
pendence queries,

(ii) an improved rank-query algorithm for matroid union for dense matroids,

(iii) the first sublinear depth parallel matroid intersection algorithms, and

(iv) the first superlinear lower bounds.

Our results resolve open problems asked by, e.g., [Wel76; Har08b; LSW15; CLSSW19;
CCK21].
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As an example of a direct consequence of our algorithms, we obtain the first6

algorithm that can find two disjoint spanning trees in a reasonably dense (n-vertex,
m-edge) graph in near linear time, namely Õ(m+ n

√
n) time.

Chapter 3 further discusses our new matroid intersection algorithms and Ques-
tion 2. Details can be found in Paper B [BBMN21], Paper C [Bli21], Paper D [Bli22],
and Paper E [BMNT23].

1.3.2 Models Of Computation
Towards answering Question 3, i.e. understanding the power and limitations of mod-
ern models of computations through the matching problem, this thesis studies our
fundamental problems through the lens of online, dynamic, parallel, communication,
and various query settings.

These computational models extend beyond the traditional sequential paradigm
to address other resource constraints and opportunities. For example, dynamic and
online algorithms adapt to changing inputs, as is often the case of real world data.
Parallel computing captures how well a problem can be split up and solved fast in
distributed settings such as with multi-core processors. Communication complexity
reflect the costs of data transfer, which is often the bottleneck in many systems.

We already mentioned that our augmenting path algorithms for matroid intersec-
tion can also be implemented in the parallel setting as well in various query models,
making for a model-unified algorithmic approach. Below, we mention additional
contributions included in this thesis, specifically about the matching problems—edge
coloring and bipartite matching—in different models of computation. More details
and discussion about these contributions and Question 3 can be found in Chapter 4.

Communication and Query Complexity of Bipartite Matching. Communi-
cation complexity is the most basic model for capturing communication bottlenecks
in computation. In the communication setting, the input (in our case the edges of a
graph) is split up between two (or more) parties, and they are tasked with solving a
problem together, using as little communication between them as possible. In query
models, the underlying graph is unknown and one needs to ask queries to an oracle
to figure out sufficient information about the graph to solve the given problem.
Determining the communication and query complexities of bipartite matching are
open problems that have been repeatedly raised in literature by, e.g., [HMT88;
IKLSW12; DNO19; Nis21].

We show a surprisingly simple algorithm and tight lower bounds that resolve these
open problems by (essentially) settling the communication and query complexity of
the bipartite matching problem in at least six models (two-party communication,
OR queries, XOR queries, AND queries, independent set queries, quantum edge
queries) in a model-unified way. See Section 4.2 or Paper F [BBEMN22] for more
details.

6[Qua23] independently and concurrently showed a similar result.
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Incremental Approximate Matching. Dynamic algorithms extend the stan-
dard runtime analysis to the real-world settings where changes constantly occur. One
challenging open problem is how fast one can recompute an approximate maximum
matching undergoing changes to the underlying graph. In the incremental dynamic
model, edges of a bipartite graph are revealed one by one. The goal is to maintain a
(1− ε)-approximate (i.e., almost maximum) matching after each update. A trivial
approach is to recompute the matching from scratch after each update, however
this is wasteful of resources like computing power, time, and electricity. Instead a
dynamic algorithm maintains some structure of the underlying graph to efficiently
process each subsequent update to avoid recomputing from scratch.

We show a simple algorithm with constant update time poly(1/ε) (i.e., completely
independent on how large the graph is), for maintaining a (1 − ε)-approximate
matching. See Section 4.3 and Paper G [BK23] for more details.

Online Edge Coloring. Studying online algorithms is important for making
decisions that cannot change. The online model is similar to the incremental
dynamic model in that edges are revealed one by one. However, a crucial difference
is that an online algorithm must make an irrevocable decision about the edge upon
arrival. For example, in the online edge-coloring problem, the algorithm must assign
a color to the arriving edge immediately and cannot change the assigned color
later. In the incremental dynamic model, the goal was fast update time, but in the
online model the goal is being able to produce a good solution (that is, one that is
competitive with what an offline algorithm with unlimited resources can produce).
This is usually challenging, since the algorithm must make these irrevocable decisions
before seeing the full input.

We resolve a longstanding conjecture of [BMN92] by showing that there is an
online algorithm that uses at most (1+o(1)) ·∆ colors (i.e., almost the same number
of colors as an offline algorithm) for graphs of maximum degree ∆ ≥ ω(logn). Our
edge-coloring algorithms, discussed in Section 4.4 (and in Paper H [BSVW24b] and
Paper I [BSVW24a]), and their analyses, are surprisingly simple, and extend to
other related problems such as list edge coloring or rounding spread out fractional
matchings online.

Organization

The following three chapters each focuses on one of the three topics: maximum
flow, matroid intersection, and matchings. Specifically, Chapter 2 presents a new
augmenting-path-based combinatorial algorithm for maximum flow. Chapter 3
presents a sequence of advances of augmenting path based algorithms for matroid
intersection. Chapter 4 presents our result on matchings in different models of
computation, including communication and query complexity (Section 4.2), dynamic
(Section 4.3), and online (Section 4.4). To conclude, we end with discussions of open
questions and future directions in Chapter 5.



Chapter 2

Maximum Flow

In this chapter we outlines our combinatorial n2+o(1) algorithm for the maximum
flow problem from Paper A [BBST24]. We begin by defining the problem.

Maximum Flow.
Given a directed n-vertex, m-edge graph G = (V,E) with positive integer
edge capacities c : E 7→ {1, 2, . . . , U} and two special vertices s, t ∈ V , a flow
f : E 7→ R satisfies:

• capacity constraints 0 ≤ f(e) ≤ c(e), and

• conservation of flow at each vertex v ∈ V \ {s, t}, that is the outgoing
flow equals the incoming flow, i.e.,

∑
(v,u)∈E f(v, u) =

∑
(u,v)∈E f(u, v)

for all v ∈ V \ {s, t}.

The maximum flow f is the one that routes the largest flow from the source s
to the sink t, i.e., the flow maximizing

∑
(s,u)∈E f(s, u)−

∑
(u,s)∈E f(u, s).

Efficient algorithms for calculating maximum flows have been a key focus in
algorithmic research, inspiring various approaches including graph sparsification,
dynamic data structures, and continuous optimization techniques. Maximum flow
algorithms have broad applications, including in areas such as bipartite matching,
vertex connectivity, directed cut, and the construction of Gomory-Hu trees (see e.g.,
[GH61; LP20; LNPSY21; CLNPSQ21; CHLP23; ALPS23]). Consequently, studying
efficient algorithms for the maximum flow problem provides a solid foundation for
developing a unified approach to solving multiple problems with the same framework.

Recent years have witnessed exciting advancements in maximum flow algorithms
based on continuous optimization and dynamic graph data structures (see e.g.,
[ST04; CKMST11; KMP12; She13; KLOS14; Pen16; She17; ST18; DS08; Mad13;
LS14; Mad16; LS20; KLS20; LS14; KLS20; DGGP19; BBPNSSS22; CGHPS20;
BLNPSSSW20; BLLSSSW21; GLP21; BGJLLPS22]), culminating with the break-

13
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through work of [CKLPGS22]. They show the first maximum flow1 algorithm that
runs in almost linear time, m1+o(1).

Combinatorial Approaches. While recent advancements have achieved (almost)
optimal time complexity for maximum flow algorithms, these solutions are complex
both conceptually and technically. Modern continuous optimization methods modify
flow solutions without clear combinatorial interpretations, and they rely on intricate
dynamic graph data structures.

In contrast, combinatorial algorithms do not rely on sophisticated linear algebra
or continuous methods. Instead, they work with discrete structures of the underlying
(graph) problem.

Earlier flow algorithms, while less efficient, employed the more intuitive and
combinatorial augmenting paths framework. For computing maximum flows, this
framework was initially proposed by Ford and Fulkerson [FF56]. In this approach,
algorithms iteratively identify an augmenting path (or a set of such paths) within
the residual graph, then increase the flow along this path by an amount equal to
the path’s bottleneck capacity (recall Figure 1.3). This straightforward concept
sparked the development of several algorithms over the subsequent decades. These
include the shortest augmenting paths method [EK72], the concept of blocking flows
[Kar73; Din70; GR98; HK73], the push-relabel algorithm [GT88; Gol08], and graph
sparsification techniques [KL15].

However, progress on augmenting path (or combinatorial) approaches to the
maximum flow problem have slowed down in the recent decades in favor of the
continuous optimization approaches (see Table 2.1 for a summary of maximum flow
algorithm development). It is however unclear if these continuous techniques are
indeed necessary to develop fast maximum flow algorithms. This raises Question 1,
which we repeat below.

Question 1. Can we design optimal maximum flow algorithms that are
combinatorial?

Recent research has explored this direction, aiming to develop improved combina-
torial algorithms for various other problems, such as boolean matrix multiplication
[AFKLM24; BW09] and bipartite matching [CK24a; CK24b].

For the maximum flow problem, we tackle Question 1 by revisiting the augmenting
paths framework. Indeed, augmenting path algorithms are commonly implemented
in practice and often perform well on real-world inputs, despite having worse
theoretical guarantees than the more modern continuous optimization techniques.
Another reason for studying on augmenting path algorithms is that it is uncertain
whether efficient continuous optimization methods exist for other problems, such as
matroid intersection and matching on general (non-bipartite) graphs, where the best
current running times are achieved using variations of the augmenting path-based

1Their algorithm also works for the more general minimum cost maximum flow problem.
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approach. Improved augmening path algorithms for the maximum flow problem
hence have a chance of being adapted to give faster algorithms for general matching
or matroid intersection.

2.1 Contribution

In Paper A [BBST24], we make considerable progress towards Question 1 by
designing an augmenting-path-based algorithm whose running time is almost optimal
for dense graphs.

Theorem 2.1.1. There is an augmenting path-based randomized algorithm that,
given a directed graph with n vertices and edge capacities from {1, 2, . . . , U}, with
high probability2, computes a maximum flow in n2+o(1) logU time.

Our algorithm represents the first improvement in combinatorial approaches since
the Õ(m ·min{

√
m,n2/3}) algorithms developed in the 1970s by [ET75] and [Kar73]

for unit-capacitated graphs, and in the 1990s by [GR98] for general capacities. See
also Table 2.1 for a comparison with other combinatorial and non-combinatorial
algorithms.

Year Comb? Authors Running Time Comments
1955 ✓ [FF56] O(m · ∥answer∥)
1970 ✓ [EK72] O(m2n)
1970 ✓ [Din70] O(mn2) “Blocking Flow”
1975 ✓ [ET75] O(mn2/3) (unit-capacity)
1988 ✓ [GT88] Õ(mn) “Push-Relabel”
1998 ✓ [GR98] Õ(m ·min{

√
m,n2/3})

2014 [LS14] Õ(m
√
n)

2020 [KLS20] m4/3+o(1) (unit-capacity)
2021 [BLLSSSW21] Õ(m+ n

√
V )

2021 [GLP21] Õ(m3/2−1/328)
2022 [CKLPGS22] m1+o(1)

2024 ✓ Ours n2+o(1) Paper A [BBST24]

Table 2.1: A non-exhaustive history of maximum flow algorithms. Running times are
stated for n-vertex, m-edge graphs with polynomially (in n) large capacities. Combi-
natorial algorithms—in this case, all based on the augmenting paths framework—are
marked by a check mark ✓. The other algorithms are based on continuous optimiza-
tion techniques.

In an independent line of similar work, [CK24a; CK24b] presented a combi-
natorial n2+o(1) algorithms for computing the maximum bipartite matching (and

2With high probability means with probability 1 − 1/nc for an arbitrarily large constant c.
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consequently, also unit-vertex-capacitated maximum flow), a special case of the
maximum flow problem. Their techniques are based on dynamic shortest-path data
structures and multiplicative weights update and, hence, different from ours. For
bipartite matching, [CK24a; CK24b] and our algorithm are the first improvement,
in sufficiently dense graphs, in combinatorial algorithms since the classic O(m

√
n)

time Hopcroft-Karp [HK73] algorithm. The O(m
√
n) time bound of the Hopcrof-

Karp algorithm comes from a natural balancing out two terms: finding all “short”
augmenting paths up to length ℓ (setting ℓ =

√
n) in O(mℓ) time, and then the

remaining n/ℓ many “long” augmenting paths one by one, each in O(m) time, for
a total of O(mℓ+mn/ℓ) time. To enable our new augmenting paths algorithm to
achieve near-linear time on dense graphs, we move away from this balancing of short
and long paths. Instead, we introduce a new notion of “lengths” that depends on
the structure of the input graph, and use these lengths to guides our augmenting
paths.

Sketch of Techniques. Our algorithm strictly follows the augmenting path
framework in that it always sends integral flows along paths. Note that it suffices to
design a constant- or even 1/no(1)-approximate flow algorithm for directed graphs,
as the exact algorithm then follows by repeating the approximate algorithm no(1)

times on the residual graph.3 See also the technical overview Section A.2 in Paper A
[BBST24] for a more comprehensive overview of our approach.

Our first technical contribution is a new version of the classic push-relabel
algorithm [GT88] that also supports additional edge weights as inputs. These edge
weights serve as hints on how to list augmenting paths efficiently, allowing the
algorithm to focus on finding short paths (with respect to these edge weights); edges
with higher weight are relabeled less often.

These additional edge weights w : E → Z≥1 need to satisfy certain properties
for them to be useful. We call the edge-weight function w good if the following are
satisfied:

• Running-Time-Property:
∑
e∈E

n
w(e) ≤ n

2+o(1). This is required to guar-
antee the running time of the push-relabel algorithm.

• Approximation-Property: There must exist a 1/no(1)-approximate flow f⋆

which is “short” with respect to the edge weights, i.e., the average length of
unit-flow paths in f⋆ is small:

∑
e∈E w(e)f⋆(e) ≤ n1+o(1). This is required

to guarantee that the flow f computed by our push-relabel algorithm is at
least a constant fraction of f⋆.

Finding good edge-weights on directed acyclic graphs (DAG) turn out to be easy:
set w(u, v) = |τ (u)− τ (v)| where τ is a topological order. This, together with our

3This is in contrast to undirected graphs, where, although efficient approximations are
known [She13; KLOS14; Pen16; She17; ST18], the residual graph of becomes directed, not
allowing the approximate flow algorithm to be bootstrapped to an exact one.
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new weighted push-relabel, immediately gives a simple, constant-approximate flow
algorithm in Õ(n2) time on DAGs. See Section 2.1.1 for further discussion on our
weighted push-relabel algorithm, and why the above w is good.

Directed Expander Hierarchy. What remains is to find good edge weights on
general directed graphs. It turns out that setting w(u, v) = |τ ′(u)− τ ′(v)| where,
informally, τ ′ is something like a “pseudo-topological-order” works. To find this
ordering of vertices τ ′, we introduce and construct directed expander hierarchies.

Expander decomposition is a powerful technique for flow, cut, and shortest path
problems. In the directed setting (see e.g., [BPS20; HKPW23; SP24]), it identifies a
small set of back-edges B such that each strongly connected component of G \B is
an expander. An expander is a well-connected graph of low diameter (see Paper A
[BBST24] for a full definition), that allow for easy routing of flows. As an example,
random graphs are expanders.

In an expander hierarchy, there are multiple (logn or fewer) levels of expander
decomposition (to recursively handle the back edges B). While there are success-
ful variants of expander hierarchies in undirected graphs [Räc02; PT07; RST14;
GRST21], we believe that ours is the first application of them in directed graphs.
Given a directed expander hierarchy of a graph, we show a simple algorithm which
finds a suitable “pseudo-topological-order”. To demonstrate that this induces a good
edge weights, we establish a new trade-off between path length and congestion when
rerouting flow on expanders.

Additionally, to prove the existence of a sparse level cut—which is necessary
when constructing the expander hierarchy—we introduce a novel approach to the
directed expander pruning problem, as explored in [BPS20; HKPW23; SP24]. The
traditional version of pruning certifies that, after a few edges in a expander X are
erased, there is a small (proportional to the number of removed edges) pruned part
P such that X \ P still remains an expander. We extend this technique to handle
path-reversal updates—an operation that naturally arises in residual graphs during
the reversal of augmenting paths. Interestingly, reversing an entire path has roughly
the same effect on pruning as erasing a single edge. This insight allows us to prove
that the directed expander hierarchy remains robust under flow augmentation.

Constructing our directed expander hierarchy can be done in a top-down manner
as in the undirected case [RST14], however, this uses a maximum flow subroutine,
which we cannot assume. Instead, we show a bottom up construction where, to build
the ℓ’th level of the hierarchy, we bootstrap our weighted push-relabel algorithm
and feed it edge weights from the lower levels. This comes with several technical
challenges, and unfortunately introduces a large amount of complexity. We hope
that this can be simplified as directed expander decomposition techniques matures.

Summary. Unlike recent advancements, our combinatorial maximum flow ap-
proach does not depend on continuous optimization or complex dynamic data
structures. Moreover, it opens the door to a highly implementable Õ(n2)-time
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deterministic algorithm, contingent on future simplifications in the construction of
directed expander hierarchies. Paper A [BBST24] is largely self-contained, with
the only external components being standard graph algorithms (e.g., topological
sorting, Dijkstra’s algorithm, and link-cut trees [ST83]), and Louis’s cut-matching
game [Lou10] used in our expander decomposition. We also hope that some of the
new tools we developed—including the weighted push-relabel algorithm, directed
expander hierarchy, and expander pruning under path-reversals—will have broader
applications in the future.

2.1.1 Weighted Push Relabel

Let us first recall a simple version of the classic push-relabel [GT88] algorithm called
augment-relabel (see e.g., [Gol08]). This version only pushes whole augmenting
paths, and hence always keeps track of a flow (as opposed to a preflow). The
algorithm begins by computing ℓ(v) as the distance from vertex v to the sink t. Call
an edge (u, v) admissible if ℓ(u) = ℓ(v) + 1. Now, the algorithm will trace a shortest
augmenting path by arbitrarily following admissible edges starting from the source
s until they reach the sink t. The algorithm continues by recomputing the distance
labels ℓ(v) in the residual graph, and then augments along another path, and so on.

A crucial observation is that after a path-reversal of a shortest augmenting path,
the distance from any vertex v to the sink can only increase. That is, the labels
ℓ(v) are monotonically increasing. The augment-relabel algorithm thus uses the
following simple relabeling strategy to recompute the labels: while a vertex u ̸= t
with no admissible outgoing edges exists, increment ℓ(v) by one. When ℓ(v) > n we
can ignore v since we know it cannot reach the sink anymore.

In total there are at most n2 relabel operations, since each vertex will visit each
distance level at most once. The running time is Õ(nm) if implemented carefully,
as each edge will be tried once as an admissible edge on each level, and, in the
capacitated setting, flow can be pushed efficiently over dynamic trees [ST83].

Weighted Push-Relabel. Our new algorithm follows a similar approach to the
above one. The key difference is that the distances are computed with respect to
our additional edge weights w : E → Z≥1. In particular, we call an edge e = (u, v)
admissible if ℓ(u) ≥ ℓ(v) + w(e). Again, there are at most O(n2) relabel operations,
but we will beat the O(nm) time bound for handling the edges. Indeed, for an edge
e = (u, v), we only consider it ≈ n

w(e) times in the algorithm—when either of u or
v enters a level which is a multiple of w(e)

10 . This means that the algorithm allows
some slack in the edge lengths and only maintains approximate distances as ℓ.

The implementation turns out to be similar to the standard push-relabel or
augment-relabel algorithm. The algorithm runs in Õ(n2 +

∑
e∈E

n
w(e) ) time, which

is small assuming the running-time-property. To prove the approximation factor,
assuming the approximation-property, is also easy: if the algorithm sends less than,
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say, a 1
10 -fraction of the flow, then, by an averaging argument, there must remain a

reasonably short flow path.

Good Edge Weights for DAGs. Let w(u, v) = |τ (u) − τ (v)|, where τ is a
topological order of the input directed acyclic graph G = (V,E). That is, τ is a
bijection from V to {1, 2, . . . , n}, so that τ (u) > τ (v) for all edges (u, v) ∈ E. We
argue that this is a good weight function. Indeed, the running-time-property holds
since ∑

e∈E

n

w(e) ≤
∑
u∈V

∑
(u,v)∈E

n

|τ (u)− τ (v)| = O(n2 logn),

as the inner sum is at worst a harmonic sum. The approximation-property is also
easy: all paths in a DAG has length at most n according to w, since traversing
some edge e brings us forward by w(e) in the topological order. Since all paths
have length at most n, so do all paths in the maximum flow. Combined with the
new weighted push-relabel algorithm, this gives a simple constant-approximate flow
algorithm for DAGs running in Õ(n2) time.4

Good Edge Lengths in General Graphs. We note that if we already had a
maximum flow f⋆ of the graph, we can assume that the support of f⋆ induces a
DAG (any cycles can be cancelled in the flow). The topological order of this DAG
would then give a good edge lengths for the full graph. However, we can of course
not assume that we already know a maximum flow in order to solve the maximum
flow problem. Instead we introduce a notion of directed expander hierarchies (and
show how to bootstrap our weighted push-relabel to compute them) that will give
us a good enough approximation of the topological order of an (unknown) maximum
flow, hence giving us good edge lengths. See Paper A [BBST24] for more details.

4However, the residual graph might no longer be a DAG, so to get exact flow on DAGs one
still need to find good edge lengths for general graphs.





Chapter 3

Matroid Intersection and Union

This chapter outlines recent advances in matroid intersection algorithms (Paper B
[BBMN21], Paper C [Bli21], Paper D [Bli22], Paper E [BMNT23]).

As mentioned in the previous chapter, via reductions to (minimum cost) max-
imum flow, exciting progress has been made for many graph problems such as
maximum matching, vertex connectivity, directed cut, and Gomory-Hu trees. How-
ever, some other problems—such as k-disjoint spanning trees [GW88; Gab91],
colorful spanning tree [GS85], arboricity [Gab95], spanning tree packing [GW88],
graphic matroid intersection [GS85; GX89], and simple job scheduling matroid
intersection [XG94]—have seen little to no progress in the past decades. It is unclear
if these problems allow for efficient reductions to (minimum cost) maximum flow.
This motivates Question 2, which we restate below.

Question 2. Is there a problem-unified approach to simultaneously improve
the bounds for problems such as k-disjoint spanning trees, colorful spanning
tree, and graphic matroid intersection?

Many of these problems can be modeled as matroid problems, making it a
natural avenue of study to improve bounds for these problems all at once in a unified
manner. We begin by formally defining matroids and the optimization problems we
consider in this chapter.

Matroid. A matroid M = (U, I) is defined by a tuple consisting of a finite ground
set U and family of independent sets I ⊆ 2U such that the following properties hold.

• Non trivial: The empty set is independent, that is ∅ ∈ I.

• Downward closure: If S ∈ I, then any subset S′ ⊆ S is also in I.

• Exchange property: For any two sets S1, S2 ∈ I with |S1| < |S2|, there
exists an x ∈ S2 \ S1 such that S1 + x ∈ I.

21
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Examples of matroids include:

• The colorful matroid1, in which each element e ∈ U has a color, and a set
of elements S ⊆ U is independent (i.e. S ∈ I) if and only if there are no
duplicates colors in S.

• The graphic matroid, where the elements U correspond to the edges of a graph
G = (V,E), and a set of elements (edges) S ⊆ E is independent if and only if
it there are no cycles in S.

For X ⊆ U , the rank of X, denoted by rank(X), is the size of the largest
independent set contained in X, i.e., rank(X) = maxS∈I |X ∩ S|. For example, in
the colorful matroid, the rank counts the number of distinct colors inside X. The
rank of a matroid M = (U, I) is the rank of U .

Optimization Problems. We now define the problems we study in this chapter.
We begin with the matroid intersection problem.

Matroid Intersection.
Given two matroids M1 = (U, I1) and M2 = (U, I2) over the same ground
set U , find a common independent set S ∈ I1 ∩ I2 of maximum size.

We use n := |U | to denote the ground set size and r to denote the rank of
the input matroids. Perhaps the simplest and most well-known example of the
matroid intersection problem is the bipartite maximum matching problem (discussed
in Chapter 4), in which the ground set are the edges, and the two input matroids are
both colorful matroids with the colors corresponding to the vertices that edges are
incident to in the two sides of the graphs. In this case, n = |E| and r = |V |. Another
matroid intersection problem is the colorful spanning tree problem, in which, given
a (edge-)colored graph, one should find a spanning tree without duplicate colors
among its edges.

Further, we look at the closely related matroid union problem.

Matroid Union.
Given k matroids M1 = (U, I1), . . . ,Mk = (U, Ik) over the same ground set
U , find k independent sets Si ∈ Ii such that their union S1 ∪ S2 ∪ · · · ∪ Sk
has maximum possible size.

Indeed, matroid union and matroid intersection reduce to each other in poly-
nomial time, and algorithms for the two problems are very similar. As a concrete
example of matroid union, consider the k-disjoint spanning tree problem. In this
problem, we are given a graph G = (V,E), and are asked to find k edge-disjoint

1A special case of the partition matroid.
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spanning trees (or determine if it is impossible). The ground set U would correspond
to the edge set E, and the k input matroids would all be identically set as the
graphic matroid of G.

There are many other problems which can be reduced to either matroid intersec-
tion or matroid union, see Table 3.1.

Oracle Access. Since a matroid, in general, requires exponentially many bits
to specify, algorithms for matroid intersection and union are commonly not given
an explicit representation of the input matroids. Instead, the algorithms access
the matroid by asking queries to oracles. The most well-studied query model is
the independence query, in which one can specify a subset S ⊆ U and ask if it is
independent or not (i.e. “Is S ∈ I?”). Another well-studied model is the stronger
rank query model, where the oracle instead answers with the rank of S, i.e., rank(S).
Note that the rank query is strictly more powerful, since, by definition, rank(S) = |S|
if and only if S ∈ I.

The traditional efficiency measure for matroid intersection algorithms is the
number of queries it uses. Section 3.2 (and Paper E [BMNT23]) defines an alternative
cost measure—called dynamic oracle model—based on how matroid intersection is
often used in applications. The intuition is that a query that is “far” from previous
queries should be more expensive than a query that is “close” (as “close” queries
would be cheaper to process if the oracles were implemented by a dynamic data
structure).

3.1 Contribution

We push the augmenting path based framework for matroid intersection and union
further, which lets us obtain several new results. Highlights include (i) the first
matroid intersection algorithm using a subquadratic number of independence queries,
(ii) the first linear-“in-dense-matroids” rank-query algorithm for matroid union,
(iii) the first sublinear depth parallel matroid intersection algorithms, and (iv) the
first super-linear query lower bound. We describe these contributions below.

Subquadratic Matroid Intersection. In the independence oracle model, beating
the Õ(n2) bound, known as the quadratic barrier, was an open problem that
captures the limits of techniques from two lines of work. The first one is the classic
augmenting-paths based algorithm of [Cun86], whose Õ(n2)-query implementations
were shown by [CLSSW19; Ngu19]. The other one is the continuous optimization
based approach of [LSW15]. In our work, we break this “quadratic barrier” and
advance the augmenting path framework for matroid intersection.

Theorem 3.1.1. Matroid intersection can be solved using either:

• Õ(nr3/4) independence queries by a randomized algorithm, w.h.p.,
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• Õ(n11/6) independence queries by a deterministic algorithm, or

• Õ(n
√
r) rank queries by a deterministic algorithm.

The above algorithms also work in the dynamic oracle models.

There are two key ingredients to the above theorem: a subquadratic way of even
finding a single augmenting path, and an efficient approximation algorithm. The
rank query algorithm was shown by [CLSSW19], and in Paper E [BMNT23], we
generalize this to the dynamic rank oracle model (as described later in Section 3.2).
In the independence query algorithms, a routine to find a single augmenting path
fast is given in Paper B [BBMN21] and an improved approximation algorithm in
Paper C [Bli21].

Linear Matroid Union in Dense Matroids. Known reductions between ma-
troid intersection and matroid union of k martroids implies a Õk(n

√
r) rank-query2

matroid union algorithm based on Theorem 3.1.1. In Paper E [BMNT23], we give
an improved algorithm when r = o(n), using Õk(n+ r

√
r) rank queries. In many

graph problems, this would translate to an Õ(|E|+ |V |
√
|V |) running time—that

is linear in reasonably dense graphs—as opposed to the previous bound that gives
Õ(|E|

√
|V |).

Theorem 3.1.2. Matroid union can be solved using Õk(n+ r
√
r) rank queries. The

algorithm also works in the dynamic oracle model.

As a direct consequence, we get improved algorithms for many other problems,
see also Table 3.1. Importantly, we obtain the first3 near-linear time algorithm in
reasonably dense graphs for finding two disjoint spanning trees in a graph, improving
on the Õ(|V |

√
|E|) bound of [GW88; Gab91].

Corollary 3.1.3. Two disjoint spanning trees in a graph G = (V,E) can be found
in Õ(|E|+ |V |

√
|V |) time.

Sublinear Parallel Matroid Intersection. Despite recent advancements in
sequential matroid intersection algorithms, the fastest poly(n)-query parallel algo-
rithm remained a trivial O(n)-round parallel implementation of Edmonds’ method
from the 1960s. [CCK21] established a lower bound of Ω(n1/3) rounds for any
parallel rank-query algorithm, questioning if this lower bound could be improved to
Ω(n) or if sublinear-round algorithms were possible.

In Paper D [Bli22], we resolve this open problem by presenting the first sublinear-
round parallel matroid intersection algorithms, breaking the trivial O(n) bound in
both rank-oracle and independence-oracle models.

2Where Ok(·) also hides poly(k) factors.
3Independently and concurrently to our work, [Qua23] achieved similar query bounds for

matroid union and running time for the k-disjoint spanning tree problem.
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Theorem 3.1.4. Matroid intersection can be solved in parallel using either:

• O(n3/4)-rounds of rank queries, or

• O(n7/8)-rounds of indpendence queries.

Superlinear Lower Bound. We show the first super-linear independence query
lower bounds for matroid intersection and union problem.4 Our simple lower bound
improves on the previous ≈ 1.58n bound by [Har08a] and answers an open problem
raised by, e.g., [Wel76] and [CLSSW19].

Theorem 3.1.5. Any deterministic algorithm requires Ω(n logn) independence
queries to solve matroid union or matroid intersection.

The lower bound is via a reduction to (s, t)-reachability in directed graphs in the
communication complexity setting. We refer to Section E.8 in Paper E [BMNT23]
for more details on the lower bound.

3.2 Dynamic Oracle & Applications

As alluded to previously, there are many combinatorial optimization problems that
reduce to matroid intersection or matroid union. Designing algorithms for the
matroid problems is thus a good way of obtaining a unified approach to solve
multiple problems simultaneously.

However, in the traditional oracle models, there is one issue with the above
approach: the reductions do not necessarily allow for efficient algorithms. Indeed,
even if the holy-grail of getting a near-linear query matroid intersection/union
algorithm was achieved, this would not imply near-linear time algorithms for other
problems. For example, consider solving the two-disjoint spanning tree problem
using matroid intersection. Each issued query S about a set of edges in the graph
needs O(|S|) time to even specify the query S, let alone answer the query (which
would involve computing the number of connected components induced by S in
the graph). Due of this, previous works (see e.g., [GT79; RT85; GS85; GW88;
FS89; GX89; Gab91; XG94]) designed algorithms for specific problems by simulating
matroid intersection/union algorithms and coming up with clever ideas to speed up
the simulation for each of these problems individually.

This motivates a new oracle model—which we call dynamic oracle—that captures
how matroid algorithms are used in reductions from other problems. This is our
main conceptual contribution in Paper E [BMNT23].

4The lower bound also holds in the dynamic-rank-oracle model.
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Problem Our Bounds State-of-the-Art Bounds
Via matroid union:
k-forest Õ(|E|+ (k|V |)3/2) ✓ Õ(k3/2|V |

√
|E|) [GW88]

k-pseudoforest Õ(|E|+ (k|V |)3/2) ✗ |E|1+o(1) [CKLPGS22]
k-disjoint spanning trees Õ(|E|+ (k|V |)3/2) ✓ Õ(k3/2|V |

√
|E|) [GW88]

arboricity Õ(|E||V |) ✗ Õ(|E|3/2) [Gab95]
tree packing Õ(|E|3/2) Õ(|E|3/2) [GW88]
Shannon Switching Game Õ(|E|+ |V |3/2) ✓ Õ(|V |

√
|E|) [GW88]

graph k-irreducibility Õ(|E|+ (k|V |)3/2 + k2|V |) ✓ Õ(k3/2|V |
√
|E|) [GW88]

(f, p)-mixed forest-pseudoforest Õf,p(|E|+ |V |
√
|V |) ✓ Õf,p(|V |

√
f |E|) [GW88]

Via matroid intersection:
bipartite matching Õ(|E|

√
|V |) ✗ |E|1+o(1) [CKLPGS22]

graphic matroid intersection Õ(|E|
√
|V |) Õ(|E|

√
|V |) [GX89]

simple job scheduling matroid intersection Õ(n
√
r) Õ(n

√
r) [XG94]

convex transversal matroid intersection Õ(|V |√µ) Õ(|V |√µ) [XG94]
linear matroid intersection Õ(n2.529√r) ✗ Õ(nrω−1) [Har09]
colorful spanning tree Õ(|E|

√
|V |) Õ(|E|

√
|V |) [GS85]

maximum forest with deadlines Õ(|E|
√
|V |) ✓ (no prior work)

Table 3.1: Implications of our matroid algorithms from Paper E [BMNT23] in
comparison with previous results. Results marked with a ✓ improve over the previous
ones. Results marked with a ✗ are worse than the best time bounds. Other results
match the currently best-known algorithms up to poly-logarithmic factors.

Dynamic Oracle. For a matroid M = (U, I), the i’th query Si ⊆ U is only
allowed to be modified from some previous query Sj (j < i) by either inserting or
removing exactly one element (with the convention that S0 = ∅ is the “0th” query).
Equivalently, if the algorithm wants to query a set S, the cost of this query is how
far (size of symmetric difference) it is from any previous query it has issued.

The intuition behind this definition is that for many instances of matroids, there
already exists dynamic data structures5 that efficiently maintain, for example, the
rank of a set S undergoing insertions or deletions. Consider the graphic matroid,
where one can employ dynamic connectivity data structures to implement each
dynamic rank query in randomized O(polylogn) [KKM13; GKKT15] or deterministic
no(1) [CGLNPS20; NSW17] time.

Unlike the traditional oracle models, future improved matroid algorithms in
the dynamic oracle model would directly imply improved bounds for many specific
problems in a unified way.

In Paper E [BMNT23], we present new techniques which allow us to implement
the state-of-the-art matroid intersection algorithms from [CLSSW19], Paper B
[BBMN21], and Paper C [Bli21] in the dynamic rank and dynamic independence
oracle models instead (Theorem 3.1.1). Furthermore, our algorithm can be adapted
for matroid union with minimal modifications. By additionally leveraging the
specific structure of matroid union problems, we achieve improved bounds when r
is significantly smaller than n (Theorem 3.1.2).

5It is okay for the data structures to be randomized and only work against oblivious adversaries,
however, we require worst-case update time (as opposed to amortized).
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Our approach allows for a problem-unified algorithm applicable to various
problems by integrating existing dynamic data structures in a black-box way. This
method either matches or surpasses the previously known best running times for
many of these problems, see Table 3.1.

3.3 Augmenting Paths

Augmenting paths are central to many matroid intersection algorithms, including all
of ours. While alternative approaches exist, such as convex optimization techniques
(e.g., [LSW15]) and fast matrix multiplication (e.g., [Har08b]), these have not proven
as effective for matroid intersection as they have for the related maximum flow
and bipartite matching problems (e.g., [LS14; BLNPSSSW20; CKLPGS22]). One
significant challenge is that the linear program representation of a matroid requires
an exponential number of constraints, making it difficult to achieve high efficiency
through continuous optimization. Consequently, the augmenting paths framework
remains the most promising approach for developing fast matroid intersection
algorithms. Although this framework shares similarities with its application in
maximum flow and bipartite matching problems, matroid intersection presents
unique challenges that increase its complexity.

The augmenting paths framework for matroid intersection (and union) originates
from the work of Edmonds in the 1960s, (giving the first polynomial query algorithms)
and have since been developed in a long line of research (e.g., [EDVJ68; Edm70;
AD71; Law75; Edm79; Cun86; LSW15; Ngu19; CLSSW19; Qua23; Qua24]). In 1986,
Cunningham [Cun86] designed an algorithm with query complexity O(nr1.5) based
on the “blocking flow” ideas akin to Hopcroft-Karp’s [HK73] and Dinic’s [Din70]
algorithms for bipartite matching and maximum flow. For nearly three decades, this
was the most efficient algorithm until the recent works of [CLSSW19; Ngu19] who
independently showed that Cunningham’s algorithm can be implemented using only
Õ(nr) independence queries.6 In general, r can be as large as n, making this term
Õ(n2), and was known as the quadratic barrier [CLSSW19]. A natural question is
whether this barrier can be broken [LSW15, Conjecture 13], which we resolved in
Theorem 3.1.1 (Paper B [BBMN21]).

Prior to our work, [CLSSW19] showed that subquadratic algorithms are possible
using the stronger rank oracle (as opposed to the more classic independence ora-
cle) by a rather simple Õ(n

√
r)-rank-query “blocking-flow” algorithm. Moreover,

[CLSSW19] also showed a subquadratic (1 − ε)-approximation algorithm using
O(n

√
n

ε
√
ε

) independence queries.

Exchange Graph. The augmenting path algorithms work by (implicitly) con-
structing the so-called exchange graph. Given a matroid intersection problem over

6In a separate line of work based continuous optimization methods, [LSW15] showed a cutting
plane algorithm using Õ(n2) independence queries.
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M1 = (U, I1) and M2 = (U, I2), and a common independent set S ⊆ I1 ∩ I2, the
exchange graph G(S) is a directed bipartite graph with a vertex for each element
in the ground set, plus two additional vertices: a source s and a sink t. The edges
of the graph represent valid “exchanges” in the respective matroids, for example,
S − a + b ∈ I1 implies a directed edge from a to b (see Section B.2 for a formal
and complete definition). Finding a shortest (s, t)-path in this graph allow one to
“augment” the set S to another set S′ of size |S′| = |S|+ 1. On the other hand, if no
such path exists, it serves as a certificate that S is a maximum common independent
set (and hence, an answer to the matroid intersection problem).

3.3.1 Challenges

There are a few unique challenges to designing efficient (in particular, subquadratic or
even o(nr)) algorithms using the augmenting paths approach for matroid intersection
that do not appear for augmenting paths algorithms for maximum flow or bipartite
matching.

Single Augmenting Path. The first challenge is that while the exchange graph
G(S) only has O(n) vertices, it can have up to Ω(nr) edges, each taking a query to
determine whether it is in the graph or not. Hence, even constructing the graph
G(S) explicitly is too expensive. To overcome this challenge, the algorithms cannot
build the full exchange graph but must instead query and explore only the relevant
parts of the graph.

Even finding a single augmenting path is thus not easy, and prior to our work, the
best algorithm took Ω(nr) time to do so. In Paper B [BBMN21], we overcome this
by showing a randomized Õ(n

√
r) and deterministic Õ(nr2/3) independence query

algorithm. We isolate a graph reachability problem with specific query access, and
solve it in few phases where in each phase, we find a new “heavy” vertex reachable
from the source which guarantees that we make sufficient progress. See Paper B
[BBMN21] for more details.

Simultaneous Augmenting Paths. Starting with some common independent
set S, one needs to find up to r augmenting paths before it has maximum size.
After finding an augmenting path in G(S), which lets us obtain S′ of size larger
than S, we now need to search for augmenting paths in the new exchange graph
G(S′) instead. In the maximum flow problem, after finding and augmenting along
a path, the residual graph is updated by reversing this path (recall Figure 1.3 on
page 9). Similarly, edges are also reversed in the exchange graph, however the
complications do not end here. There might be edges that existed in G(S) that no
longer exist in G(S′), and vice versa, even between vertices that where not touching
the augmenting path. Hence, the exchange graph will, after each augmentation,
change in rather unpredictable ways. This makes it difficult to reuse any knowledge
on how the exchange graph looks like after an augmentation. Even if we could
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find each augmenting path in O(n) independence queries (which we do not know
how to do), this would only give a O(nr) bound for iteratively finding the up to r
augmenting paths one by one.

Instead, one can try to find multiple augmenting paths at once, and potentially
use less time when the paths are short (similar to a “blocking-flow” approach in
bipartite matching or maximum flow). This is still quite challenging, since, unlike the
case for maximum flow and bipartite matching, a set of (vertex) disjoint augmenting
paths might not be compatible with each other (as explained above, augmenting
along one of these paths might remove an edge of another path, making it invalid).
In [CLSSW19], they introduce a notion of augmenting sets, which corresponds to a
set of “compatible” augmenting paths that can be augmented along simultaneously,
i.e., akin to a “blocking flow”. They also give an algorithm computing these blocking
flows, and after eliminating all paths in the exchange graph of length at most ≈ 1

ε
using O(n1.5/ε1.5) independence queries they have identified a (1−ε) approximation.
In Paper C [Bli21], we improve this approximation algorithm with new ideas,
resulting in a O(n

√
r/ε) time bound, also improving the exact algorithm to o(nr).

3.3.2 Subquadratic Algorithm
To achieve our o(nr) independence query matroid intersection algorithm of Theo-
rem 3.1.1, we use two phases:7

• Many Short Augmenting Paths. We first use our Paper C [Bli21] (Algo-
rithm C.6) to find a (1− ε)-approximation, i.e., a set S such that it is at most
εr away from optimal.

• Few Long Augmenting Paths. For the remaining εr augmenting paths,
we find them one by one using our graph reachability algorithm of Paper B
[BBMN21] (Algorithm B.2).

Combined, we get the subquadratic O(nr3/4) randomized or O(n11/6) deterministic
independence-query algorithm.

3.3.3 Parallel Algorithm
A parallel matroid intersection algorithm accesses the oracle in rounds. In each
round, a polynomial number of queries—that may only depend on the answers to
queries made in previous rounds—can be issued in parallel. The goal is to use as
few rounds (called the depth or adaptivity) as possible.

Often, in parallel algorithms, the goal is polylog(n) depth. This is achievable
for important special cases of matroid intersection, such as bipartite matching and
linear matroid intersection with randomized algorithms [Lov79], but it remains

7For technical reasons, the actual algorithms need an additional third phase in the middle to
handle the “reasonably many”, “reasonably long” paths. We refer to Algorithms B.3 and C.7 for
details.
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an important open research question if this can be made deterministic, see e.g.,
[FGT21; GT20] for progress. However, for general matroid intersection there are
lower bounds asserting that Ω̃(n1/3) independence query depth [KUW85] or rank
query depth [CCK21] are necessary, even for randomized algorithms.8 A natural
question is “if the lower bound can be improved to Ω̃(n), or if there can be o(n)-round
poly(n)-query algorithms” [CCK21]?

We resolve this question in Paper D [Bli22]. Our sublinear depth parallel
algorithm of Theorem 3.1.4 follows a similar approach as the sequential ones. In the
parallel setting, finding a single augmenting path can be done in a single round by
constructing the full exchange graph. This leads to a simple O(r)-round algorithm
of finding augmenting paths one by one. If we want to get sublinear depth, we
need to find several augmenting paths at once in parallel. This is very similar to
the challenge of finding many augmenting paths simultaneously, which was needed
also in the sequential setting. Indeed, the “blocking-flow” approximation algorithm
of [CLSSW19] can be adapted to work in the parallel setting, and this is what
we accomplish in Paper D [Bli22], giving a O(

√
n/ε) rounds of rank queries or

O(n3/4/ε) rounds of independence queries parallel algorithm. Falling back to finding
the remaining εr augmenting paths one by one (and setting ε appropriately) gives
our sublinear algorithms using a depth of O(n3/4) (rank) or O(n7/8) (independence).

8The independence query lower bound even holds for finding a basis—a maximal independent
set—of a single matroid; in contrast, this can be done with a single round of rank queries.



Chapter 4

Matchings

This chapter explores two problems about matchings—bipartite maximum matching
and edge coloring—and overviews our results from Paper F [BBEMN22], Paper G
[BK23], Paper H [BSVW24b], and Paper I [BSVW24a].

Matching. A matching M of a graph G = (V,E) is a subset of edges in which
no two edges of M share the same vertex. They play a central role in computer
science and discrete mathematics, and has been studied from many perspectives.
Matchings often serve as a benchmark for how well our graph techniques can be
applied in various models of computation, including sequential, streaming, dynamic,
online, parallel, distributed, communication, and query settings (see e.g., [HK73;
Lov79; KUW85; KVV90; MS04; Zha04; IKLSW12; Mad13; Mad16; GO16; GG17;
BHR19; DNO19; AV20; AK20; JST20; BLNPSSSW20; Nis21; AR20; CKPSSY21;
FGT21; AB21b; ALT21; FGLPSY21; RSW22; CK24b; Waj20], and many more).

Optimization Problems. We now present the two optimization problems related
to matchings that are considered in this thesis. The first one is that of finding a
maximum cardinality matching in bipartite graphs—that is, graphs whose vertices
can be divided into two sets L and R so that all edges have exactly one endpoint in
L and the other in R.

Bipartite Maximum Matching.
Given a bipartite graph G = (V,E), find a matching M of maximum size.

Bipartite maximum matching—or bipartite matching for short—is a special case
of both the maximum flow and matroid intersection problems, unlike the closely
related problem of finding matchings in general graphs. Maximum matching on
general graphs is another interesting graph problem, however, this thesis focuses on
the bipartite case.

31
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We also study a different fundamental graph problem about matchings, namely
that of covering all the edges of the graph with the fewest amount of matchings.1
An equivalent formulation represents each matching with a color, and the goal is to
color the edges with few colors so that no two incident edges get the same color.
Edge coloring has applications in, for example, some scheduling problems: consider
a group of people represented by vertices, with some two-persons tasks represented
by edges; an edge coloring of the graph is a schedule where each color represents a
time slot where simultanuous tasks can be performed.

Edge Coloring.
An edge coloring of a graph G = (V,E) is an assignment of colors to the
edges so that no two edges of the same color share a vertex. The edge coloring
problem asks to color the edges of the graph using a fewest number of distinct
colors possible.

Throughout this chapter, we let n := |V |, m := |E|, and ∆ = maximum degree (an
important parameter in edge coloring).

Connections with Maximum Flow and Matroid Intersection. We note that
the bipartite maximum matching problem can be solved by our maximum flow and
matroid intersection algorithms from Chapters 2 and 3. In particular, the fastest
matroid intersection algorithm we achieved (in the dynamic rank oracle setting)
solves bipartite matching in Õ(m

√
n) time. Not surprisingly, this matches (up to

log-factors) the running time of Hopcroft-Karp [HK73] and Dinitz [Din70] blocking
flow algorithms—indeed the matroid intersection algorithms are inspired by these.

The O(m
√
n) algorithm [HK73; Din70], together with an O(nω) algorithm2

[IM81] for dense graphs, remained the fastest bipartite matching algorithms for
a long time, until [Mad13] introduced a new approach based on continuous opti-
mization methods. As discussed in Chapter 2, this line of continuous optimization
methods research recently culminated in the almost linear time m1+o(1) algorithm
of [CKLPGS22].

As in the case for maximum flow, the fastest combinatorial or augmenting-
path-based algorithms still remained the O(m

√
n) algorithms [HK73; Din70] for

more than 50 years. In their exciting and recent work, [CK24a; CK24b] showed
the first improvement in combinatorial algorithms for bipartite matching—namely
O(m1/3n5/4) and subsequently n2+o(1) running time, almost linear time in dense
graphs. Our combinatorial n2+o(1) maximum flow algorithm (Chapter 2 and Paper A
[BBST24]) was developed independently with different techniques, and achieves the
same running time bound as the one in [CK24b] when run on the special case of
bipartite matching. See more details in Section 2.1.

1Recall the similar arboricity problem—covering all edges of the graph with the fewest number
of spanning trees—which can be stated as a matroid union problem; see also Chapter 3.

2The parameter ω ≈ 2.371 is the exponent of the fastest known matrix multiplication algorithm.
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4.1 Models of Computation

Computing power has become increasingly fast and cheap, and is often not the limit-
ing factor. Instead, a key challenge lies in how to effectively distribute and parallelize
computations across multiple devices, as well as efficiently managing the commu-
nication channels between these devices. Theoretical models like communication
complexity, and parallel algorithms capture these system-level constraints.

Query complexity and sublinear algorithms model the scenario where it is too
expensive to store all the input3 in memory, so algorithms can potentially save
resources by querying (for example by reading from a large data base) only relevant
parts of the data.

Other important models are the dynamic and online models, which address
the common scenario where input data is not static, but changes over time. As
an example, consider a navigation app: roads might be closed or reopened due to
traffic and/or construction. Recomputing the entire solution from scratch after each
small update would be inefficient and wasteful of resources. In the dynamic model,
the goal is to design efficient algorithms that can quickly update the solution in
response to changes in the input. In the online model, irrevocable decisions must
be taken after each update before seeing the full input, making it challenging to
construct near-optimal solutions.

A unifying theme across these models is to design algorithms that work only
with partial access to the input data. We repeat Question 3 below.

Question 3. Under what resource limitations are our combinatorial optimiza-
tion problems still efficiently solvable; specifically, can we develop matching
algorithms that work in modern models of computation?

Contributions. We show novel algorithms and insights for the bipartite matching
and edge coloring problem in various models of computation. Specifically:

• in Section 4.2 we essentially settle the communication and various query
complexities of bipartite maximum matching;

• in Section 4.3 we show a dynamic algorithm which maintains an almost maxi-
mum matching in a bipartite graph undergoing edge insertions in constant4

update time; and

• in Section 4.4 we show online algorithms that edge-colors graphs, undergoing
edge or vertex arrivals, using almost optimal number of colors, essentially
settling the online edge coloring problem.

All these algorithms, and their analyses, turn out to be rather simple.
3Like in the matroid intersection and union problems (Chapter 3), where it takes exponential

space to store the matroids explicitly, and the design of algorithms assumes query access instead.
4O(poly(1/ε)) update time for (1 − ε)-approximation.
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4.2 Communication and Query Complexity

In Paper F [BBEMN22], we resolved the computational complexities of bipartite
matching across multiple models. Our work provides tight bounds, up to poly-
logarithmic factors, in at least five computational settings: two-party communication,
AND query, OR query, XOR query, and quantum edge query models, summarized
in Table 4.1. These new results resolve longstanding open problems raised in, e.g.,
[HMT88; IKLSW12; DNO19; Nis21], and tighten the lower bounds of [BN21; Zha04].

To achieve these results, we employ simple applications of known techniques:
cutting-planes methods for the new upper bounds, and reductions from set disjoint-
edness and equality for the new lower bounds.

Moreover, the techniques almost seamlessly extend to the more general maximum-
cost bipartite b-matching problem, and hence, by standard reductions, also to many
other problems including, for example, transshipment and negative weight single
source shortest paths.

We begin by defining the models of computation we considered.

Model Previous papers Our Results

Lower bounds Upper bounds

Communication Ω(n) Rand,
Ω(n logn) Det

Õ(n1.5)
[DNO19; IKLSW12] O(n log2 n), Det

Quantum edge query Ω(n1.5)
[Zha04; Ben22]

O(n1.75)
[LL15] Õ(n1.5)

OR-query
Ω(n) Rand,

Ω(n logn) Det,
[BN21]

Õ(n1.5) Det,
[Nis21] O(n log2 n), Det

XOR-query
Ω(n) Rand
Ω(n2) Det

[BN21]

Õ(n1.5) Rand
[Nis21] O(n log2 n), Rand

AND-query
Ω(n) Rand,
Ω(n2) Det

[BN21]

O(n2)
Trivial Ω(n2), Rand

Table 4.1: The communication and query complexity bounds for bipartite matching.

Communication. In the two-party communication setting, the edges of a graph
G = (V,E) are distributed between two players Alice and Bob. That is, Alice
has a set EA and Bob a set EB so that E = EA ∪ EB. Alice and Bob proceed
to interact with each other: in each round either Alice or Bob sends a few bits
of information to the other player. The goal is to solve the problem (in our case
bipartite matching on G) using as few bits of communication as possible—called
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the communication complexity. Communication complexity models scenarios where
the bottleneck is the data transfer, and are often useful to prove unconditional
information theoretic lower bounds for other models of computation. Bipartite
matching has been extensively studied in the communication setting, see e.g., [BFS86;
HMT88; IKLSW12; DNO19; FKMSZ05; GKK12; GO16; AKL17; AB19a; AR20;
GO16; HRVZ15; AKLY16; Kap21; KMT21; HRVZ20; Kap21; KKS14; KKS14;
KMNT20; AB21b; Ben22; BN21; Rot82; Ten02; Ber09; HMT88; BFS86; IKLSW12;
Raz92; IKLSW12; IKLSW12; DNO19; Nis21].

A trivial approach for the bipartite matching problem would be for Alice to send
all her edges to Bob, which would require O(m logn) or O(n2) bits of communication.
[IKLSW12; DNO19; Nis21] showed that O(n

√
n logn) bits suffice (by essentially

simulating the sequential O(m
√
n) Hopcroft-Karp [HK73] blocking flow algorithm),

while [HMT88] showed that Ω(n logn) bits are needed. Our result, as seen in
Table 4.1, is that O(n log2 n) bits are sufficient, only a single log-factor away from
the known lower bound.

Query Complexity. In the query models, the edges of the underlying graph
G = (V,E) is unknown. Algorithms must instead ask queries about the graph,
and the challenge is to do so selectively to solve the problem without learning the
entire graph. In the standard edge query, one can ask if (u, v) ∈ E or not. In the
remaining queries, one can specify a set S of pairs of vertices, and ask if

• OR-query: any pair in S is an edge, i.e. “is |S ∩ E| > 0?”

• AND-query: all pairs in S are edges, i.e. “is |S ∩ E| = |S|?”

• XOR-query: an odd number of pairs in S are edges, i.e. “is |S ∩ E| odd?”

We also consider the quantum edge query, and independent set query (see more
details in Paper F [BBEMN22]). In a given query model, the goal is to solve the
graph problem with as few queries as possible. A trivial algorithm can find the
underlying graph by asking O(n2) queries—one for each potential edge. As seen in
Table 4.1, our results is that O(n log2 n) OR-queries or randomized XOR-queries is
enough, while we also give simple lower bounds showing that Ω(n2) AND-queries or
deterministic XOR-queries are needed. Our algorithm also works in the quantum
setting, where it uses Õ(n

√
n) quantum edge queries, improving on the algorithm

of [LL15] and matching the lower bound of [Zha04; Ben22] up to log-factors.

Sketch of Techniques. The most interesting part of out paper are the new
upper bounds. Our approach is surprisingly simple, and the same unified framework
works for giving (essentially) tight upper bounds for communication complexity,
OR-queries, randomized XOR-queries, and quantum edge queries. For a bipartite
graph G = (V,E) with V = L ∪R, |L| = |R| = n, consider the linear program for
maximum matching.
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maximize
∑
e∈E

ye

subject to
∑

e∈E,|e∩{u}|=1

ye ≤ 1 ∀u ∈ V

0 ≤ ye ≤ 1 ∀e ∈ E

(P )

It is well known that the linear program for bipartite matching is integral (see
e.g, [KVKV11, Section 5]). It is more advantageous to look at the dual problem:
minimum vertex cover. The dual has two advantages: it has lower dimension (n
instead of m), and each constraint corresponds to a single edge (so they are, for
example, cheap to communicate).

minimize
∑
v∈V

xv

subject to xu + xv ≥ 1 ∀(u, v) ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

(D)

For simplicity, say we want to determine if G has a perfect matching or not. This is
equivalent to checking if (D) has a feasible solution x with objective value

∑
xv at

most n− 1
2 . Indeed, by duality, if a perfect matching exists, (D) has optimal value

n, and if no perfect matching exists, there is a feasible solution to (D) with value at
most n− 1.

We can now employ a standard cutting-planes method. We keep track of a set of
discovered edges E′, initially empty. We then pick the center of gravity5 point x⋆ of{

x ∈ [0, 1]V :
∑
v∈V

xv ≤ n− 1
2 , xu + xv ≥ 1,∀(u, v) ∈ E′

}
. (4.1)

A cutting plane exactly corresponds to a constraint “xu + xv ≥ 1” (for some edge
(u, v) ∈ E) which is violated by x⋆. If we can find such a violated edge, we simply
add it to E′ and repeat. Eventually the set in (4.1) becomes empty (in which
case a perfect matching exists), or conversely we find a point x⋆ feasible for (D) of
objective value at most n− 1

2 (i.e., a fractional vertex cover serving as a certificate
that no perfect matching exists).

The center-of-gravity cutting-planes method reduces the volume by a constant
fraction each round. It turns out that the number of rounds necessary is then
O(n logn), crucially relying on the fact that the vertex cover linear program (D) has
dimension n, and our introduced slack of 1

2 (“ . . . ≤ n− 1
2 ” instead of “. . . ≤ n− 1”).

What remains is to argue how to efficiently find an violated edge in the different
models of computation. That is, given a (fractional) point x⋆, we need to quickly

5This is NP-hard to compute, however, in the two-party communication setting and query
settings, we do not care about the running time, only the query or communication complexity. We
note that there are cutting-planes methods with analytic center [Vai89] which can be computed in
polynomial time with the same volume reduction guarantee we could have used instead.
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find an edge (u, v) ∈ E such that x⋆u + x⋆v < 1 (or determine that none exists).
In the two-party communication setting, this is trivial: if Alice or Bob has such
an edge, they send it (using O(logn) bits of communication) to the other player.
For OR-queries, we may simply do a binary search on the set of potential violated
pairs {(u, v) : x⋆u + x⋆v < 1} to see if any such pair exists as an edge in the graph.
Randomized XOR-queries can simulate OR-queries (but interestingly, deterministic
XOR-query algorithms need Ω(n2) queries). The quantum edge query algorithm can
adapt the OR-query algorithm with Grover’s search to simulate each OR-queries in
O(
√
n) quantum edge queries.

4.3 Incremental Dynamic

In the dynamic matching problem, edges are either inserted or removed from a
(bipartite) graph, and the goal is to maintain a matching (preferably as close to
maximum size) with low update time. A trivial algorithm recomputes the matching
from scratch after each update, however the aim is to design algorithms which
use much less time per update (ideally polylog(n) or even constant update time).
Dynamic matching has received extensive research attention in recent years, see e.g.,
[GP13; BK22; Waj20; ACCSW18; BK21; BS16; PS16; AAGPS19; BFH21; CS18;
NS16; San07; BHN16; BRR23].

Fully Dynamic. Unfortunately, in the fully dynamic setting (both edge insertions
and deletions), there are conditional lower bounds that assert that sublinear (in n)
update time seems infeasible [HKNS15] to maintain an exact maximum matching.
Hence, most work focus on an approximate version where the goal is instead
to maintain a relatively large matching, say factor of 1

2 or a factor of (1 − ε)
away from optimal. A long line of research (e.g., [BGS18; BHN17; BHI18; BK19;
BDHSS19; OR10; Sol16; BCH17]) led to algorithms achieving ≈ 1

2 -approximation
with polylog(n) or constant update time, and very recently it was show how to get
better-than- 1

2 -approximation [Beh23; BKSW23] in polylog(n) update time—with
the caveat that this only maintains an estimate of the size of the matching and not
the actual approximate matching itself.

Partially Dynamic. In the (1 − ε)-approximation regime, achieving polyloga-
rithmic update time for fully dynamic matching seems out of reach with current
techniques and is perhaps even impossible. Hence, a recent research have focused
on maintaining a (1− ε)-approximate matching in partially dynamic graphs: either
just for edge insertions (incremental) or just for edge deletions (decremental). For
these models, poly(logn, 1/ε)-update time algorithms have been shown both for
incremental [Gup14; BKS23b] and decremental graphs [BPS20; JJST22; BKS23b].
The polylog(n)-dependency seem crucial in all these algorithms—which either relies
on multiplicative weight updates, maximum flow computations, or continuous opti-
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mization techniques—and it seems implausible that these techniques can achieve
constant update time independent of n.

The first constant time (i.e., update time independent of the size of the graph)
partially dynamic matching algorithm is due to [GLSSS19] who solved (1 − ε)-
approximate matching in incremental graphs with an update time of (1/ε)O(1/ε).
Their solution relies on eliminating short (≈ 1

ε -length) augmenting paths. However,
their approach seems to inherently carry an exponential dependency on 1/ε due to
the number of possible such paths present in the graph.

Our Result. To recall, the previous state of the art in incremental (1 − ε)-
approximate bipartite matching has update time of either O(polylog(n) · poly( 1

ε )),
which depends on n, or (1/ε)(1/ε), which has exponential dependency on 1/ε. In
Paper G [BK23], we show a simple incremental algorithm running in constant time
(no dependency on n), and only incurring polynomial dependency on 1

ε .

Theorem 4.3.1. There is an algorithm which maintains a (1 − ε)-approximate
matching in incremental bipartite graphs in amortized O( 1

ε6 ) update time.

Our algorithm is based on the weighted variant of the celebrated Edge-Degree-
Constrained-Subgraph (EDCS) matching sparsifier. First introduced by [BS15],
the (unweighted) EDCS has proved a model-unified technique with applications
in a number of different computational settings: streaming [Ber20; ABBMS19;
AB21a], stochastic, one way communication, fault tolerant [AB19b], sub-linear
[Beh23; BKSW23; BRR23; BKS23c] and dynamic [BS15; BS16; Kis22; GSSU22;
Beh23]. On the other hand the weighted EDCS variant which provides a tighter
approximation ((1− ε)-approximation, instead of ( 2

3 − ε)-approximation), has only
found applications in small arboricity (i.e., sparse) graphs [BS15]. Hence, our
algorithm is the first to use weighted EDCS in dense graphs.

In addition to our incremental algorithm, we present new proofs for weighted
EDCS sparsifier properties, including a direct identification of a fractional matching
and a fractional vertex cover. This significantly simplifies the weighted EDCS
approximation ratio proof of [BS15], and in addition we show that the analysis
is tight. That is, we show a quadratic dependence on the slack parameter for
the weighted EDCS maximum degree, contrasting with the linear relationship in
unweighted EDCS [Beh21]. Our hard example likely rules out faster than 1/ε2

complexity algorithms using weighted EDCS in semi-streaming and distributed
models, where the ε-dependency is more important than in the dynamic setting.
Given the popularity and broad adoption of (unweighted) EDCS, these findings may
be of independent interest.

Sketch of Techniques. As alluded to, we employ weighted EDCS as a graph
sparsifier. For a graph G, the weighted β-EDCS is a multi-graph H on the same
vertex set, with each edge of H corresponding to an edge in G. H must also satisfy
the following properties:
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(i) degH(u) + degH(v) ≤ β for all edges (u, v) ∈ H, and

(ii) degH(u) + degH(v) ≥ β − 1 for all edges (u, v) ∈ E.

If β = Θ(ε−2) and H is a β-WEDCS of G then it is known that H preserves a
(1− ε)-approximate matching. Our main contribution is showing a simple algorithm
that maintains a β-WEDCS efficiently under edge insertions. This means one can
efficiently maintain a (1− ϵ)-approximate matching within the support of H through
periodic rebuilding, similar to [GP13].

The algorithm to maintain H is straightforward: after an edge insertion (u, v)
in the graph G, this new edge might violate Item (ii). If this is the case, we call the
edge underfull, and add it (once) to the multigraph H. However, this might now
mean that some neighboring edge (v, w) in H violates Item (i), since degH(v) just
increased. Call such an edge overfull. If this is the case, we simply remove it (once)
from H. In turn, now another edge (w, z) might be underfull again, so we need to
add it and so on. This results in the algorithm following up to two greedy paths
from (u, v); alternatively adding and removing edges from H.6 Note that, except
for the endpoints of these paths, the degrees in H are preserved.

This greedy algorithm turns out to be efficient, every time an underfull edge is
added or an overfull edge is removed, a global “potential” goes up, guaranteeing
it can only occur a total of O(nβ2) times (the argument is similar to the ones in
[AB19b; Ber20; BS15]).

There is still one remaining issue: after removing an edge from H the algorithm
searches all neighboring edges to determine if there is a new underfull edges created,
and this can take up to Ω(n) time if there are ≈ n neighbors. To fix this, we can
mark vertices as “inactive” after the algorithm has scanned their neighborhoods
more than β2/ε times, and argue that in the future it is okay to ignore all the edges
connected to “inactive” vertices (doing so only loses us an ε-factor of the maximum
matching).

4.4 Online Edge Coloring & Rounding Fractional Matchings

The classic theorem of [Viz64] asserts that any graph of maximum degree ∆ can be
edge colored using at most ∆ + 1 colors (with ∆ being a trivial lower bound). Since
then, there have been a lot of algorithmic work on the edge-coloring problem.

In Paper H [BSVW24b] and Paper I [BSVW24a] we study the problem in the
online model. In the online model, the graph is initially unknown and revealed
over time, similar to the incremental dynamic model. Once an edge is revealed,
the algorithm must immediately and irrevocably make a decision about this edge
(i.e., assign it a color). This irrevocability is the key difference between the online

6This is similar to augmenting path algorithms for matching in which augmenting along a
path amounts to alternating adding and removing edges on the path to the matching. Indeed, if
β = 2, the definition of β-WEDCS H would correspond exactly to a maximal (but not maximum)
matching, so the WEDCS can be seen as a generalization of maximal matchings.
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and incremental dynamic models—online algorithms cannot change their mind later
while incremental dynamic algorithms are allowed to. This poses a challenge for
online algorithms, and it is unclear how well they can perform compared to optimal
offline algorithms, even assuming unbounded computational power.

The edge-coloring problem was one of the first graph problems considered in
the online model, where [BMN92] conjectured that a (1 + o(1))∆-edge-coloring can
be computed online in graphs of maximum degree ∆ = ω(logn). Conversely, if
the maximum degree ∆ = O(logn), they showed that a simple greedy algorithm is
optimal, using 2∆ colors.

That is, unless the the graph has very small maximum degree, the above
conjecture states that online algorithms can use almost the same number of colors
as the optimal (offline) ∆ or ∆ + 1—formally the competitive ratio goes towards 1
when the size of the graph grows.

Since [BMN92], there have been a lot of progress towards resolving their conjec-
ture for restricted settings, including random-order edge arrivals [AMSZ03; BMM12;
BGW21; KLSST22] and vertex arrivals [CPW19; SW21]. In the most general
setting, i.e., under adversarial edge arrivals, [KLSST22] recently provided the first
algorithm outperforming the trivial 2-competitive greedy algorithm, showing an
( e
e−1 + o(1))∆-edge-coloring algorithm.

Our Results. In Paper I [BSVW24a], we resolve this longstanding conjecture in
in the most general setting of adversarial edge arrivals.

Theorem 4.4.1. There exists a randomized online algorithm that, on n-vertex
graphs with known maximum degree ∆ = ω(logn), outputs a (1+o(1))∆-edge-coloring
with high probability.

In our earlier work of Paper H [BSVW24b], we showed the same result in the
more restrictive model of one-sided vertex-arrivals in bipartite graphs, improving
and significantly simplifying a prior such result by [CPW19]. While the later and
more general algorithm in Paper I [BSVW24a] is also simple, the algorithm and
analysis in Paper H [BSVW24b] is even simpler, shorter, and achieves a better
o(1)-term, although for a restricted arrival model.

Our algorithms also extend to generalizations of the edge coloring problem such
as list edge coloring [Kah96] and local edge coloring [Chr23].

Sketch of Techniques. At the core of our most general algorithm of Theorem 4.4.1
is a new approach to round spread-out fractional matchings in the online settings.
In particular, given a fractional matching y (i.e., a feasible solution to the linear
programming relaxation, see (P )), we call it ε-spread-out for some ε > 0 if ye ≤ ε5

for all edges e. We give an online algorithm that, when edges and their values ye are
revealed, outputs an (integral) matching M where Pr[e ∈M ] ≥ (1− ε)ye. That is,
our online algorithm (1− ε)-approximately rounds the matching, and has per-edge
guarantees. This online rounding algorithm might be of independent interest.
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To use this algorithm for edge coloring, we use a previously known reduction from
[CPW19]. Let ye := 1

∆ , since this is guaranteed to be a feasible fractional matching.
Then the outputted matching M of our algorithm is guaranteed to be “fair” in
the following sense: each edge is chosen to be in the matching with probability at
least 1

(1+o(1))∆ . Intuitively, if we select this matching M to be the first color, the
remaining graph G \M , except for a small fraction of the vertices, has maximum
degree ∆− 1. We can then, in an online fashion, pipeline (1 + o(1))∆ interleaved
instances of the fair-matching algorithm to peel of colors one by one, and in the end
only use a total of (1 + o(1))∆ colors.

Our main technical contribution is in the improved fair-matching algorithm. A
natural approach is that, when edge e = (u, v) arrives, we want to match it with
target probability (1 − ε)ye. However, since the output must be a matching, we
cannot match e at all if either u or v are already matched by our algorithm. To
compensate for this, one needs to scale up the probability of picking e when possible:
instead pick e with probability (1−ε)ye

Pr[u, v both unmatched] .
The goal becomes proving that quantity is indeed a probability, i.e., that it was

not scaled up to much and is always at most 1. Previous approached (e.g., [CPW19;
KLSST22]) analyzed versions of this algorithm trying to bound and minimize the
correlations introduced.

We follow a different approach where we embrace the correlations and use a
different analysis that allow them. Crucially, we present a different but still simple
algorithm, with a subtle difference: instead of scaling up by 1

Pr[u,v both unmatched] ,
our scaling factor depends upon the algorithm’s actual execution path (sequence of
random decisions) so far. This allows us to analyse the scaling factor for an edge
as a martingale process. While there may still be correlations, we show that this
martingale has (i) small step size and (ii) bounded observed variance, and hence we
can get strong concentration via the powerful Freedman’s inequality [Fre75]. Our
change of viewpoint is crucial for achieving our result and leads to a simple and
concise algorithm and analysis.





Chapter 5

Open Questions and
Future Directions

This chapter discusses relevant open questions related to this thesis, and intriguing
future research directions.

Linear Time Combinatorial Flow. While our new n2+o(1) augmenting path
based algorithm achieves almost linear time in dense graphs, it does not perform
as efficiently in sparse graphs. A challenging open problem is to find augmenting
path-based or combinatorial maximum flow algorithms which runs in (almost) linear
time also on sparse graphs, matching the continuous optimization methods achieving
m1+o(1) time [CKLPGS22; BCKLPGSS24; BCKLMGS24].

One apparent bottleneck in our n2+o(1) algorithm is finding approximate maxi-
mum flows in directed acyclic graphs (DAGs). A natural question is then: Can a
combinatorial algorithm solve approximate flow on DAGs in (almost) linear time? If
this is the case, then it seems plausible that our tools (directed expander hierarchies)
can generalize the solution to work on any directed graph. DAGs also seem to
capture the hardness of other fundamental problems in directed graphs, such as
dynamic shortest paths [BPS20; CK24b], parallel reachability [Fin18; LJS19], and
diameter-reducing shortcuts [KP22]. Improving the algorithmic toolkit for DAGs is
thus an important research direction.

Extending n2+o(1) Combinatorial Flow to Other Problems. One natural
question is whether our n2+o(1) maximum flow algorithm can be extended to solve
the more general minimum cost maximum flow problem in the same time (the
continuous optimization methods can do this). A promising direction is using ideas
from length-constrained expander decomposition, see e.g., [HHLRS24].

Other problems like maximum matching in general graphs and matroid intersec-
tion currently have no almost linear time algorithms, and it seems difficult to extend
the continuous optimization methods to work for these problems. Instead, the
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current state-of-the-art algorithms are based on augmenting paths: Theorem 3.1.1
for matroid intersection, and the Õ(m

√
n) time algorithm for general matching

(see [Gab17] for an accessible version of this algorithm). In light of our n2+o(1)

augmenting path maximum flow algorithm, a natural next step would be attempting
to adapt those techniques to general matching or matroid intersection, potentially
achieving linear-in-dense-{graphs/matroids} algorithms.

Settling the Complexity of Matroid Intersection and Union. There remains
a gap between the lower bounds and fastest algorithms for matroid intersection. In
the regime of r = Θ(n), for rank queries, the strongest lower-bound is linear, while
the best algorithm uses Õ(n3/2) queries [CLSSW19]. For independence queries,
the lower-bound is Ω(n logn) (Theorem 3.1.5) while the fastest algorithm uses
Õ(n7/4) queries (Theorem 3.1.1). This leaves a few important questions open: Can
independence-query algorithms achieve the same efficiency as rank-query algorithms,
or is the rank-query substantially stronger? Are there linear query algorithms for
matroid intersection or union? If so, it would imply many faster algorithms for
other problems like colorful spanning trees and two-disjoint spanning trees. Perhaps
a good, but still challenging plan of attack towards resolving this question is to
develop linear time algorithms for the problems of colorful spanning tree and two-
disjoint spanning trees.1 Conversely, if no linear time algorithms exists, one could
ask: Are there truly superlinear (i.e., Ω(n1+c) for constant c > 0) query lower
bounds for matroid intersection? If this is the case, it would also imply similar
lower bounds for the related problem of submodular function minimization, even
in the weakly-polynomial setting—currently there is an Ω(n logn) lower bound in
the strongly-polynomial setting [CGJS22]. Studying the communication complexity
of matroid intersection (where Alice and Bob are each given one matroid) is a
promising direction to prove lower bounds, or conversely give new insight in case a
Õ(n) bit protocol (matching the communication complexity of bipartite matching)
is found.

Similarly, in the parallel setting, closing the gap between the current algorithms
and lower bounds is interesting. The strongest lower bounds show that Ω(n1/3)
rounds are needed [KUW85; CCK21], and some sublinear upper bounds are given
in Theorem 3.1.4.

Follow-Up Work: In a recent paper (at the time of writing under review, and
thus not included in this thesis) [BT25], we give simpler and lower-depth parallel
algorithms than in Theorem 3.1.4, namely O(n2/3)-round of rank queries or O(n5/6)-
round of independence queries. We also give the first linear-time independence
query (1− ε) approximation algorithm, making progress towards linear time (exact)
algorithms for matroid intersection.

1After the original submission of this thesis, the paper [AK24] was announced, reducing k-
disjoint spanning trees to k maximum flow instances—hence achieving O(poly(k)m1+o(1)) running
time—by using matroid intersection techniques specialized to this problem.
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Communication Complexity of General Matching. In Section 4.4, we show
tight bounds for the communication and various query complexities of bipartite
matching. A natural direction is to ask about matchings on not-necessarily-bipartite
graphs: Is the communication complexity of general matching also Õ(n)? The
linear programming formulations for general matching, unlike for the bipartite case,
has exponential extension complexity making it unlikely that the same cutting
planes method approach would work. Thus, a positive resolution to the above
question would hopefully lead to insights on the interplay between bipartite and
general matching that would also prove useful outside of the communication model.
Conversely, if there is a substantial difference in difficulty between bipartite and
general matching, the communication setting would serve as a promising model to
demonstrate this gap since it allows for information theoretical lower bounds.

Bounded Round Communication. For many graph problems, including bi-
partite matching, it has been shown that Θ(n2) bits of communication is necessary
if there is only a single round of communication (i.e., one-way communication)
[FKMSZ05]. Our Õ(n) communication protocol uses Θ̃(n) rounds. There is cer-
tainly a trade of between the number of rounds allowed and the total bits of
communication needed, and studying this trade-off (for bipartite matching and
other problems) is an intriguing research direction. For the bipartite matching prob-
lem, r-round protocols need at least n1+Ω(1/r) total communication [AR20; GO16],
ruling out Õ(n) communication in, say,

√
logn rounds. A polylog(n)-round Õ(n)-

communication protocol would be exciting if it exists, due to its connections with
semi-streaming—How many passes does an Õ(n)-space streaming algorithm need to
solve bipartite matching?—and distributed models—How many CONGEST rounds
are necessary to solve bipartite matching? Similarly, studying the OR-query com-
plexity for bipartite matching with bounded rounds is another interesting direction;
see e.g., [ACK21] which studies graph connectivity problems in that setting.

Dynamic Matching. The big open question in dynamic matching is: Can one
maintain a (1 − ε)-approximate matching in polylog(n) update time? Answering
this question seem far from being solved with current techniques. However, research
towards this goal have led to many new graph techniques and insights. The current
best update time is m1/2−Ωε(1) by [BKS23a] with the caveat that it does not
maintain the matching itself but just its size (to maintain the matching, the best
known is O(

√
m) update time [GP13]). If only polylog(n) update time allowed,

[BKSW22; Beh22] show how to maintain a slightly-better-than- 1
2 approximation,

but again just estimating the size. A more approachable open question is to design
a constant update time (preferably poly(1/ε)) algorithm for decremental bipartite
graphs, matching our result for incremental bipartite graphs in Section 4.3.

Deterministic Online Edge Coloring. Randomization is often a crucial ingre-
dient in online algorithms (including for our online edge-coloring algorithms) and
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sometimes necessary to achieve good competitive ratios. A natural question is if
randomization is needed for online edge coloring, or if a deterministic version of
Theorem 4.4.1 exists.

Follow-Up Work: In a recent work (at the time of writing under review, and
hence not included in this thesis) [BSVW25], we make progress on this question
by showing the first deterministic algorithm for online edge coloring in any setting
to outperform greedy: a ( e

e−1 + o(1))∆-edge-coloring algorithm under one-sided
vertex-arrivals for bipartite graphs, again assuming maximum degree ∆ = ω(logn).
However, it is not clear whether deterministic algorithms can beat the 2-competitive
greedy algorithm in general graphs with edge arrivals, and another potential way to
settle this question would be showing hardness results.

∗ ∗ ∗

To close this thesis, we repeat the question from the introduction (Chapter 1):

Can we design efficient and simple algorithms in a unified way?

While this thesis makes progress towards this question, there still remain many
problems in the field of theoretical computer science where we are yet to discover
efficient, simple, and unified algorithms.
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Abstract

We present a combinatorial algorithm for computing exact maximum flows
in directed graphs with n vertices and edge capacities from {1, . . . , U} in
n2+o(1) logU time, which is almost optimal in dense graphs. Our algorithm
is a novel implementation of the classical augmenting-path framework; we
list augmenting paths more efficiently using a new variant of the push-relabel
algorithm that uses additional edge weights to guide the algorithm, and we
derive the edge weights by constructing a directed expander hierarchy.

Even in unit-capacity graphs, this breaks the long-standing O(m
√
m) and

O(mn2/3) time bounds of the previous combinatorial algorithms by Karzanov
(1973) and Even and Tarjan (1975) when the graph has m = ω(n4/3) edges.
Notably, our approach does not rely on continuous optimization nor heavy
dynamic graph data structures, both of which are crucial in the recent develop-
ments that led to the almost-linear time algorithm by Chen et al. (FOCS 2022).
Our running time also matches the n2+o(1) time bound of the independent
combinatorial algorithm by Chuzhoy and Khanna (STOC 2024) for computing
the maximum bipartite matching, a special case of maximum flow.
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A.1 Introduction

Fast algorithms for computing maximum flows have played a central role in algorith-
mic research, motivating various algorithmic paradigms such as graph sparsification,
dynamic data structures, and the use of continuous optimization in combinatorial
problems. These algorithms also have numerous applications in problems like bi-
partite matching, minimum cuts, and Gomory-Hu trees [GH61; LP20; LNPSY21;
CLNPSQ21; CHLP23; ALPS23]. Below, we summarize the development of fast
maximum flow algorithms following Dantzig’s introduction of the problem [Dan51].
The input graph for this problem is a directed graph with n vertices and m edges.
For convenience, only in this introduction, we assume that edge capacities range
from {1, . . . ,poly(n)}.

Augmenting Paths. Ford and Fulkerson [FF56] first introduced the augmenting
path framework. In this framework, algorithms repeatedly find an augmenting
path (or a collection of them) in the residual graph. They then augment the flow
along this path with a value equal to the bottleneck of the augmenting path. Over
the next four decades, this simple framework led to the development of several
influential techniques, including shortest augmenting paths [EK72], blocking flows
[Kar73; Din70; GR98], push-relabel [GT88], and sparsification [KL15]. The best
time bound within this framework, O(m ·min{m1/2, n2/3}), was given by Karzanov
[Kar73] and independently by Even and Tarjan [ET75] for unit-capacity graphs.
Goldberg and Rao [GR98] later matched this time bound in capacitated graphs up
to poly-logarithmic factors.

Continuous Optimization and Dynamic Graph Data Structures. In the
2000s, Spielman and Teng [ST04] introduced a completely different framework based
on continuous optimization, and solved the electrical flow problem in near-linear
time.1 Then, Daitch and Spielman [DS08] showed a reduction from maximum flow
to electrical flow using an interior point method. This motivated further research
on advanced interior point methods [Mad13; LS14; Mad16; LS20; KLS20] that
minimize the number of iterations of calling electrical flow or related problems. As
a result, a Õ(m

√
n)-time2 maximum flow algorithm [LS14] and, for unit-capacity

graphs, a Õ(m4/3)-time algorithm [KLS20] were developed.
Since 2020, the focus has shifted from minimizing the number of iterations in inte-

rior point methods to instead minimizing the cost per iteration using dynamic graph
data structures. Building upon dynamic data structures for sparsifiers [DGGP19;
BBPNSSS22; CGHPS20], a series of impressive works [BLNPSSSW20; BLLSSSW21;

1Algorithms for approximating maximum flow in undirected graphs using gradient descent and
multiplicative weight update also follow this framework [CKMST11; KMP12; She13; KLOS14;
Pen16; She17; ST18].

2In this paper, we use Õ(·) to hide poly-logarithmic factors in n and Ô(·) for subpolynomial
factors.
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GLP21; BGJLLPS22] finally led to the breakthrough by Chen et al. [CKLPGS22;
BCPKLPSS23] who showed an m1+o(1)-time algorithm for maximum flow and its
generalization.

Combinatorial Approaches. Although the recent developments have achieved
an almost optimal time bound, these algorithms are not simple in either conceptual
or technical sense. Continuous optimization approaches update the flow solutions
without a clear combinatorial interpretation, and the required dynamic data struc-
tures are still highly involved. With this motivation, Chuzhoy and Khanna recently
[CK24a] showed a conceptually simpler algorithm for maximum bipartite matching,
a special case of maximum flow, that runs in Õ(m1/3n5/3) time; in very recent
independent work, they improved the running time to n2+o(1) [CK24b].3

These algorithms update the flow (i.e., the fractional matching) in a more intuitive
manner: they repeatedly increase the flow value along paths listed by dynamic
shortest-path data structures. Moreover, the flow on each edge is a multiple of

1
Θ(logn) , i.e., it is almost integral. Unfortunately, the algorithms do not extend to
exact maximum flow, even in unit-capacity graphs.

So, can one hope for an optimal and combinatorial maximum flow algorithm? We
make significant progress in this direction by showing that the classical augmenting
path framework can provide an almost-optimal algorithm for dense graphs.

Theorem A.1.1. There is an augmenting-path-based randomized algorithm that,
given a directed graph with n vertices and edge capacities from {1, . . . , U}, with high
probability computes a maximum s-t flow in n2+o(1) logU time.

Our algorithm strictly follows the augmenting path framework, i.e., it maintains
an integral flow that is repeatedly increased along augmenting paths in the residual
graph. When m = ω(n4/3), Theorem A.1.1 improves upon the long-standing time
bound of O(m ·min{m1/2, n2/3}) presented in [Kar73; ET75; GR98], in the context
of previous augmenting-path-based algorithms. Additionally, our running time
matches the n2+o(1)-time bound in the independent work by Chuzhoy and Khanna
[CK24b] who gave combinatorial algorithms for computing the maximum bipartite
matching (and consequently unit-vertex-capacitated maximum flow), a special case
of maximum flow. As far as we know, their techniques are based on dynamic
shortest-path data structures and multiplicative weights update and, hence, are
different from ours.

A Bird’s-Eye View of Our Algorithm. We now give a basic outline of our
algorithm; we provide a more detailed overview in Section A.2. To list augmenting
paths, we introduce the weighted push-relabel algorithm, a new and simple variant
of the well-known push-relabel algorithm [GT88] guided by an additional edge

3The algorithm of [CK24b] was submitted several months before ours (STOC 2024), but we
consider it independent because it was not publicly available when we submitted our paper to
FOCS 2024.
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weight function. Edges with higher weight are relabeled less often, allowing for more
efficiency. Given a “good” weight function, the weighted push-relabel algorithm
will list augmenting paths in Õ(n2) total time and return an O(1)-approximate
maximum flow. By repeating the algorithm on the residual graph, this immediately
gives a maximum flow algorithm.

Our starting observation is that on a DAG with a topological order τ , the simple
function w(u, v) = |τu − τv| for each edge (u, v) is in fact a good weight function.
The question is now to figure out what “good” weight function to use on general
graphs.

We introduce the directed expander hierarchy and show that it induces a natural
vertex ordering τ such that w(u, v) = |τu − τv| is a good weight function. We
remark that while there are several successful variants of expander hierarchies in
undirected graphs [Räc02; PT07; RST14; GRST21], we believe ours is the first paper
to successfully apply them to directed graphs. Unfortunately, all known approaches
for the hierarchy construction are either too slow [PT07], assume a maximum flow
subroutine itself [RST14], or are specific to undirected graphs [GRST21].

Therefore, we show a new bottom-up construction based on our weighted push-
relabel algorithm. The basic idea is that we repeatedly use weighted push-relabel
to construct the next level of the hierarchy, which in turn gives us a better weight
function, allowing us to compute yet one more level. To be a bit more concrete, let
Xi be the candidate edge set for level-i of the hierarchy and suppose that we have
already built a directed expander hierarchy of G \Xi, which consists of all edges
below level i. If we can certify that Xi is expanding (i.e. well-connected in some
sense), then we can leave Xi as the last level of the hierarchy; on the other hand,
if Xi if not expanding, then we need to find a sparse cut with respect to Xi and
elevate those cut edges to the next level Xi+1. As is standard, we solve this problem
using the cut-matching game, which requires computing flow between subsets of Xi.
The challenge lies in solving this flow problem efficiently.

The crucial observation is that by setting the weight of edges in G\Xi according
to its expander hierarchy (which we already computed) and setting the weight of
all edges in Xi to be n, our weighted push-relabel algorithm will solve this flow
problem in Õ(n2) time. We note that standard push-relabel (without weights) can
only solve this problem for the bottom level of the hierarchy, i.e., when Xi is the
whole edge set.

We emphasize that so far, all of our algorithmic components (from Section A.4
to A.6) are very implementable. The weighted push-relabel algorithm (Algo-
rithm A.1) simply increments vertex labels and, in capacitated graphs, uses the
link-cut tree [ST83] to push flow. To find sparse cuts (Algorithm A.2), we also call
Dijkstra’s algorithm to produce levels and return the sparsest level cut.

The novelty is in the analysis. To show that the directed expander hierarchy
gives a good weight function, we prove a new trade-off between length and congestion
for rerouting flow on expanders. To show that there exists a sparse level cut, we
show a novel angle to the directed expander pruning problem studied in [BPS20;
HKPW23; SP24]. In the standard version of pruning, we update a few edges in
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a directed ϕ-expander G, and the goal is to prune away a small set of vertices P
so that G \ P is still an expander. We extend pruning to work with path-reversal
updates, which reverse the direction of every edge on a given path; this kind of
update is very natural in the residual graph (reversing augmenting paths). We
show that, somewhat surprisingly, reversing a whole path has approximately the
same impact on pruning as updating a single edge. This allows us to show that the
directed expander hierarchy is robust under flow augmentation (Lemma A.6.5). For
our purposes, we only ever need an existential version of path-reversal pruning, but
the algorithmic version should be plausible and useful.

There is unfortunately one challenge that adds a huge amount of complexity.
When computing a sparse cut with respect to Xi, the sparse cut can “cut through”
components of the expander hierarchy in the lower levels. This forbids us from
building the hierarchy bottom-up in one go; instead, our algorithm needs to regularly
move up edges at different levels of the hierarchy. To modularize the analysis, we
employ a data structure point-of-view that models these interactions between levels.
We note that our approach is not inherently dynamic, in that we are not aiming for
fast or sublinear update times. In fact, each operation of the data structure requires
n2+o(1) time. The usefulness of this perspective lies instead in showing that only
no(1) sequential updates are needed. This is by far the most complicated part of our
algorithm (essentially all of Section A.7), and is also the only reason our algorithm
is randomized and requires an inherent no(1)-factor in the running time. We believe
this step can be simplified once tools related to directed expanders are as developed
as their undirected counterparts [RST14; SW19; GRST21].

To summarize, in contrast to recent developments, Theorem A.1.1 does not
rely on continuous optimization or heavy dynamic data structures. It also paves
the way to a very implementable Õ(n2)-time deterministic algorithm once a better
construction of directed expander hierarchy is shown. We note that our paper is
quite self-contained: the black boxes we assume only include basic graph algorithms
(e.g., topological sort and Dijkstra’s algorithm), link-cut trees [ST83], and Louis’s
cut-matching game [Lou10]. Lastly, we believe and hope that some novel tools we
developed in this paper—including the weighted push-relabel algorithm, directed
expander hierarchy, and expander pruning under path-reversals—will find future
applications.

Future Work. The natural next step is to show a simple algorithm for constructing
a directed expander hierarchy in Õ(n2). Combined with our new approach, this
would yield a much simpler Õ(n2)-time max-flow algorithm, and we believe it would
also prove a powerful tool for other directed problems.

A more challenging goal is to achieve an m1+o(1) time bound via simple combina-
torial algorithms. One takeaway of our paper is that the main bottleneck seems to be
a fast no(1)-approximation for DAGs. On the one hand, it seems quite plausible that
our tools would allow an improvement for DAGs to be generalized to all directed
graphs; but on the other hand, the current toolkit for DAGs is quite limited. DAGs
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also seem to capture the hardness of other fundamental problems in directed graphs,
such as dynamic shortest paths [BPS20], parallel reachability [Fin18; LJS19], and
diameter-reducing shortcuts [KP22].

Organization. The rest of the paper is organized as follows. In Section A.2, we
give a comprehensive overview of the technical components of our algorithm. In
Section A.3 we provide necessary preliminaries. We develop our weighted push-
relabel algorithm in Section A.4. In Section A.5, we show that a directed expander
hierarchy induces a “good” weight function, and hence, when combined with our
weighted push-relabel algorithm, solves maximum flow. In Section A.6, we show
how to leverage the weighted push-relabel algorithm to compute sparse cuts, which
is a crucial subroutine in how we construct the expander hierarchy in Section A.7.
In Sections A.8 to A.10 we provide details omitted from the main body of the paper.

A.2 Technical Overview

In this section we give a high-level overview our maximum flow algorithm. For
simplicity of presentation, we assume during this overview that the input graph
is unit-capacitated. Note that it suffices to design a constant- or even 1/no(1)-
approximate flow algorithm for directed graphs, as the exact algorithm then follows
by repeating the approximate algorithm no(1) times on the residual graph. This
is in contrast to undirected graphs: although efficient approximations are known
here [She13; KLOS14; Pen16; She17; ST18], the residual graph of the found approx-
imate flow is no longer undirected, so an approximate flow algorithm cannot be
bootstrapped to an exact one. Although we assume unit capacities, in the analysis
we will sometimes refer to a flow f that disobeys these capacities; we define the
congestion of a flow f , denoted cong(f), to be maxe∈E f(e).

A.2.1 Weighted Push-Relabel Algorithm
The starting point of our algorithm is a weighted variant of the classic push-relabel
algorithm.

Summary of Classic Push-Relabel. Let us recall the classic push-relabel
algorithm in unit-capacitated graphs. Suppose we have a flow instance with integral
source vector ∆ and sink vector ∇, and let us assume for simplicity that this flow
instance is feasible. The push-relabel algorithm will always maintain a pre-flow,4
where every vertex v might have excess flow exf (v) := max{∆(v)−fout(v)−∇(v), 0}
where fout(v) denotes the net flow going out from v; note that initially, all positive
excess are on the source vertices. The algorithm also maintains an integral label
ℓ(v) on every v ∈ V , which gradually increases over time; initially ℓ(v) = 0 for all
v ∈ V .

4A pre-flow is an intermediate flow that has not yet sent all units of demands to sink vertices.
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Informally, the main loop of the push-relabel algorithm repeatedly finds a vertex
v with exf (v) > 0 and attempts to push a unit of flow along an edge (v, w) with
ℓ(v) ≥ ℓ(w) + 1; we refer to such edges as admissible. Following the standard
operation of residual graphs, this edge (v, w) is then removed and replaced with the
reverse edge (w, v). If a vertex v has exf (v) > 0, but there are no admissible edges
(v, w), then the algorithm performs operation Relabel(v), which increases ℓ(v) by
1. The sequence of push operations effectively traces augmenting paths from the
source vertices to the sink vertices.

Analysis of Classic Push-Relabel. The analysis rests on the following admissi-
bility invariant: for any edge (u, v) in the residual graph, we have ℓ(u) ≤ ℓ(v) + 1.
This easily follows from the fact that if ℓ(u) = ℓ(v) + 1, then (u, v) is an admissible
edge, so the algorithm will not relabel u as long as (u, v) remains in the residual
graph.

We now sketch the proof that push-relabel successfully finds a flow that routes
all the demands. In fact, we show something stronger: at termination, we have
ℓ(v) ≤ n for all v ∈ V . Say, for contradiction, that the algorithm relabels a vertex v
from ℓ(v) = n to ℓ(v) = n+ 1. This implies that exf (v) > 0, so since we assumed
the original flow instance is feasible, there must exist some path in the residual graph
from v to an unsaturated sink vertex t. It is easy to see that ℓ(t) = 0; since t is still
a sink, it never had an excess, and so was never relabeled. This (v, t)-path has at
most n−1 edges, so by the admissibility invariant above, ℓ(v) ≤ ℓ(t)+n−1 = n−1,
contradicting the assumption that ℓ(v) = n.

For the running time analysis, it is not hard to check that any edge (u, v) can
undergo at most one push operation as long as the level ℓ(u) is fixed; similarly, the
admissibility status of (u, v) can only change when u or v is relabeled. Since u and
v undergo at most O(n) relabel operations, the total running time is O(mn).

Motivating Our Weighted Push-Relabel. Consider the following simplified
scenario: we are told in advance that a certain subset of the edges is infrequent,
meaning that there exists some approximate maximum flow f , where every flow
path in f uses at most k infrequent edges (think of k as small).

We then modify the classic push-relabel algorithm as follows. An infrequent
edge (u, v) only counts as admissible if ℓ(u) ≥ ℓ(v) + n/k. This means that the
algorithm might need to perform more relabel operations, and yet we can still show
that if any label ever exceeds 10n, this means that push-relabel has already routed
a constant fraction of the demand. To see this, assume, for contradiction, that the
algorithm relabels some v from ℓ(v) = 10n to ℓ(v) = 10n+ 1. As before, there must
exist some (v, t)-path P in the residual graph to an unsaturated sink t with ℓ(t) = 0.
Intuitively, the path P contains at most k infrequent edges: this is not technically
true, and the full analysis is slightly more involved. However, this is close to being
true, so we make the simplifying assumption here that this path contains at most
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9k infrequent edges.5 The natural generalization of the admissibility invariant then
implies that

ℓ(v) ≤ ℓ(t) + [# infrequent edges on P ] · (n/k) + [# frequent edges on P ]
≤ 0 + 9k · (n/k) + n− 1 = 10n− 1,

contradicting the assumption that ℓ(v) = 10n. For the running time analysis, note
that an infrequent edge can only change status every n/k relabels, so the new runtime
is O([# infrequent edges] ·n/k+[# frequent edges] ·n), which is significantly smaller
than O(mn) if most edges are infrequent.

Weighted Push-Relabel. Imagine a generalization of the above scenario where
we have a different frequency promise for every edge. We represent these promises
with a weight function w ∈ NE . An edge (u, v) is defined as admissible in the
push-relabel algorithm if ℓ(u) ≥ ℓ(v) + w(u, v). Following the logic of the above
paragraph, suppose we have a promise that there exists a flow where every flow
path has w-weight at most h = n1+o(1), then we can guarantee that, when running
the algorithm with maximum vertex label of 10h, the algorithm will find a flow that
routes a constant fraction of the demands. This yields the following theorem:

Theorem A.2.1 (Informal version of Theorem A.4.1). Given edge weights w ∈ NE

and parameter h, the weighted push-relabel algorithm return a flow in Õ(m + h ·∑
e∈E 1/w(e)) with the following guarantee: if there exists a flow f∗ such that every

flow path P in f has
∑
e∈P w(e) ≤ h, then the returned flow has value Ω(|f∗|). In

particular, if f∗ is an α-approximate maximum flow, then the returned flow is a
O(α)-approximate maximum flow.

The general idea of using a weight function to limit how often the algorithm
touches various edges is inspired by a similar weighted variant of the Even-Shiloach
trees [Ber17; PW20] that has been applied to dynamic shortest paths. A more
detailed comparison of our push-relabel algorithm and the standard version and
a discussion of possible future improvements for sparse graphs are given in Sec-
tion A.4.2.

The Maximum Flow Algorithm. To this end, we say that a weight function w
satisfies the path-weight requirement if there exists an 1/no(1)-approximate maximum
flow f such that every flow path P in f has

∑
e∈P w(e) ≤ h = n1+o(1). Our main

5The reason it is not technically true is that even though flow paths in the original graph use at
most k infrequent edges, this is no longer true in the residual graph. But letting fearly be the flow
already computed by push-relabel, note that the residual graph only differs from the original one
by edges in fearly, so if paths in the residual graph use significantly more infrequent edges than
paths in the original graph, this implies that fearly is itself using many infrequent edges, and hence
has a large value. In the technical exposition, we show that either fearly sends a constant fraction
of the supply (so the algorithm can terminate), or paths in the residual graph are relatively similar
to those in the original graph and hence have few infrequent edges.
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technical contribution is showing how to compute a weight function w that satisfies
the path-weight requirement and has

∑
e∈E 1/w(e) = n1+o(1). Given this, by

applying Theorem A.2.1, we immediately obtain a maximum flow algorithm with
running time n2+o(1). (Recall that in directed graphs, an approximate flow algorithm
immediately implies an exact algorithm.) In the remainder of this overview we
explain how to get this weight function.

A.2.2 Examples of Good Weight Functions
Directed Acyclic Graphs. Let us consider the simplest directed graph: a
directed acyclic graph (DAG). We know that a DAG admits a topological order
τ ∈ [n]V such that τv > τu for each edge (u, v). This topological order also gives
us the desired weight function: if we set w(u, v) := τv − τu, then not only flow
paths on the maximum flow, but any path in the DAG will have weight at most
n. Moreover, it is easy to see that

∑
e∈E 1/w(e) = O(n log(n)), because the sum

of weights incident to a specific vertex v forms a harmonic series and is hence
O(log(n)). Plugging this into Theorem A.2.1 yields a remarkably simple Õ(n2)-time
algorithm for computing a O(1)-approximate flow in a DAG using only classical
flow techniques (Corollary A.4.9).

General Graphs Given Maximum Flow. The analysis of the DAG case also
shows the existence of a good weight function in general graphs: take any integral
maximum flow, the support of which after cycle cancellation forms a DAG, and
then assign weights as above to this support and assign large weight (e.g. 100n) to
all other edges. Of course, this weight function requires computing a maximum flow
and, hence, is not useful for us. We will show another construction of good weight
function based on a directed expander hierarchy.

A.2.3 Basic Facts About Expanders
In order to describe the directed expander hierarchy, we review some basic properties
of expanders.

Definition A.2.2 (Directed expander). Consider a directed, unweighted graph
G = (V,E). For any set of vertices S ⊆ V , we define vol(S) :=

∑
v∈S deg(v), where

deg(v) counts both in- and out-edges incident to v. We say that cut ∅ ≠ S ⊊ V is
ϕ-sparse if min{|E(S, S)|, |E(S, S)|} < ϕ ·min{vol(S), vol(S)}, where S := V \ S.
We say that a graph G is a ϕ-expander if it contains no ϕ-sparse cuts.

One should think of the ϕ parameter above as being 1/no(1). We also modify
the above definitions to apply with respect to an edge set F ⊆ E, often referred to
as terminal edges. In particular, define degF (v) to be the number of edges in F
incident to v and volF (S) =

∑
v∈S degF (v); we say a cut S is ϕ-sparse with respect

to F if min{|E(S, S)|, |E(S, S)|} < ϕ ·min{volF (S), volF (S)}; we say that G is a
ϕ-expander with respect to F if G contains no ϕ-sparse cuts with respect to F .
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To handle graphs that are not strongly connected, it is useful to define a notion
of expansion that applies separately to every strongly connected component (SCC).
Given a set of terminal edges F , we say that F is ϕ-expanding in G if every SCC of
G is a ϕ-expander with respect to F .6

Expanders are nice to work with in the context of flow problems because they
admit a low-congestion flow between any sets of sources/sinks. This also generalizes
to a terminal set F .

Fact A.2.3 (Proved in Lemma A.5.12). Let G = (V,E) be a ϕ-expander with
respect to a terminal set F ⊆ E. Consider any flow-instance with supply/demand
∆,∇ such that ∥∆∥1 = ∥∇∥1 with all supply/demand on terminal edges; formally,
this means that for every vertex v, ∆(v) ≤ degF (v) and ∇(v) ≤ degF (v). Then,
there exists a flow f in G that routes all the supply/demand and has the following
properties: 1) f(e) = O(log(n)/ϕ) for every e ∈ E and 2) Every flow path in f
uses at most O(log(n)/ϕ) edges in F .

A standard approach to dealing with a general undirected graph G = (V,E)
is to decompose it into a hierarchy of expanders [PT07; GRST21]; in this paper,
we propose an analogous hierarchy for directed graphs. Let us first consider a
single expander decomposition of a directed graph G, formalized in [BPS20]. In
any directed graph G, it is possible to find a set of “back edges” B such that every
strongly connected component (SCC) of G \B := (V,E \B) is a ϕ-expander and
|B| = Õ(ϕm).7 If we imagine a topological sort of the SCCs in G \ B, then the
above partition effectively decomposes E into three edges types:

1. Edges inside SCCs of G \B, which we denote as X1.

2. Edges (u, v) between different SCCs of G\B that go forward in the topological
ordering. We will denote these as D, which stands for DAG edges.

3. Edges in B, which may go backward in the topological ordering. We denote
these as X2.

Put succinctly, X1 is ϕ-expanding in G \X2. If X2 happens to be ϕ-expanding
in G, then the expander hierarchy is complete; if not, we need to add a level to
the hierarchy. We can again perform expander decomposition with respect to X2
to compute an even smaller set of edges X3 such that every SCC of G \X3 is a ϕ-
expander with respect to X2 \X3. Let us assume, for simplicity, that X3 ⊆ X2; then,
to maintain a partition, we replace X2 with X2 \X3, and we now have a partition

6More precisely, each SCC is a ϕ-expander with respect to the volume induced by F .
7To see this existentially, imagine the algorithm that repeatedly finds ϕ-sparse cuts in the

graph, adds the (the sparser direction of) cut edges to B, and recurses on both sides of the cut.
This clearly results in a desired expander decomposition. The size of B can be bounded by a
simple charging argument: Every time we find a sparse cut, we can charge the cut edges to the
smaller side of the cut. Since a vertex can be in the smaller side of the cut at most O(logn) times,
the bound of Õ(ϕm) follows.
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of the edge set E = D∪X1 ∪X2 ∪X3. If X3 is ϕ-expanding in G then the expander
hierarchy is complete; otherwise we define a new set X4 in the same manner. We
now define the hierarchy more formally (see also Figure A.1 in Section A.5).

Definition A.2.4. A partition H = (D,X1, . . . , Xη) of the edges is a ϕ-expander
hierarchy if D is acyclic and for every i ∈ [η], Xi is ϕ-expanding in G \X>i; that is,
all SCCs of G\X>i are ϕ-expanders with respect to Xi, where X>i = Xi+1∪· · ·∪Xη.
Note that Xη must be ϕ-expanding in G.

While several variants of expander hierarchies have been previously used in
undirected graphs [Räc02; PT07; GRST21], we believe ours is the first paper to
apply them to directed graphs. The existence of the directed expander hierarchy
below follows from generalizing the construction by [PT07] in undirected graphs.
As we will discuss later, however, our construction is entirely different from previous
approaches in undirected graphs.

Fact A.2.5. Given any directed graph G = (V,E) and ϕ ≤ 1/polylog(n), there
exists an expander hierarchy H = (D,X1, ..., Xη) such that

1. |Xi| = Õ(mϕi−1).

2. The total number of levels is around log1/ϕ(m) = O(log(n)).

Note that the first property implies the second.

A.2.4 Directed Expander Hierarchy Implies Good Weight
Function

The primary technical challenge lies in computing the expander hierarchy of
Fact A.2.5. But first, in this section, we will show that once we compute such a
hierarchy, it implies a good weight function that we can plug into Theorem A.2.1.

Simple Expander. Let us first consider the very simple case that the entire graph
G is a ϕ-expander (for some ϕ = 1/no(1)). In this case, we simply set w(e) = n
for all e ∈ E. Note that

∑
e 1/w(e) = O(n); all that remains is to show that w

satisfies the path-weight requirement. Let f∗ be the actual maximum flow. The
flow f∗ itself may have long flow paths, but we will use the expansion of G to
shortcut f∗ while only paying a small overhead in congestion. By Fact A.2.3, there
exists a flow f such that f routes the same supply/demand as f∗, f has congestion
Õ(1/ϕ), and every flow path in f contains Õ(1/ϕ) edges. Scaling f down by a
Õ(ϕ)-factor thus yields a Ω̃(1/no(1))-approximate flow where every flow path P

has weight w(P ) = Õ(n/ϕ) = n1+o(1). Note that the algorithm never explicitly
computes f ; rather, we simply use its existence to argue that w is a good weight
function.
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DAG of Expanders. We now consider a slightly more general case, where every
SCC of G is a ϕ-expander, but there can be DAG edges between the SCCs. This
corresponds to a one-level expander hierarchy H = (D,X1), where X1 contains the
edges inside SCCs of G, and D contains the inter-component edges. We say that a
topological order τ respects the SCCs of G if it has the following properties:

• For every edge (u, v) ∈ D, we have τu < τv.

• For every SCC C of G, the set τ (C) := {τv : v ∈ C} is contiguous; in other
words, it contains precisely the set of numbers between τmin(C) := minv∈C τv
and τmax(C) := maxv∈C τv.

It is easy to see that such a respecting τ exists. We now define w(u, v) = |τv − τu|.
Not that if u, v are in the same SCC C, then w(u, v) ≤ |C|. Since the weight
function is defined by a topological ordering we have that

∑
e 1/w(e) = O(n log(n)).

The analysis is exactly the same as for the case when G is a DAG.
We now show that w satisfies the path-weight requirement. Let f∗ be the

maximum flow. As before, we start by shortcutting f∗ inside each expander.
Formally, for every component C of X1, we apply Fact A.2.3 to the following flow
instance: for every flow path P in f∗, we add one unit of supply to the first vertex
in P ∩ C and one unit of demand to the last vertex in P ∩ C. Let f be the flow
resulting from shortcutting f∗ inside every SCC C. Note that f incurs a congestion
of 1/ϕ and that for every flow path P in f , |P ∩ C| = Õ(1/ϕ).

We now argue that every flow path P in f has w(P ) = Õ(n/ϕ). First, consider
the weight of X1 ∩ P , i.e. the intra-component edges. For any component C,
P ∩C contains Õ(1/ϕ) edges, each of weight at most |C|, so w(P ∩C) = Õ(|C|/ϕ);
summing over all components yields weight Õ(n/ϕ). For the inter-component edges
on P , since the topological labels on these edges are monotonically increasing, it is
easy to see that their total weight contribution is O(n).

Two-Level Expander Hierarchy. The next slightly more general case is when
the edges of G can be partitioned into a two-level expander hierarchy (D,X1, X2):
X1 contains edges inside SCCs of G \X2, and each of these SCCs is a ϕ-expander;
D contains edges between SCCs of G \ X2; finally, X2 is expanding in G. This
two-level hierarchy is far from the general case because of our assumption that X2
is expanding in G; nonetheless, this special case will already contain all of our main
ideas for proving that an expander hierarchy implies a good weight function.

The weight function is exactly the same as the previous one: we compute a
topological order τ that respects the SCCs of G \X2 and we set w(u, v) = |τv − τu|.
Since w is still based on a topological ordering, we again get

∑
e∈E 1/w(e) =

O(n log(n)). All that remains is to show that w satisfies the path-weight requirement.
To do so, we use the following claim:

Claim A.2.6. Let f∗ be the optimal maximum flow. There exists a flow f routing
the same supply/demand as f∗ does such that:
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1. f has congestion Õ(1/ϕ). (Actually we get cong(f) = 1 + 1
log(n) , but Õ(1/ϕ)

is good enough.)

2. Every flow path in f contains Õ(1/ϕ) edges from X2.

3. Let P be any flow path in f . For every SCC C of G \X2, we have |P ∩ C| =
Õ(1/ϕ). (Recall that the SCCs of G \X2 are precisely the SCCs in which X1
is ϕ-expanding.)

Before proving this claim, let us see why it implies that w satisfies the path-weight
requirement. Scaling f down by cong(f) = Õ(1/ϕ) we get a feasible approximate
flow, as desired. Consider any flow path P in f . The path P contains at most
Õ(1/ϕ) edges from X2, each with weight at most n, so the total weight contribution
of X2 ∩ P is Õ(n/ϕ). For edges that belong to an SCC of G \ X2, the analysis
is exactly the same as for a DAG of expanders: each component C contributes
Õ(|C|/ϕ) weight to path P , for a total of Õ(n/ϕ). Finally, consider the DAG edges
in D. For any subpath of P that is disjoint from X2, all the edges in D are increasing
in terms of the τ values, so the total weight of D-edges in such a subpath is O(n).
Every edge in X2 can then go back to the beginning of the topological order, but
since there are only Õ(1/ϕ) edges in P ∩ X2, the total contribution of P ∩ D is
Õ(n/ϕ). We now sketch a proof of Claim A.2.6.

Proof Sketch of Claim A.2.6. Recall that we are assuming a two-level hierarchy
where X2 is expanding in G. By Fact A.2.3, we can thus reroute f∗ to a new flow
f2 such that f2 has congestion c2 = Õ(1/ϕ) and every flow path in f2 contains at
most Õ(1/ϕ) edges from X2.

A Näıve Approach. We now need to further shortcut f2 so that it satisfies
Property 3. Consider any SCC C of G\X2, and recall that by definition of expander
hierarchy, C is a ϕ-expander with respect to X1. The näıve way to shortcut the
flow inside C is to repeat the procedure above: reroute flow from the first vertex in
P ∩ C to the last, for every flow path P . There is, however, a subtle but significant
issue with this approach. We are rerouting the flow f2 and not the original flow
f∗. Whereas f∗ has congestion 1, the flow f2 already has congestion c2 = Õ(1/ϕ).
For this reason, there could be a vertex v ∈ C such that for every edge e entering
v has a flow f2(e) = c2 on it. As a result, the flow instance that we used to
reroute C could have ∆(v) ≈ c2deg(v) ≈ 1

ϕdeg(v), which exceeds the maximum
specified by Fact A.2.3. We can still apply a scaled version of this fact, but the
resulting edge congestion will then be Õ(c2/ϕ) = Õ(1/ϕ2), instead of Õ(1/ϕ). At
first glance this might seem acceptable, since 1/ϕ2 = no(1). But for general graphs,
the hierarchy might have as many as log1/ϕ(n) levels (see Fact A.2.5), and the näıve
shortcutting approach above will multiply the congestion by 1/ϕ per level, leading
to an unacceptably high congestion of Ω(n).



A.2. TECHNICAL OVERVIEW 83

All-to-All Rerouting With Less Demand Per Edge. To overcome this issue,
we need a more careful shortcutting procedure. Consider again the flow f2 with
congestion c2 = Õ(1/ϕ). We will show how to reroute f2 so that Property 3 of the
claim is satisfied, while the congestion of the flow only increases to c2 · (1+1/ log(n)).
Consider any SCC C of G \X2. Let Pshort contain all flow paths P of f2 for which
|P ∩C| ≤ 2k, where k is a parameter we will later set to Õ(1/ϕ).8 Let Plong contain
all other flow paths. Note that there is no need to reroute the flow paths of Pshort,
as they already satisfy Property 3.

We define the following flow instance for rerouting Plong. For every P ∈ Plong,
let Pearly contains the first k vertices of P and Plate the last k. We reroute from all
of Pearly to all of Plate, which will allow us to place less supply/demand on every
individual vertex. Formally, we add supply 1/k to every vertex in Pearly and demand
1/k to every vertex in Plate. Since cong(f2) = c2, the supply/demand on every
vertex is now at most c2/k. Therefore, applying (the scaled version of) Fact A.2.3,
we get a flow f ′ with short flow paths and congestion (c2/k) · Õ(1/ϕ). To reroute
Plong, we must combine flow f ′ with the flow along Pearly and Plate, as the new flow
must use Pearly and Plate to reach all the sources and sinks on these segments. We
now bound the overall congestion of the resulting flow f . Any edge e ∈ C includes
at most f2(e) ≤ c2 from the parts of f2 that have not been rerouted, which includes
all the flow from Pshort, as well all the flow from the early and late segments of
each path in Plong. Also, e gets an additional (c2/k) · Õ(1/ϕ) units of flow from
the rerouting. Together, this results in f(e) ≤ c2(1 + 1/k · Õ(1/ϕ)). Setting k to a
large enough polylog(n)/ϕ yields f(e) ≤ c2(1 + 1/ log(n)). Since there are O(log(n))
levels in the expander hierarchy of Fact A.2.5, the congestion at the final level will
still be O(c2) = Õ(1/ϕ).

Generalizing to a Multi-Level Expander Hierarchy. Let us now consider a
general graph G, which we know admits a multi-level expander hierarchy H as in
Fact A.2.5. We can obtain a good weight function w using the same tools as in the
simpler two-level hierarchy above.

First, let us say a topological order τ respects H = (D,X1, ..., Xη) if for every
i, the τ labels are contiguous in every SCC of G \X>i, and for every DAG edge
(u, v) ∈ D we have τu < τv. It is easy to construct such a topological order by going
from the top to the bottom of the hierarchy, and computing SCCs in each G \X>i.
We then define our weight function as w(u, v) = |τu − τv|. Since w is defined by a
topological order, we again have

∑
e 1/w(e) = O(n log(n)).

To prove that w satisfies the path-weight requirements we prove that there
exists an approximate maximum flow f such that for every Xi and every SCC C of
G \X>i, the flow f uses Õ(1/ϕ) edges in Xi ∩ C. It is easy to show that such a
flow f satisfies the path-weight requirement, and we can show that such a flow f

8Note that P might enter and leave C multiple times, but we can still consider the first (or
last) k vertices of P ∩ C.
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exists by using the careful rerouting procedure above starting at the top level, then
the second-highest level, and so on.
Remark A.2.7. The flow rerouting above is needed for analysis only. The algorithm
never computes f ; instead, its existence is enough to prove that w satisfies the
path-weight requirement. All the algorithm does is to find a hierarchy-respecting
topological order τ and set w(u, v) = |τv − τu|.

A.2.5 Constructing the Directed Expander Hierarchy
As far as we know, our paper is the first to define a directed expander hierarchy.
We first contrast our hierarchy with existing work in undirected graphs.

Previous Work: Undirected Expander Hierarchy. The definition of our
hierarchy can be thought of as a generalization of the undirected hierarchies of [PT07].
The problem, however, is that [PT07] relies on a slow polynomial-time algorithm
for constructing the hierarchy. It is possible to use techniques from [RST14] to
efficiently construct the hierarchy in a top-down manner, but this requires solving a
max-flow problem at each level, which we cannot afford to do as we are trying to
develop our own efficient combinatorial max-flow algorithm. We thus develop an
entirely different bottom-up construction.

A more recent paper of [GRST21] shows a different undirected expander hierarchy
that admits a very efficient bottom-up construction. Their construction is based
on boundary-linked expanders, which allow for low-congestion routing between the
boundary edges. In undirected graphs, we observed that we could have naturally
defined a good weight function from their hierarchy. Unfortunately, a decomposition
into boundary-linked expanders does not exist for directed graphs. In undirected
graphs, an expander decomposition has a small number (i.e., Õ(ϕm)) of boundary
edges, which is why boundary-linkedness is possible. In directed graphs there can
be arbitrarily many boundary edges, because even if a cut E(S, S) is sparse, there
may still be Ω(m) edges in the other direction E(S, S).

Our Construction. We now give an overview of our framework for constructing
the expander hierarchy H(D,X1, ..., Xη) of Fact A.2.5. We proceed in a bottom-up
fashion. The first step is to compute a set of edges X2 such that |X2| = Õ(ϕm)
and all SCCs of G \X2 are ϕ-expanders; the edges inside these SCCs then become
X1. Loosely speaking, we can compute X2 by repeatedly computing a ϕ-sparse
cut and recursing on both sides (more details below). To construct the next level
X3 of the hierarchy, we again need to repeatedly find sparse cuts, but this time
they need to be sparse with respect to X2. Here, however, we encounter a potential
issue: we may find a sparse cut E(S, S) which is not a subset of X2. As a result,
when we move E(S, S) to X3, we will end up disturbing lower levels of the hierarchy.
Unfortunately, there is no way to avoid this issue; in fact, depending on the choice
of X2, there might not even exist a cut that is sparse with respect to X2 and whose
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crossing edges are contained in X2. This lack of nestedness poses a huge technical
challenge which we discuss later, but let us bypass it for now and make the following
unrealistic assumption:

Assumption A.2.8 (Unrealistic Nestedness Assumption). Whenever we compute
a cut (S, S) that is ϕ-sparse with respect to some Xi, we are in the lucky case where
E(S, S) ⊆ Xi.

Given the assumption above, we can proceed to construct the whole hierarchy in
a bottom-up fashion. The challenge now is to do so efficiently. As suggested above,
finding the next edge set Xi+1 requires repeatedly finding cuts that are sparse with
respect to Xi. In fact, the whole construction can effectively be reduced to the
following subroutine:

Sparse-Cut Subroutine. Given a graph G = (V,E), a set of terminal edges
Xi ⊆ E, a set of sources X∆ ⊆ Xi, and a set of sinks X∇ ⊆ Xi with |X∇| = |X∆|,
the algorithm must either:

1. find a flow f of congestion Õ(1/ϕ), where all vertices in X∆ (resp., X∇) have
one unit of supply (resp., demand) and f routes at least |X∆|/2 units of flow,
or

2. find a cut that is ϕ-sparse with respect to Xi.

If we allow the nestedness assumption above, and have an efficient algorithm for
the sparse-cut subroutine, then we can apply the standard approach of combining
the subroutine with the celebrated cut-matching game framework [KRV06; Lou10]
to either locate a sparse cut (without being given as input the (X∆, X∇) pair) in
the graph or certify that it is an expander. By recursing on both sides of the sparse
cut, we get an expander decomposition algorithm that computes Xi+1, and we can
further ensure that the total number of invocations of the sparse-cut subroutine is
no(1) using ideas developed in [NS17; Wul17; NSW17].9

Sparse-Cut Subroutine: Level One. We now describe our implementation of
the sparse-cut subroutine, which uses entirely new techniques. Let us start on the
bottom level, where the set of terminal edges is Xi = E. At this level, the subroutine
can easily be done in Õ(m/ϕ) time using existing techniques (see e.g. [HRW17;
SW19]), which we quickly review. The algorithm is quite simple: we run regular
(non-weighted) push-relabel to send flow from X∆ to X∇, except that we allow
edges to have capacity up to polylog(n)/ϕ, and we impose a maximum vertex label
of h = Õ(1/ϕ); this artificial maximum might prevent push-relabel from finding a
maximum flow. Let f be the flow computed by push-relabel. There are two cases

9Similar ideas were previously applied to directed expander decomposition/pruning in [BPS20;
HKPW23]. We make particular use of the algorithmic framework established by [HKPW23] later
in the paper to handle the unrealistic nestedness assumption.
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to consider. If f sends at least |X∆|/2 flow, we are done. If not, let Gf be the
remaining residual graph, and note that since f has small value, there must exist
some s ∈ X∆ and some t ∈ X∇ with ℓ(s) = h = Õ(1/ϕ) and ℓ(t) = 0.

Rather than working directly with the labels ℓ, our algorithm computes a new
labelling d, where d(v) := distGf

(v, t). By the admissibility property of push-
relabel, we have d(s) ≥ h. Now, for any k, define Vk := {v ∈ V | d(v) = k} and
V≥k := {v ∈ V | d(v) ≥ k}. We refer to cuts (S, S) of the form S = V≥k as a level
cut. We will show that one of the level cuts is a sparse cut in Gf . For the full proof
we need to show that one of the level cuts is sparse in the original graph G, but the
proof is essentially the same: loosely speaking, since we set edge capacities to be
polylog(n)/ϕ, the flow f saturates at most O(ϕ|X∆|/polylog(n)) edges, which is so
few that they have minimal effect on the sparseness of a level cut.

To see that one of the level cuts in Gf is sparse, we use a so-called ball-
growing argument. Consider some level cut S = V≥k, and note that since d
corresponds to distances, every edge in G′ leaving V≥k goes to Vk−1. So if cut
S is non-sparse, then there are many edges from V≥k to Vk−1, and in particular
vol(V≥k−1) ≥ vol(V≥k) · (1 + ϕ). Thus, there can be at most log1+ϕ(m) = Õ(1/ϕ)
non-sparse layers, so as long as we set h large enough, we can ensure that over half
the level cuts are sparse.

Sparse-Cut Subroutine: Level Two. Let us now consider the case where
we have already constructed the first level of the hierarchy H = (D,X1, X2). To
construct the next layer, we need to solve the sparse-cut subroutine with respect to
terminal edges X2. This simple case will once again contain most of our main ideas
for finding a sparse cut with respect to a general Xi.

We can no longer directly use a ball-growing argument. In the simple case
above, the crux of the argument was that the edges crossing any non-sparse level
cut S = V≥k get added to the volume of V≥k−1, which guarantees that vol(V≥k)
increased multiplicatively as we move from k = h to k = 0. The problem is that for
the second level of the hierarchy, sparseness is defined with respect to volX2 , but
the edges crossing a non-sparse cut S = V≥k might not belong to X2, so volX2(V≥k)
might not change at all across levels. In order to use ball-growing to argue that
there exists a sparse level cut, we will need to reassign vertex levels in such a way
that there exist many level cuts whose edges come primarily from X2.

The key idea is to use the weighted push-relabel algorithm, where the weight w
will be based on the incomplete hierarchy we have already built. In particular, let τ
be a topological order that respects the SCCs ofG\X2 and let w(u, v) = |τu−τv|. We
will now run the weighted push-relabel algorithm up to maximum label h = Õ(n/ϕ);
by Theorem A.2.1 the runtime is O(m + h

∑
e∈E 1/w(e)) = O(m + hn log(n)) =

n2+o(1). Let f be the flow computed by weighted push-relabel. If f sends at least
|X∆|/2 flow, then we are done. Otherwise, we once again have vertices s ∈ X∆ and
t ∈ X∇ with ℓ(s) = h = Õ(n/ϕ) and ℓ(t) = 0. As before, define d(v) := distw

Gf
(v, t),
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where distw
Gf

is the shortest distance according to w in the residual graph. We know
that d(s) ≥ h.

Now, for the sake of intuition, consider the simplistic case where f is empty,
so the residual graph Gf = G. As discussed above, to argue that there exists a
level cut that is sparse with respect to X2, we need there to be many level cuts
whose edges come primarily from X2. This might not be true under the current
labelling d because of the presence of DAG edges, so we define a new weight function
w′, which is the same as w except that it sets the weight of all DAG edges to 0.
We then define labeling d′(v) := distw′

Gf
(v, t). Even though d′(s) < d(s), we argue

that d′(s) ≥ d(s)/2 − n = Ω(h), so we still have many levels. This follows from
the fact that under the original weight function w, the DAG edges in D always
increase τ , so except for the initial increase from τ = 0 to τ = n, any further
weight-contribution from D must be balanced by edges in X1 and X2 that move
backward in the topological ordering; as a result, D can only account for around
half the total weight of a path under w, so d′(s) ≳ d(s)/2.

We thus have a distance labeling d′ such that d′(s) = Ω(h) and none of the level
cuts contain any DAG edges (because they have weight 0). We now argue that most
of the level cuts also do not contain any edges from X1. Recall that the SCCs of
X1 are ϕ-expanders. Consider any SCC C of X1; since for any edge (u, v) ∈ C we
have w′(u, v) = w(u, v) ≤ |C|, the diameter of C under w′ is at most Õ(|C|/ϕ), so
edges inside C are present in at most Õ(|C|/ϕ) different level cuts. Therefore, in
total there are at most Õ(n/ϕ) level cuts containing edges from X1, and if we set
h = Õ(n/ϕ) large enough then there will be Ω(h) level cuts that contain exclusively
edges from X2. We can now use a standard ball-growing argument to argue that
one of these level cuts is sparse with respect to X2.

Recall that we made the simplifying assumption that Gf = G. In reality,
weighted push-relabel might compute some initial flow f , so Gf ̸= G. We now argue
that we can still find a cut in the residual graph Gf that is sparse with respect to
X2, which as already discussed, also yields a sparse cut in G. We start by again
setting w′ to have weight 0 on all edges in D except the residual edges of flow f ,
and we define distance function d′ accordingly. The residual edges of flow f have a
small contribution,10 so we ignore them for this overview; as a result, we again have
that d′(s) = Ω(h) and level cuts that contain no edges in D.

Dealing with the edges of X1 is trickier. Consider a SCC C of X1. The problem
is that if the flow f saturated some edges in C, then those edges are reversed in Gf ,
so C might no longer be an expander, and hence might have high diameter. The
crux of our analysis is to argue that, as the value of flow f is relatively small, it
does not impact the average expander C by too much.

To argue this, a natural idea is to apply the expander pruning argument (see
e.g., [SW19; BPS20; HKPW23]). In particular, if f saturates σ edges in C, then

10The residual edges are those edges which we sent flow along, and are then reversed in the
residual graph. Our weighted push-relabel algorithm will guarantee that each augmenting path it
finds is of w-length O(h), so the contribution of these edges to the level cuts is not too much.
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there exist a pruned set PC ⊆ C such that PC has small size Õ(σ/ϕ) and C \ PC is
still a Ω(ϕ)-expander. Thus, since C \ PC has small diameter, its edges are once
again present in only a minority of level cuts, so the remaining level cuts only contain
edges from X2 and from the pruned parts PC . As long as the pruned parts are
small we can argue that their impact is minimal, and thus most level cuts contain
edges primarily from X2. Again, standard ball-growing techniques proves that one
of the remaining level cuts is sparse with respect to X2. Unfortunately, the standard
expander pruning technique does not give a small enough pruned set PC .

Technical Highlight: Path-Reversal Pruning. The remaining challenge is in
arguing that the pruned set PC is small. Let R be some flow path of f that goes
through C (R for reversed path). Since f is relatively small, the number of such
flow paths is also small. The problem is that |R| can contain many edges, so if we
apply standard expander pruning by simply deleting all of R, the resulting pruned
set PC will be too large.

To overcome this challenge, we introduce a new technique, path-reversal pruning,
which we believe might find other applications. Note that R is not actually deleted
from the residual graph Gf ; instead, its edges are reversed. Reversing an entire path
only changes the size of any directed cut by at most 1, and so intuitively it should
not affect expansion by too much. We are able to show that from the perspective
of pruning, reversing an entire path (no matter the length) has approximately the
same impact as deleting a single edge. In particular, we prove that if we reverse
σ different paths R1, ..., Rσ, then there exists a pruned set PC such that C \ PC is
still an expander and the size of PC is roughly σ/ϕ, rather than

∑σ
i=1 |Ri|/ϕ given

by previous pruning guarantees. The technical details end up being quite different
from standard pruning.
Remark A.2.9. Note that the algorithm itself never performs any pruning. All it
does is: compute a flow f using weighted push-relabel, change the weight of the
DAG edges to 0, compute new distance labels d′ using Dijkstra’s algorithm, and
then check all the level cuts until it finds a sparse one. Pruning is used only in the
analysis to argue that one of the level cuts is indeed sparse.

Edge Capacities. All of the analysis and expander decomposition tools generalize
almost seamlessly to capacitated graphs. To make our weighted push relabel
algorithm still efficient in capacitated graphs we use dynamic trees [ST83], similar
to what is done for a standard push relabel [GT88].

A.2.6 Removing the Unrealistic Nestedness Assumption
Until now, we have assumed Assumption A.2.8 that when we compute a ϕ-sparse cut
S with respect terminal edge set Xi, we always have E(S, S) ⊆ Xi, i.e., the cut edges
consist only of the terminal edges. Unfortunately, there are many counterexamples
showing this assumption is impossible. Without Assumption A.2.8, the following
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issue occurs: once a sparse cut S in G[U ] is found, our algorithm needs to further
recurse on both sides S and U \ S, yet if the cut contains non-terminal edges, then
we no longer have an expander hierarchy of G[S] and G[U \ S] from lower levels
that our flow algorithm needs when performing the recursions.

In Section A.7 we address this problem. In particular, instead of fixing the i-th
level expanding edges Xi once it is computed, we allow edges to be moved between
different levels in the hierarchy to ensure nestedness. Similarly, our algorithm also
moves between levels and may attempt to find further sparse cuts following edge
movements. To modularize the analysis, we employ a data structure point-of-view
that models these interactions between levels. We adapt the framework of [HKPW23]
to maintain a single-level expander decomposition when edges are moving between
levels. However, unlike the analysis of [HKPW23], our approach is not inherently
dynamic in the sense that we do not exploit any local property of the weighted
push-relabel algorithm we developed. Instead, our focus is on arguing that the
total number of updates given to these data structures is small throughout the
construction of the hierarchy. That is, in contrast to achieving a local and sublinear
update time as in the dynamic graph algorithm literature and previous maximum
flow algorithms, our data structure spends n2+o(1) time per update, which when
combined with the analysis that there are only no(1) updates results in the final
running time. We defer a more detailed overview of our approach to Section A.7.1.

We acknowledge that our current construction (spanning more than 40 pages in
Section A.7) seems overly involved (unlike the otherwise relatively simple algorithm
parts of our paper) and we believe that with future developments of directed
expander-related techniques this can be greatly simplified. We also emphasize
that this step of avoiding non-nested cuts is the only reason why our algorithm is
randomized11 and has an inherent subpolynomial overhead.12

A.3 Preliminaries

General Notation. We use N to denote the set of nonnegative integers. Let [k]
for k ∈ N be {1, . . . , k}, and in particular [0] := ∅. For a collection of sets {Si}ℓ≤i≤r
indexed by integers, let S≤j :=

⋃
ℓ≤i≤j Si and S≥j :=

⋃
j≤i≤r Si, and define S<j

and S>j analogously. We let a ≤ b for vectors a and b act entry-wise. For a vector
x ∈ RU we may write x(S) :=

∑
u∈S x(u) for S ⊆ U . We use 0 and 1 to denote

the all-zero and all-one vectors whose dimensions shall be clear from context.
We say an event happens with high probability if it does with probability at least

1− n−c for an arbitrarily large (but fixed) constant c > 0.

11We also use a randomized cut-matching game from [KRV06; Lou10], but that can be easily
replaced with a deterministic counterpart [BPS20].

12Technically speaking, most current directed expander decomposition algorithms run in almost-
linear instead of near-linear time. However, with the recent work of [SP24] it seems promising that
one can adopt their techniques in combination with our push-relabel algorithm to achieve a Õ(n2)
construction, at least if assuming the unrealistic nestedness assumption.
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Graphs. Graphs in this paper are assumed to be directed. Unless explicitly stated
to be simple, multi-edges are allowed. Let G = (V,E) be a graph. For disjoint subsets
A,B ⊆ V , let EG(A,B) := {(u, v) : u ∈ A, v ∈ B}. Let δ+

G(v) := EG({v}, V \ {v})
and δ−G(v) := EG(V \ {v}, v) be the outward and inward edges incident to v. Let
δG(v) := δ+(v) ∪ δ−(v). When clear from context, let S for S ⊆ V be V \ S. For
instance, we write EG[U ](S, S) := EG[U ](S,U \ S) for U ⊆ V . Let ←−G = (V,←−E )
be G where all edges are reversed, i.e., ←−E := {(v, u) : (u, v) ∈ E}. The edge-
vertex incidence matrix BG ∈ {−1, 0, 1}E×V of G is given by BG(e, u) = 1 and
BG(e, v) = −1 for each e = (u, v) ∈ E with all other entries set to zero.

A graph G is strongly connected if EG(S, S) ̸= ∅ for every ∅ ≠ S ⊊ V . A strongly
connected component of G is a maximal strongly connected subgraph of G. Let
SCC(G) denote the collection of strongly connected components of G. An edge
set F ⊆ E is a separator of G if no edge in F has both its endpoints in the same
strongly connected components of G \ F .

Capacitated Graphs. We consider capacitated graphs (G, c) with capacities
c ∈ NE . Unless stated otherwise, throughout this paper by standard capacity
scaling (see Section A.9) we assume c(e) ≤ n2 for all e ∈ E. For a subgraph
H ⊆ G, we may overload notation and (H, c) to denote a capacitated graph
with capacities c restricted H. For F ⊆ E, let deg+

F,c(v) :=
∑
e∈δ+(v)∩F c(e),

deg−F,c(v) :=
∑
e∈δ−(v)∩F c(e), and degF,c(v) := deg+

F,c(v) + deg−F,c(v) be the sum of
capacities of edges in F incident to v. Let volF,c(S) :=

∑
v∈S degF,c(v) for S ⊆ V .

When G is clear from context, let degc(v) := degE,c(v) and volc(S) := volE,c(S).
When the graph is unit-capacitated, i.e., c = 1, we drop the subscript c in the
above notation which recovers the standard definitions of degree and volume. For
analysis it is oftentimes simpler to work with unit-capacitated graphs. Let Gc be
G where each edge e is duplicated c(e) times. For F ⊆ E, let F c ⊆ E(Gc) be the
multi-subset of E(Gc) that contains precisely the duplicates of edges in F . It is
easy to see that the above definitions are equivalent in (G, c) and Gc. Let Gc for
c ∈ N be Gc1 and F c be F c1.

Flows. A flow instance I is a tuple I = (G, c,∆,∇) where G = (V,E) is a
graph with edge capacities c ∈ NE , ∆ ∈ RV≥0 is the source vector, and ∇ ∈ RV≥0
is the sink vector. Without stated otherwise, we further assume ∥∆∥1 ≤ ∥∇∥1,
i.e., I is a diffusion instance. When unspecified, we assume the graph is unit-
capacitated, i.e., c = 1. Consider a vector f ∈ QE≥0.13 The absorption of f is
absf := min{B⊤Gf + ∆,∇}, where the min operator is defined entry-wise. The
excess of f is exf := B⊤Gf + ∆ − absf = max{B⊤Gf + ∆ −∇,0}. The value

13In general, flows in graphs can take real values on edges. However, our algorithms and analyses
will always work with flows of rational values, and in particular restricting f to be in QE allows us
to treat a fractional flow as an integral flow in the graph in which edges are duplicated, making
our analyses cleaner.
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of f is |f | := absf (V ) = ∥∆∥1 − exf (V ). Let fout := −B⊤Gf and so fout(v) is
the net flow going out of v. The vector f is a (∆,∇)-flow, or simply a flow, if
0 ≤ exf ≤∆. The congestion of f is cong(f) := ∥f/c∥∞. A flow is feasible if f ≤ c
or equivalently cong(f) ≤ 1. The flow f routes I (or routes the demand (∆,∇)) if
|f | = ∥∆∥1 = ∥∇∥1, and we say I is routable with congestion κ if cong(f) ≤ κ for
such a flow (or simply routable if κ ≤ 1). Two flows f1 and f2 are equivalent if they
route the same demand, i.e., B⊤Gf1 = B⊤Gf2.

Fact A.3.1. For any flow f and S ⊆ V it holds that ∆(S) = absf (S) + fout(S) +
exf (S).

Given a flow f , the residual graph Gf contains for each e = (u, v) ∈ E a forward
edge −→e = (u, v) with capacity cf (−→e ) := c(e)− f(e) if cf (−→e ) > 0 and a backward
edge ←−e = (v, u) with capacity cf (←−e ) := f(e) if cf (←−e ) > 0. For F ⊆ E, let
−→
F := {−→e : e ∈ F} and ←−F := {←−e : e ∈ F}. Let ∆f := exf and ∇f := ∇− absf be
the residual sources and residual sinks. A source s with ∆(s) > 0 is unsaturated by f
is ∆f (s) > 0; likewise, a sink t with ∇(t) > 0 is unsaturated if ∇f (t) > 0. Together
this defines the residual flow instance If = (Gf , cf ,∆f ,∇f ). An augmenting
path is a path in Gf consisting of edges with positive residual capacities from an
unsaturated source to an unsaturated sink. The following standard fact justifies the
use of residual graphs.

Fact A.3.2. For any feasible flow f of I, it holds that if f ′ is a maximum flow of
If then f + f ′ is a maximum flow of I.

A flow f is integral if f ∈ NE . Otherwise, f is fractional and 1
z -integral for

z ∈ N such that f ∈ ( 1
z · N)E . When f is 1

z -integral, we often equivalently view it
as an integral flow in the unit-capacitated G(z·c) and decompose it into a collection
of flow paths through the following standard fact. Let fP for P a path in G be
the flow that sends one unit of flow along P , i.e., f(e) = 1 for all e ∈ P . While
the capacitated perspective allows for faster algorithms, the unit-capacitated one is
sometimes easier to work with for analysis, as demonstrated by, e.g., the following
standard fact.

Fact A.3.3. An integral flow f admits a path decomposition Pf := {P1, . . . , P|f |}
such that f ′ := fP1 + · · ·+ fPf

is equivalent to f and satisfies f ′ ≤ f .

The following equivalence between maximum flow and minimum cut is standard.

Fact A.3.4 (Max-flow min-cut theorem). For a flow instance I = (G, c,∆,∇) the
maximum flow value is equal to

min
S⊆V

c(EG(S, S)) + ∆(S) + ∇(S).

The maximum (s, t)-flow or simply the maximum flow problem is to find a
maximum (∆s,∇t)-flow with ∆s :=∞ · 1s and ∇t :=∞ · 1t.
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Weights and Distances. Consider some edge weights w ∈ NE . Let distw
G(s, t) be

the shortest (s, t)-distance in G with respect to w. This is also referred to as the w-
distance between s and t in G. Let distw

G(S, T ) for S, T ⊆ V be mins∈S,t∈T distw
G(s, t).

For any flow f , we often extend w to assign the same weight w(e) to both −→e and←−e
in Gf when referring to distw

Gf
(s, t). The weight of a flow is w(f) :=

∑
e∈E w(e)f(e).

The w-length of a path P is
∑
e∈P w(e). For F ⊆ E, the F -distance and F -length

are defined as the wF -distance and wF -length for wF (e) = 1 for e ∈ F and wF (e)
for e ∈ E \ F .

Expanders. Consider first a strongly connected capacitated graph (G, c) and
vertex weights ν ∈ RV≥0. A cut ∅ ̸= S ⊊ V is ϕ-sparse with respect to ν in
(G, c) if min{c(EG(S, S)), c(EG(S, S))} < ϕ ·min{ν(S),ν(S)}. We say that ν is
ϕ-expanding in (G, c) if there is no ϕ-sparse cut in G with respect to ν. For G
that is not necessarily strongly connected, we say that ν is ϕ-expanding in (G, c)
if ν restricted to U ⊆ V is ϕ-expanding in (G[U ], c) for every strongly connected
component U of G. An edge set F ⊆ E is ϕ-expanding if degF,c is ϕ-expanding
in G. We may sometimes overload notation and say that F is ϕ-expanding in a
subgraph H ⊆ G if degF,c restricted to V (H) is ϕ-expanding in H. When the graph
is unit-capacitated, i.e., when c = 1, we may drop the vector c in the notation. A
ϕ-(pure)-expander is a (G, c) in which E(G) is ϕ-expanding. For analysis of our
algorithm, we often make use of the following equivalence between uncapacitated
and capacitated expanders.

Fact A.3.5. An edge set F is ϕ-expanding in (G, c) if and only if F c is ϕ-expanding
in Gc.

Embedding. An embedding ΠH→G from (H, cH) to (G, cG) where V (H) ⊆ V (G)
maps each e = (u, v) ∈ E(H) to a (u, v)-path ΠH→G(e) in G. The congestion of
ΠH→G is

cong(ΠH→G) := max
eG∈E(G)

∑
eH∈E(H):eG∈ΠH→G(eH ) cH(eH)

cG(eG) .

Cut-Matching Game. The cut-matching game is a framework for constructing
expanders from the interaction of two players: the cut player and the matching
player. Suppose we want to construct an expander over vertices V starting from
an initially empty graph. The game proceeds in rounds, and in each round the
cut player first computes a bisection (A,B) of V , and then the matching player
returns a (perfect) matching from A to B, which is then added to the graph. The
goal of the cut player is to compute the bisections in such a way that after a small
number of rounds, the resulting graph becomes an expander regardless of what
perfect matchings the matching player returns. [Lou10] extended the randomized
cut player for undirected graphs and its analysis from [KRV06] to work in directed
graphs. This can be straightforwardly generalized to the capacitated case. For
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vertex weights νA and νB with ∥νA∥1 ≤ ∥νB∥1, a (νA,νB)-perfect (capacitated)
matching is an (M, cM ) such that deg+

M,cM
(v) = νA(v) and deg−M,cM

(v) ≤ νB(v)
for all v ∈ V .

Theorem A.3.6 ([KRV06; Lou10]). Given n vertices V and a vector ν ∈ NV with
entries bounded by U , there is a randomized algorithm that computes in sequence
tCMG = O(log2(nU)) vector pairs (ν(i)

A ,ν
(i)
B ) with ν

(i)
A + ν

(i)
B ≤ ν and ∥ν(i)

A ∥1 ≤
∥ν(i)

B ∥1 such that if it is given (ν(i)
A ,ν

(i)
B )-perfect capacitated matching (Mi, ci) after

it outputs each (ν(i)
A ,ν

(i)
B ), then in the end it outputs a ψCMG-expander (W, cW ) with

edges M1 ∪ · · · ∪MtCMG such that ν(v) ≤ degW,cW
(v) ≤ tCMG · ν(v) for all v ∈ V ,

where ψCMG = Ω
(

1
log2(nU)

)
. The algorithm runs in Õ(n + |M1| + · · · + |MtCMG |)

time.

A.4 Push-Relabel Algorithm

Suppose that G = (V,E) is a directed graph, which we want to solve the maximum
flow problem on. In this section, we will also assume that we are given a weight
function w ∈ NE on the edges as additional input. This weight function will serve
as a “hint” and will help us to find a good approximate flow more efficiently. In an
ideal world, we would want the weight function to satisfy the following properties:

• There is some “short” flow f which is a good approximation to the optimal
maximum flow. With “short”, we mean that the average w-length w(f)

|f | is
something like Õ(n).

• The sum
∑
e∈E

1
w(e) is “small”, something like Õ(n).

The goal of this section is to design a version of the push-relabel14 algorithm,
originally due to [GT88], that, when the above properties are fulfilled, will find a
constant-approximation to the maximum flow efficiently. Hence, given the following
Theorem A.4.1, solving the maximum flow problem in n2+o(1) time reduces to
efficiently finding a “good” weight function w.

Theorem A.4.1 (Push-Relabel). Suppose we have a maximum flow instance
I = (G, c,∆,∇) consisting of an n-vertex m-edge directed graph G = (V,E), edge
capacities c ∈ NE, and integral source and sink vectors ∆,∇ ∈ NV . Additionally,
suppose we have a weight function w ∈ NE>0 and height parameter h ∈ N. Then
there is an algorithm—Algorithm A.1: PushRelabel(G, c,∆,∇,w, h)—that in
Õ
(
m+ n+

∑
e∈E

h
w(e)

)
time finds a feasible integral flow f such that

14Also sometimes called preflow-push, although our version will maintain proper flows and not
preflows.
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(i) the w-distance in the residual graph Gf between any unsaturated source s
(∆f (s) > 0) and any unsaturated sink t (∇f (t) > 0) is at least distw

Gf
(s, t) >

3h,

(ii) the average w-length of the flow is w(f)
|f | ≤ 9h, and

(iii) f is a 1
6 -approximation of f∗w,h—the optimal (not necessarily integral) flow

with average w-length w(f⋆
w,h)

|f⋆
w,h
| ≤ h.

A.4.1 Push-Relabel Finds an Approximate Short Flow
Before proving Theorem A.4.1 fully, we show how (iii) is implied by (i) and (ii).

Lemma A.4.2. Let f⋆ be a (possibly fractional) feasible (∆,∇)-flow where w(f⋆) ≤
|f⋆| · h, and let f be a (possibly fractional) feasible (∆,∇)-flow which satisfies (i)
and (ii) of Theorem A.4.1; then |f | ≥ 1

6 |f
⋆|.

Proof. We extend the graph G to G′ by adding a super-source s and super-sink
t, and adding edges (s, v) and (v, t) with capacities c(s, v) = ∆(v) respectively
c(v, t) = ∇(v) and weights w(s, v) = w(v, t) = 0. This lets us now consider the
(s, t)-flow problem with ∆′ = ∞ · 1s and ∇′ = ∞ · 1t. Similarly, the flow f and
f⋆ can be extended to the graph G′, by setting f(s, v) = ∆(v) − exf (v) and
f(v, t) = absf (v) and similarly for f⋆.

Assume for contradiction that |f | < 1
6 |f

⋆|. Consider the flow f ′ in the residual
graph G′f where we first send f backward, making the residual graph equal to G′,
and then send f⋆ forwards (i.e., f ′ = f⋆ − f). We note that f ′ is a feasible flow in
G′f , since exf ′(s) =∞ and exf ′(v) = 0 for all v ̸= s, so we have 0 ≤ exf ′ ≤∆′f =
∞ · 1s.15 We know that |f ′| = |f⋆| − |f | > 5

6 f⋆. We also know that, by definition,
w(f ′) ≤ w(f⋆) + w(f) with w(f) ≤ 9h|f |, by (ii). This gives

w(f ′)
|f ′|

≤ |f
⋆| · h+ |f | · 9h

5
6 |f⋆|

<
|f⋆| · h+ |f⋆| · 3

2h
5
6 |f⋆|

= 3h

meaning that, by an averaging argument, there must exist an (s, t)-path in the
residual graph G′f (and thus also a path in Gf between an unsaturated source and
unsaturated sink) of length less than 3h. However, this contradicts (i).

Remark A.4.3. It is worth noting that the reference flow f⋆ in Lemma A.4.2 needs
not be integral. Nevertheless, this does not contradict the large integrality gap or
the hardness-of-approximation results of the “bounded-length flow polytope” (see,
e.g., [GKRSY03; BEHKKPSS10]), since the flow f we find will have length slightly
larger than h (i.e., the 9h term in Theorem A.4.1(ii)).

15In the original graph G, the flow f ′ would not necessarily be feasible in Gf as exf⋆ (v) could
be less than exf (v) for some vertex v. This is the reason why we work in G′ instead.
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An immediate corollary of the Lemma A.4.2 is that the existence of short,
possibly fractional flow implies the existence of short integral flow.

Corollary A.4.4. If there is a (possibly fractional) feasible (∆,∇)-flow f⋆ where
w(f⋆) ≤ |f⋆| · h, then there is an integral feasible (∆,∇)-flow f with |f | ≥ 1

6 |f
⋆|

with w(f) ≤ |f | ·O(h).

Proof. Let f be the integral flow obtained by repeatedly finding augmenting paths
P of weight w(P ) ≤ 3h until no such paths exist. The flow f clearly satisfies
Theorem A.4.1(i) and (ii). The corollary follows from Lemma A.4.2.

A.4.2 Implementation
We now present the pseudocode in Algorithm A.1. Our implementation differs from
a textbook push-relabel algorithm in the following ways:

• We restrict our algorithm to 9h levels; vertices v with level ℓ(v) > 9h are
marked as dead.

• Our algorithm allows for edge-length w(e) for each edge. While a textbook
push-relabel algorithm can send flow on admissible edges (u, v) where the level
ℓ(u) = ℓ(v) + 1, we instead call an edge admissible when ℓ(u) ≈ ℓ(v) + w(e).
This is useful to obtain the faster running time, since, as we will see, an edge
e only changes between being admissible/inadmissible O

(
h

w(e)

)
times.

• Our algorithm employs an aggressive relabeling rule: as long as some vertex
(which has no unsaturated sink capacity) does not have any admissible outgoing
edge, we relabel it (even if it does not have any excess flow).

• The above point means that whenever we find an augmenting flow path, we
can push a unit of flow all the way from a source to a sink directly, and that
the length of this flow path is only O(h) (allowing us to argue (ii) and hence
also (iii)). Another consequence is that the flow f maintained by the algorithm
will always be a proper flow, and not a preflow, as is usual in push-relabel
implementations.

Remark A.4.5. Even on a directed path of length n, our push-relabel algorithm
would require Ω(n2) time. This is unlike most variants of push-relabel that usually
prioritize pushing instead of relabeling, which would take O(n) time on a path.
While our relabel-prioritized variant can compute an approximate maximum flow
with small average length, which is crucial for us, it also becomes our bottleneck.
This raises the exciting question of whether a weighted version of the push-prioritized
push-relabel algorithm can be devised so that, given a good weight function (or
something similar), it runs in m1+o(1) time and computes a (1/no(1))-approximate
maximum flow. In a graph with unit vertex capacities, a weight function induced
by the DAG of the maximum flow will guide a push-prioritized algorithm to run
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in linear time, but as of now it is unclear how to identify such a “good” weight
function without first computing the maximum flow.

Recall that the push relabel algorithm runs in the residual graph Gf = (V,−→E ∪←−E )
which is defined as follows: for each edge e = (u, v) ∈ E, we have a forward edge
−→e = (u, v) ∈ −→E and a backward edge ←−e = (v, u) ∈ ←−E with residual capacities
cf (−→e ) = c(e)−f(e) and cf (←−e ) = f(e). We will often use e and −→e interchangeably
(e.g., the flow f will be defined on −→E ), and often when referring to Gf as a graph
we will ignore all edges with residual capacity 0 (e.g., when talking about distances
in Gf ).

A.4.3 Proof of the Push Relabel Algorithm
We begin by showing some helpful invariants.

Lemma A.4.6. Throughout the run of Algorithm A.1, the following invariants
hold:

(I-1) ℓ(u)− ℓ(v) < 3w(e), for all e = (u, v) ∈ −→E ∪←−E with cf (e) > 0.

(I-2) ℓ(u)− ℓ(v) > w(e), for all e = (u, v) ∈ −→E ∪←−E marked admissible,

(I-3) ℓ(v) ≤ 9h for each alive vertex v, ℓ(v) > 9h for each dead vertex v, and
ℓ(t) = 0 for all unsaturated sinks t (∇f (t) > 0).

Proof. It is easy to verify that all invariants hold initially.
We begin with the invariants (I-1) and (I-2). Consider some edge e = (u, v),

and let ℓold(u), ℓold(v) be the levels of u and v the last time edge e was marked
as admissible or inadmissible. Note that ℓ(u) ∈ [ℓold(u), ℓold(u) + w(e) − 1] and
ℓ(v) ∈ [ℓold(v), ℓold(v) + w(e)− 1], as if the levels of u (or v) had increased by at
least w(e), then there must have been a point where w(e) divided ℓ(u) (or ℓ(v)).

1. If e was marked as inadmissible and cf (e) > 0, we know ℓold(u)− ℓold(v) <
2w(e), and hence that ℓ(u)− ℓ(v) < 2w(e) + (w(e)− 1).

2. If e was marked as admissible, we know ℓold(u)− ℓold(v) ≥ 2w(e), and hence
that ℓ(u)− ℓ(v) ≥ 2w(e)− (w(e)− 1). Additionally, we note that as long as e
is admissible, the quantity ℓ(u)− ℓ(v) cannot increase (since it only increases
when ℓ(u) goes up, which only happens if we relabel u, which in turn only
happens when there is no admissible outgoing edge of u). Because at the last
point when e was inadmissible we had ℓ(u)− ℓ(v) < 3w(e)− 1, we know that
ℓ(u)− ℓ(v) < 3w(e) now too.

Invariant (I-3) is easy to see, since any vertex of level > 9h is marked dead
from the graph, and the unsaturated sinks (i.e., those t with ∇f (t) > 0) are never
relabeled.
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Algorithm A.1: PushRelabel(G, c,∆,∇,w, h)
1 Initialize f as the empty flow.
2 Let ℓ(v) = 0 for all v ∈ V . // levels

3 Mark each edge e ∈ −→E ∪←−E as inadmissible and all vertices as alive.
4 function Relabel(v)
5 Set ℓ(v)← ℓ(v) + 1.
6 if ℓ(v) > 9h then
7 mark v as dead and return.
8 for each edge e ∋ v where w(e) divides ℓ(v) do
9 Let (x, y) = e.

10 if ℓ(x)− ℓ(y) ≥ 2w(e) and cf (e) > 0 then mark e as admissible.
11 else mark e as inadmissible.

12 main loop
13 while there is an alive vertex v with ∇f (v) = 0 and without an

admissible out-edge do
14 Relabel(v)
15 if there is some alive vertex s with ∆f (s) > 0 then

// P is an "augmenting path"
16 Trace a path P from s to some sink t, by arbitrarily following

admissible out-edges.
17 Let caugment ← min{∆f (s),∇f (t),mine∈P cf (e)}.
18 for e ∈ P do // Augment f along P
19 if e is a forward edge then f(e)← f(e) + caugment.
20 else f(e′)← f(e′)− caugment, where e′ is the corresponding

forward edge to e.
21 Adjust residual capacities cf of e and the corresponding reverse

edge.
22 if cf (e) = 0 then mark e as inadmissible.

// ∆f (s) and ∇f (t) goes down by caugment

23 else return f

Because the algorithm relabels all alive vertices (except unsaturated sources)
until they have an admissible outgoing edge, we note that when the algorithm
tries to trace a path P by arbitrarily following admissible edges, the path P must
eventually end in an unsaturates sink. Indeed, at this time, all alive vertices which
does not have admissible outgoing edges are exactly the unsaturated sinks. Moreover,
traversing an admissible edge, by (I-2), decreases the level ℓ, so this process cannot
go on forever and P must eventually end in an unsaturated sink.
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We will also need a bound on the number of augmentations the algorithm
performs:

Lemma A.4.7. Every edge e (or its reverse) is only saturated (i.e., has cf (e) =
caugment) in at most O( h

w(e) ) augmenting paths. Thus, there are at most O(n +∑
e∈E

h
w(e) ) many augmenting paths found by the algorithm.

Proof. Indeed, whenever edge e = (u, v) is fully saturated as part of an augmenting
path, it will be marked as inadmissible. At this point we have ℓ(u)− ℓ(v) > w(e) by
(I-2), and it (or rather, its reverse e′ = (v, u)) will only ever be marked as admissible
when ℓ(v)−ℓ(u) ≥ 2w(e). This means that the sum ℓ(u)+ℓ(v) must have increased
(since levels only ever increase) by Θ(w(e)). Since ℓ(u) + ℓ(v) ≤ 18h, this can only
happen O( h

w(e) ) times.
For the second part of the lemma, we note that for each augmenting path, either

an edge is saturated, or a source/sink vertex gets saturated. The former can happen
at most O(

∑
h

w(e) ) times for each edge e, and the latter can happen at most once
for each vertex. This bounds the number of augmenting paths.

We now resume to prove the guarantees listed in Theorem A.4.1 (recall that (iii)
was already shown in Lemma A.4.2).

Returns Short Flows. We begin by showing that Algorithm A.1 returns a flow
f such that w(f) ≤ 9h · |f | (thus proving (ii)). Indeed, each augmenting path
P = (s = v0, v1, v2, . . . , vk = t) our algorithm finds consists of admissible edges.
This means that w(P ) =

∑
e∈P w(e) ≤

∑k−1
i=0 ℓ(vi)− ℓ(vi+1) = ℓ(s)− ℓ(t) ≤ 9h (by

(I-2) and (I-3)). Hence w(P ) ≤ 9h. Now, by summing over all augmenting paths,
observe that w(f) ≤

∑
P w(P ) · |fP | because the flow paths may only cancel in the

final flow f . Therefore, we have w(f) ≤
∑
P 9h · |fP | = 9h · |f |.

Source-to-Sink Distance is Large in Residual Graph. We now argue that
the shortest source-to-sink path in the residual graph Gf must have w-length more
than 3h (thus proving (i)). Consider any (s, t)-path P = (s = v0, v1, v2, . . . , vk = t)
in the residual graph, where s is an unsaturated source and t an unsaturated sink.
Then 3w(P ) =

∑
e∈P 3w(e) >

∑k−1
i=0 ℓ(vi)− ℓ(vi+1) = ℓ(s)− ℓ(t) > 9h. The first

inequality is by (I-1). The last inequality is because every unsaturated source s has
level ℓ(s) > 9h at termination (indeed, s must be dead, as otherwise the algorithm
would not have terminated), and every unsaturated sink t always has level ℓ(t) = 0
by (I-3). Hence w(P ) > 3h, which is what we wanted.

Running Time. We now argue that we can implement Algorithm A.1 in running
time bounded by Õ

(
m+ n+

∑
e∈E

h
w(e)

)
. Here, we only argue that this is the

case if the graph is unit-capacitated, i.e., when c(e) = 1 for all e ∈ E. The full
argument on the running time bound in capacitated graphs requires keeping track
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of the admissible edges using dynamic trees (e.g., link-cut trees [ST83]) to speed up
parts of the algorithm—the discussion of which we postpone to Section A.8. We
proceed by analyzing the running time of the different parts of the algorithm.

• The initialization steps takes O(n+m) time.

• For each vertex v we can keep track of its admissible out-edges in a linked list
(to support addition and removal in constant time). Additionally, we can keep
track of a list of all vertices v which have no admissible out-edges (so that we
can find such a vertex efficiently in constant time).

• Relabel:

– For each vertex v, the relabel operation is run at most O(h) times. This
would give an extra factor of O(nh).16 To avoid this, when we perform
a relabel operation, we can increase the level of a vertex by more than
one. Note that a vertex will only get a new admissible out-edge when
some incident edge e has w(e) which divides the new level ℓ(v). Thus,
for vertex v, we can immediately raise the level to the next multiple of
w(e) for any of the adjacent edges. In total, vertex v will thus only visit
at most O

(∑
e∈δ(v)

h
w(e)

)
levels. In total, over all vertices, we will thus

have at most O
(∑

e∈E
h

w(e)

)
relabel operations.

– We also argue that the for-loop to mark edges as (in)admissible is efficient.
Consider an edge e = (u, v). It will be considered O

(
h

w(e)

)
many times

in the for-loop (since at most this many times, w(e) will divide ℓ(v) or
ℓ(u)). In total, this for-loop thus accounts for O

(∑
e∈E

h
w(e)

)
running

time. Indeed, we can quickly identify which edges to loop over by storing,
for each vertex, a dictionary, where entry k maps to all edges whose
weights divide k; such a dictionary can be populated as an initialization
step.

• Processing Augmenting Paths:

– By Lemma A.4.7, there are only O
(
n+

∑
e∈E

h
w(e)

)
augmenting paths

found. Using dynamic trees (as is a standard speed-up for push-relabel
algorithms), we can in fact support each augmentation in O(logn) time
by keeping track of trees where vertex v has an arbitrary admissible out-
edge as parent, and using a dynamic tree data structure to support “add”
and “find-min” operations on a vertex-to-root path (note: the roots will
exactly be the unsaturated sinks). However, we postpone this discussion
to Section A.8.

16For our purposes this term is actually acceptable.
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– Here we instead argue the bound in the case of unit-capacitated graphs:
The amount of work we do when we find an augmenting path is propor-
tional to the length of this augmenting path. Thus we charge one unit of
work to each edge ei on the path. Since the graph is of unit-capacity, all
edges ei on the path will be saturated. Hence, by Lemma A.4.7, we know
that the edge ei will only be charged cost O

(
h

w(e)

)
throughout the run

of the algorithm, for a total cost of O
(∑

e∈E
h

w(e)

)
.

The above discussion concludes the proof of Theorem A.4.1.

Additional Property of Finding Almost Shortest Paths. The push relabel
algorithm works by finding augmenting paths one by one. Say the paths, in order, are
P1, P2, . . . , P|f |. Let fi be the flow induced by paths P1, . . . , Pi, and note that the
path Pi+1 is a path in the residual graph Gfi

. When bootstrapping our algorithm
to find an expander decomposition, we will later need the additional property that
the augmenting paths our algorithm finds cannot be “shortcutted” significantly. We
prove the following lemma.

Lemma A.4.8. Consider the state of the algorithm just before the i-th path Pi is
augmented along. Then, for any vertices s and t we have ℓ(s)−ℓ(t) ≤ 3distw

Gfi−1
(s, t).

In particular, this means that any subpath P ′ of Pi, between vertices s and t, has
weight at most w(P ′) ≤ 3distw

Gfi−1
(s, t).

Proof. Consider the shortest (s, t)-path Q = (v1, v2, . . . , v|Q|) (with v1 = s and
v|Q| = t) in the residual graph Gfi−1 . Then we have

3w(Q) =
∑
e∈Q

3w(e) ≥
|Q|−1∑
i=1

(ℓ(vi)− ℓ(vi+1)) = ℓ(s)− ℓ(t)

by (I-1). This proves the first part of the lemma.
The second part is similar, but now using (I-2) and the fact that all edges on the

path P ′ are admissible. Suppose P ′ = (u1, . . . , u|P ′|) (with u1 = s and u|P ′| = t).
Then we have

w(P ′) =
∑
e∈P ′

w(e) ≤
|P ′|−1∑
i=1

(ℓ(ui)− ℓ(ui+1)) = ℓ(s)− ℓ(t) ≤ 3distw
Gfi−1

(s, t).

A.4.4 Application: Approximate Max-Flow in DAGs
While it is non-trivial to find a “good” weight function for arbitrary graphs17, the
special case of directed acyclic graphs (DAGs) turns out to be easy. Therefore we

17Finding a “good” weight function efficiently is exactly what we do in the remainder of our
paper, by the use of expander decomposition.
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can immediately obtain (by using our push-relabel algorithm Algorithm A.1) a rela-
tively simple, combinatorial, linear-time-for-dense-graphs, constant-approximation
algorithm for maximum flow in DAGs.

Corollary A.4.9. One can find a Θ(1)-approximate maximum flow in a DAG in
Õ(n2) time.

Proof. Let τ ∈ [n]V be the topological order of the vertices (which can be found in
O(n+m) time): that is τu < τv for each edge e = (u, v). Then let w(e) = |τv − τu|.
Indeed, any flow path in the maximum flow f⋆ will have w-length at most n.
Thus, we can invoke Algorithm A.1 and Theorem A.4.1 with h = n, getting a
1
6 -approximation of the maximum flow.

A.5 Solving Maximum Flow

In this section, we show how to compute maximum flow exactly using the weighted
push-relabel algorithm from Section A.4 given an expander hierarchy defined below.

Definition A.5.1. Given a capacitated graph (G, c), a partitionH = (D,X1, . . . , Xη)
of E(G) is a ϕ-expander hierarchy of (G, c) with height η(H) = η if

1. D is acyclic,

2. each e ∈ Xi is contained in some strongly connected component of G \X>i,
and

3. Xi is a ϕ-expanding in (G \X>i, c).18

When the graph is of unit-capacity (i.e., when c = 1), we will leave c out
from the notation. We remark that our algorithm for constructing an expander
hierarchy actually guarantees that Xi is a separator in G \X>i. See Section A.7 for
more details. As we will see, for our purposes, we should think of ϕ = no(1) and
η = O(logn).

Consider a ϕ-expander hierarchy H of (G, c). An edge e ∈ D is a DAG edge.
An edge e ∈ Xi for some i is an expanding edge, and more specifically a level-i
expanding edge. Let Gi := G\X>i, in which each C ∈ SCC(Gi) is a level-i expander.
Note that, by definition, the level-i expanders SCC(Gi) form a refinement of the
level-(i+ 1) expanders SCC(Gi+1). See Figure A.1 for illustration.

Note that Definition A.5.1 differs from the undirected expander hierarchy of
[GRST21] in that we are not contracting strongly connected components as we go
up in the hierarchy. Indeed, it is impossible to ensure the boundary-linkedness of
all inter-cluster edges as in [GRST21] due to the presence of DAG edges in directed
graphs. We also remark that our ϕ-expander hierarchy precisely generalizes the
expander hierarchy notion from [PT07, Definition 2] in undirected graphs to directed
graphs. Note that in undirected graphs, we would always have D = ∅.

18Recall that this means that Xi ∩ C is ϕ-expanding in (C, c), for each strongly connected
component C of G \X>i.
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Figure A.1: An example of an expander hierarchy with 3 levels

A.5.1 Weight Function
As alluded to in previous sections, computing maximum flow boils down to the
design of a good weight function which we can run the push relabel algorithm from
Section A.4 on. Recall that we want our weight function w to satisfy (1) that
some approximate maximum flow is short with respect to w, and (2) that the sum
of inverses

∑
e∈E

1
w(e) is small (for an efficient running time). We prove (1) in

Theorem A.5.6 and (2) in Claim A.5.5.
Let H = (D,X1, . . . , Xη) be a ϕ-expander hierarchy of (G, c) (we show how

to compute H in Section A.7). We now define the weight function wH ∈ NE>0
of G induced by the hierarchy H. We will show in the remainder of the section
that it indeed satisfies the desired properties. The choice of our weight function is
inspired by the topological order19 of DAGs, and we consider the following notion
of respecting topological order.

Definition A.5.2. A topological order τ ∈ NV of D is H-respecting if for each
level i and each C ∈ SCC(Gi) the set τ (C) := {τv : v ∈ C} is contiguous In other
words, it contains precisely the set of numbers between

τmin(C) := min τ (C) and τmax(C) := max τ (C).

Note that given a hierarchy H, an H-respecting τ can be easily computed in
O(mη) time by the following lemma whose proof is deferred to Section A.10.

Lemma A.5.3. Given an expander hierarchy H, in O(mη) time we can compute
an H-respecting topological order τ .

As a result, in the remainder of this paper whenever there is a hierarchy H we
assume we also have a corresponding H-respecting topological order τ (which might
not be unique). The weight function wH induced by H (and τ ) is simply defined as

wH(e) := |τv − τu|. (A.1)
19Recall that a topological order of an acyclic D is a permutation τ ∈ NV such that τu < τv for

every (u, v) ∈ E(D). A topological order always exists and can be computed in O(m) time [Tar72].
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Observation A.5.4. A level-i expanding edge e = (u, v) has wH(e) ≤ |C|, where
C is the level-i expander in which e is expanding.

Recall that the running time of our push-relabel algorithm depends on the sum
of the inverses of the edge weights, which we claim below is small.

Claim A.5.5. For a simple graph G it holds that
∑
e∈E

1
wH(e) = O(n logn).

Proof. Since the graph is simple, there is at most two edges (one in each direction)
between a pair of vertices {u, v}. Hence,

∑
e∈E

1
wH(e) ≤

∑
τu,τv∈[n]

τu ̸=τv

1
|τu − τv|

= 2
n∑
i=1

n∑
j=i+1

1
j − i

= O(n logn).

The Maximum Flow Algorithm. The key structural lemma that our max-flow
algorithm relies on is that it is without loss of optimality for us to focus only on
flow paths that are relatively short with respect to the weight function wH. More
concretely, by restricting our attention to flows of average wH-length Õ (n/ϕ), we
only lose a near-constant factor in its value (compared to the optimal maximum
flow).

Theorem A.5.6. Given a flow instance I = (G, c,∆,∇) and a ϕ-expander hier-
archy H of (G, c) of height η, for any feasible integral (∆,∇)-flow f there exists
a feasible (not necessarily integral) (∆,∇)-flow f ′ with |f ′| ≥ 1

η+1 |f | such that
wH(f ′) ≤ |f ′| ·O

(
n · η

2 logn
ϕ

)
.

We will prove Theorem A.5.6 in Section A.5.2. It essentially reduces the maximum
flow problem to constructing an expander hierarchy. In Section A.7 we prove such a
theorem as follows.

Theorem A.7.1. There is a randomized algorithm that, given an n-vertex ca-
pacitated simple graph (G, c), with high probability constructs a 1/no(1)-expander
hierarchy H = (D,X1, . . . , Xη) of (G, c) with η = O(logn) in n2+o(1) time.

We show how Theorem A.7.1 in combination with Theorem A.5.6 proves our
main theorem.

Theorem A.5.7 (Restatement of Theorem A.1.1). There is a randomized augmenting-
path-based algorithm that solves the maximum (s, t)-flow problem on an n-vertex
capacitated simple graph with capacities bounded by U in n2+o(1) logU time with
high probability.

Proof. Via standard capacity scaling techniques (see Section A.9), by paying an
O(logU) multiplicative overhead in the overall running time we can assume all ca-
pacities are bounded by n2 (as in our definition of capacitated graphs in Section A.3).
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Therefore, the maximum (s, t)-flow can have value at most n4. Let ∆s = n4 · 1s
and ∇t = n4 · 1t be the (s, t)-flow demand. We first invoke Theorem A.7.1 to
construct a ϕ-expander hierarchy H of (G, c) for some ϕ = 1/no(1), with height
η = O(logn). Then, using the weight function wH induced by H, we run the
push-relabel algorithm (Theorem A.4.1) on the flow instance with wH and height
h = Θ

(
nη2 logn

ϕ

)
, obtaining a flow f . We then simply recurse on the residual

instance (Gf , cf ,∆s,f ,∇t,f ) until there is no augmenting path. By Theorem A.5.6
and Theorem A.4.1(iii), the flow f is an O(logn)-approximation to the maximum
(s, t)-flow, which means that the maximum (s, t)-flow value decreases by a factor
of
(

1− 1
O(logn)

)
each time. As such, after O(log2 n) iterations the maximum flow

value will drop to zero. In each iteration we spend n2+o(1) time constructing H by
Theorem A.7.1 and Õ(n2

ϕ ) time (which is also n2+o(1) by our choice of ϕ = n−o(1))
in the push-relabel algorithm by Theorem A.4.1 and Claim A.5.5. This proves the
theorem.

A.5.2 Existence of Short Flow
To prove Theorem A.5.6, we will instead show the existence of a flow f ′ with low
average path length that routes the same demand as f does, at the cost of increasing
congestion by O(η) factor.

Lemma A.5.8. Given a flow instance I = (G, c,∆,∇) and a ϕ-expander hierarchy
H of G (of height η), for any integral (∆,∇)-flow f of congestion κ ∈ N there exists
an equivalent flow f ′ of congestion (η+1)κ such that wH(f ′) ≤ |f ′| ·O

(
n · η

2 logn
ϕ

)
.

Theorem A.5.6 follows from Lemma A.5.8 by simply scaling down f ′ so that it
becomes feasible.

Proof of Theorem A.5.6. By Lemma A.5.8 with κ := 1, there is an equivalent flow
f ′′ with congestion (η + 1). The flow f ′ := f ′′

η+1 is a feasible (∆,∇)-flow that
satisfies wH(f ′) ≤ |f ′| ·O

(
nη2 logn

ϕ

)
.

The rest of the section proves Lemma A.5.8. Before diving into the actual
proof, we briefly outline the strategy here for better intuition. We start with the
not-necessarily short flow f , and then “short-cut” some parts of the flow, making
the flow shorter at the cost of some congestion. While our arguments here are
somewhat algorithmic, we note that for our maximum flow algorithm we only need
the existence of a short flow, and that the maximum flow algorithm does not need
to know the flow f to start with.

To make each flow path short, our goal is to start from the topmost level down,
making sure that in each level i and each level-i expander C, the flow path only uses
Õ(1/ϕ) level-i expanding edges in C. If this held for all levels and all expanders
within those levels, each flow path would have length Õ(n/ϕ). Therefore, for flow
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paths that use a large number of such expanding edges, we have to reroute and
short-cut them, using the property of expanders, to reduce the length. Rerouting
inevitably incurs congestion in the resulting flow, and if done näıvely the congestion
will grow by a multiplicative factor of 1/ϕ in each level. One key component in
our analysis is showing that a more careful way of rerouting actually saves us from
this congestion blow-up. Note that we will first prove most of the statements for
integral flows, as they admit decomposition into paths that are nice to work with.
The statements are then easily extended to fractional flows by simply scaling the
flow and capacities up to make them integral.

In the remainder of the section we consider a fixed ϕ-expander hierarchy H =
(D,X1, . . . , Xη) of G given to us. By the equivalence between the uncapacitated
and capacitated definitions of ϕ-expanding (see Fact A.3.5), we will assume in our
analysis (without loss of generality) that G is a unit-capacitated multi-graph instead
of a capacitated simple graph. Recall from our definition of capacitated graphs in
Section A.3 that the capacities are bounded by n2, and thus after replacing each
capacitated edge with multiple parallel edges the graph contains m ≤ n4 edges. We
need this just so that logm = O(logn).

Charging of DAG-edges. We begin by showing that to bound the wH-length
of any path in G, it suffices to bound the contribution of expanding edges to its
wH-length. To be more flexible for usage also in Section A.6, we consider a slightly
more general setting. The following lemma shows that the hierarchy allows us to
charge the weight of DAG edges to non-DAG edges.

Lemma A.5.9. Suppose G = (V,E) is a graph, D ⊆ E is a DAG, τ a topological
order of D, and w is a weight function such that the weight of an edge e = (u, v)
satisfies w(e) ≥ |τv − τu|, with equality if e ∈ D. Then for any path P in G it holds
that

w(P ∩D) ≤ n+ w(P \D).

Proof. Suppose we walk along P where P = (v1, . . . , vk). Let Φ(i) = τvi
be the

potential that keeps track of how much we proceed in the topological order τ . The net
potential increase is Φ(k)−Φ(1) ≤ n. Whenever we walk through a DAG-edge e, the
potential increases by w(e). So the total potential increase is

∑
i:Φ(i+1)>Φ(i) Φ(i+1)−

Φ(i) ≥ w(P ∩ D). The total potential decrease is
∑
i:Φ(i+1)<Φ(i) Φ(i) − Φ(i+1) ≤

w(P \D) because only non-DAG-edge e may decrease the potential and it decreases
by at most w(e). Therefore, we conclude

n ≥ Φ(k) − Φ(1)

=

 ∑
i:Φ(i+1)>Φ(i)

Φ(i+1) − Φ(i)

−
 ∑
i:Φ(i+1)<Φ(i)

Φ(i) − Φ(i+1)


≥ w(P ∩D)−w(P \D)

The lemma concludes by rearranging.
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Routing Short Flow in Expanders. Lemma A.5.9 allow us to focus on bounding
the length on the expanding edges. In the following sequence of lemmas, we show
how to route a flow within a graph so that it uses only few expanding edges. In
particular, the lemma below shows that if an edge set F is ϕ-expanding in G, then
for any routable demand we can almost reroute it in such a way that each flow path
uses at most O(logm/ϕ) edges in F .

Lemma A.5.10. Consider a routable flow instance I = (G,∆,∇) for a strongly
connected m-edge G in which F ⊆ E(G) is ϕ-expanding. Given any ε > 0, there is a
feasible integral (∆,∇)-flow f with value |f | ≥ (1− ε)∥∆∥1 such that

∑
e∈F f(e) ≤

|f | ·O
(

logm
εϕ

)
.

Proof. Let ℓ := 4 logm
εϕ = O

(
logm
εϕ

)
be the target F -length, and let f be an integral

flow in G obtained by repeatedly finding augmenting paths in the residual graph
consisting of at most ℓ edges in F and send one unit of flow along them until such
paths become non-existent. We get

∑
e∈F f(e) ≤ |f | · 4 logm

εϕ . If |f | = ∥∆∥1 then
we are done. Otherwise, there is at least one unsaturated source s (∆f (s) > 0) and
one unsaturated t (∇(t) > absf (t)). Let distF (v) be the shortest F -distance from
an unsaturated source s to vertex v in Gf , where the F -distance is the minimum
F -length over all such paths P . Let Si := {v ∈ V (G) : distF (v) = i}. Note that
all unsaturated sinks t must have distF (t) > ℓ. It suffices to show that there is an
0 ≤ i ≤ ℓ such that ∣∣EGf

(S≤i, S≤i)
∣∣ < ε ·

∣∣EG(S≤i, S≤i)
∣∣ (A.2)

because of the following claim.

Claim A.5.11. If there is a cut S≤i satisfying (A.2), then |f | ≥ (1− ε)∥∆∥1.

Proof. The existence of such a cut S≤i implies |f | ≥ fout(S≤i) ≥ (1−ε)|EG(S≤i, S≤i)|.
Consider the maximum (∆f ,∇f )-flow f ′ in Gf for which by Fact A.3.2 and that
I is routable implies that |f | + |f ′| = ∥∆∥1. However, by the max-flow min-cut
theorem (Fact A.3.4), we have

|f ′| ≤ cf (S≤i, S≤i) + ∆f (S≤i) + ∇f (S≤i) = cf (S≤i, S≤i)

by definition of S≤i. As such, we have |f ′| ≤ ε
1−ε |f | and therefore |f | ≥ (1−ε)(|f |+

|f ′|) = (1− ε)∥∆∥1.

Now, assume for contradiction that no S≤i satisfying (A.2) exists. The following
proof is a standard ball-growing argument. Note that by definition of distF (·),
it holds that EGf

(S≤i, S≤i) = EGf
(Si, Si+1) ⊆ F for every i. If volF (S≤ℓ/2) ≤

volF (S≤ℓ/2), then we have

volF (S≤i) ≥ volF (S≤i−1) +
∣∣EGf

(S≤i, S≤i)
∣∣

(i)
≥ volF (S≤i−1) + ε

∣∣EG(S≤i, S≤i)
∣∣ (ii)
≥ (1 + εϕ) · volF (S≤i−1)
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for 0 < i ≤ ℓ/2, where (i) follows from S≤i not satisfying (A.2) and (ii) follows from
F being ϕ-expanding and thus S≤i is not a ϕ-sparse cut with respect to F . Since
volF (S0) > 0, we have

volF (S≤ℓ/2) ≥ (1 + εϕ)
2 log m

εϕ ≥ m2

as (1 + x)1/x ≥ 2 for 0 < x ≤ 1, which is a contradiction. Similarly, if instead it is
the case that volF (S≤ℓ/2) > volF (S≤ℓ/2), then

volF (S≤i) ≥ volF (S≤i+1) +
∣∣EGf

(S≤i, S≤i)
∣∣

≥ volF (S≤i+1) + ε
∣∣EG(S≤i, S≤i)

∣∣ ≥ (1 + εϕ) · volF (S≤i+1)

for ℓ/2 ≤ i ≤ ℓ. Since volF (S≤ℓ) > 0, it follows that

volF (S≤ℓ/2) ≥ (1 + εϕ)
2 log m

εϕ ≥ m2,

which is also a contradiction.

The lemma above only returns a flow that partially routes a demand. Next, we
show that we can fully route any demand by paying a small congestion factor by
repeatedly routing the remaining demand. For a subset of edges F ⊆ E(G), we call
a demand pair (∆,∇) is r-respecting with respect to F for r ∈ N if ∆(v),∇(v) ≤
r · degF (v) for each v ∈ V .

Lemma A.5.12. Given a flow instance I = (G,∆,∇) where ∥∆∥1 = ∥∇∥1 for a
strongly connected m-edge G in which F ⊆ E(G) is ϕ-expanding such that (∆,∇)
is r-respecting with respect to F for ϕ ≥ 1

poly(m) and r ≤ poly(m), there is a

integral (∆,∇)-flow f with congestion O
(
r
ϕ logm

)
and value ∥f∥ = ∥∆∥1 such

that
∑
e∈F f(e) ≤ |f | ·O

(
logm
ϕ

)
.

Proof. By the max-flow min-cut theorem (Fact A.3.4), the r-respecting demand
(∆,∇) is routable in G(κ) for κ :=

⌈
r
ϕ

⌉
.20 Observe that F (κ) is ϕ-expanding in G(κ).

As such, by Lemma A.5.10 with ε := 1/2 there is an integral flow f1 in G(κ) such that
∥f1∥ ≥ 1

2∥∆∥1 and
∑
e∈F (κ) f1(e) ≤ |f1|·O

(
logm
ϕ

)
since κ ≤ poly(m). The residual

demand (∆f1 ,∇f1) satisfies ∥∆f1∥1 ≤ 1
2∥∆∥1 and is clearly also r-respecting with

respect to F and thus routable in G(κ). Applying Lemma A.5.10 again with ε := 1
2 on

20For any cut S ⊆ V in G(κ), we have |EG(κ) (S, S)| ≥ r · min{volF (S), volF (S)} ≥
min{∆(S),∇(S)} by definition. By the max-flow min-cut theorem (Fact A.3.4), the maximum
flow in G(κ) has value

min
S

∣∣EG(κ) (S, S)
∣∣ ≥ min

S

{
min{∆(S),∇(S)} + ∆(S) + ∇(S)

}
≥ ∥∆∥1 = ∥∇∥1.

Therefore, (∆,∇) is routable in G(κ).
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the (G(κ),∆f1 ,∇f1), we get an integral flow f2 in G(κ) such that ∥f2∥1 ≥ 1
2∥∆f1∥

and
∑
e∈F (κ) f2(e) ≤ |f2| · O

(
logm
ϕ

)
. Because ∥∆∥1 ≤ poly(m), repeating this

argument O(logm) times, we get O(logm) integral flows f1, . . . ,fO(logm) such that
the sum of them f := f1 + · · ·+ fO(logm) has value |f | = ∥∆∥1 and

∑
e∈F (κ) f(e) ≤

|f | · O
(

logm
ϕ

)
with congestion O(logm) in G(κ), which can be mapped back to

an integral flow in G with congestion O(κ logm) = O
(
r
ϕ logm

)
with the same

guarantee.

Rerouting Long Flow to Short Flow. If we directly use Lemma A.5.12 for
rerouting each flow path, we might get a congestion blow-up of Θ̃(1/ϕ) which is too
expensive. The crucial idea to avoid this is as follows: for each long flow path, we
reroute the flow starting at the set of first Õ(1/ϕ) edges of the path to the set of
last Õ(1/ϕ) edges. This idea leads to cancellation in congestion and allows us to
control the congestion blow-up to be at most (1 + 1/η) factor, which is only O(η)
factor after accumulation over all η levels.

We begin by defining what we mean by rerouting. Given an integral flow f
decomposable into paths P1, . . . , Pk, we can reroute f at (si, ti) for each 1 ≤ i ≤ k,
where si and ti are vertices on Pi (with si occurring before ti) with a flow froute
routing the demand

∆(v) := |{1 ≤ i ≤ k : si = v}| , ∇(v) = |{1 ≤ i ≤ k : ti = v}|

getting the flow f̃ given by f̃(e) := f(e) + froute(e) −
∑k
i=1 fPi[si,ti](e), where

fPi[si,ti] is the notation for a flow that sends one unit flow along the path Pi[si, ti].
We note that we do not use multi-commodity flow when rerouting; that is, froute
does not necessarily consist of (si, ti)-paths. Indeed, for our purposes we only need
that each si is paired up with some tj , i.e., that froute routes the same demand as
the flow

∑k
i=1 fPi[si,ti].

Observation A.5.13. The following facts about such a rerouted flow hold.

(1) f̃ routes the same demands as f does, i.e., f̃ and f are equivalent.

(2) If froute is a flow in a subgraph H of G, then f̃(e) ≤ f(e) for all e ̸∈ E(H).

(3) If f1 + f2 has congestion κ and f1 is rerouted by a flow froute with congestion
κ′, resulting in f̃1, then the flow f̃1 + f2 has congestion κ+ κ′.

Let cA.5.12 ∈ N be the constant hidden in the O(·) notation of the congestion
guarantee of Lemma A.5.12. In other words, the flow from Lemma A.5.12 has
congestion at most r

ϕ · cA.5.12 logm. To recall, η is the height of the given hierarchy
H. Now we are ready to prove our main rerouting lemma that incurs only a very
small congestion blow-up.
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Lemma A.5.14. Given a flow f with congestion κ in G, a target level i, and
a level-i expander C of G, there is an equivalent flow f ′ in G with congestion
⌈κ⌉

(
1 + 1

η

)
such that

∑
e∈F

f ′(e) ≤ |f ′| ·O
(
η logn
ϕ

)
,

where F := Xi ∩ E(C) is the level-i expanding edge set in C. Additionally, it holds
that f ′(e) ≤ f(e) for all e ̸∈ E(C).

Proof. Let us first suppose that f is an integral flow (therefore we may assume
κ ∈ N), and let ξ :=

⌈
η·cA.5.12 logm

ϕ

⌉
∈ N. Let Pf be a decomposition of f into flow

paths. Let Plong := {P ∈ Pf : |P ∩ F | ≥ 2ξ} be the paths which are long with
respect to F , i.e., uses at least 2ξ edges in F (note that we may assume that the
paths P are simple and thus cannot use the same edge in F multiple times). For
each P ∈ Plong, let SP :=

(
s

(1)
P , · · · , s(ξ)

P

)
be the endpoints of the first ξ edges from

F on P . Similarly, let TP :=
(
t
(1)
P , . . . , t

(ξ)
P

)
be the endpoints of the last ξ edges from

F on P . Let flong :=
∑
P∈Plong

fP and fshort := f −flong =
∑
P∈Pf\Plong

fP be the
flow corresponding to long and short flow paths, respectively. Let f

(ξ)
long := flong · ξ

be a flow in G and P(ξ)
long be the decomposition of f

(ξ)
long corresponding to Plong,

i.e., P(ξ)
long :=

⋃
P∈Plong

{
P

(ξ)
1 , . . . , P

(ξ)
ξ

}
where P (ξ)

i is the i-th duplicate of the path
P ∈ Plong.

We now reroute f
(ξ)
long at

{(
s

(i)
P , t

(i)
P

)}
P

(ξ)
i
∈P(ξ)

long

. In other words, for the i-th

copy of P ∈ Plong, we attempt to reroute it from the i-th edge in SP to the i-th
edge in TP . This is the main idea which allow us to avoid the congestion blow-up,
since, although f

(ξ)
long has congestion ξκ, the demand (∆,∇) corresponding to this

rerouting is κ-respecting on F . This is since each start-vertex s(i)
P and end-vertex

t
(i)
P in the rerouting can be charged (a single time) to the corresponding edge in

the flow path P , and f has congestion κ. Therefore by Lemma A.5.12, f
(ξ)
long can

be routed in C with congestion κ
ϕ · cA.5.12 logm by a flow froute. Let f̃

(ξ)
long be the

rerouted f
(ξ)
long. It then follows that the flow

f ′ := fshort +
f̃

(ξ)
long

ξ

routes the same demand as f does by Observation A.5.13(1) and has congestion

κ+
κ
ϕ · cA.5.12 logm

ξ
= κ

(
1 + 1

η

)
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by Observation A.5.13(3). The total amount of flow on F -edges can be bounded by

∑
e∈F

f ′(e) =
∑
e∈F

fshort(e) +
∑
e∈F f̃

(ξ)
long(e)
ξ

≤ |fshort| · 2ξ + |flong| · 2ξ + |flong| ·O
(

logm
ϕ

)
≤ |f ′| ·O

(
η logn
ϕ

)
,

where we use the fact that the rerouting happens at the first ξ and the last ξ edges
on flow paths in Plong. The property that f ′(e) ≤ f(e) for all e ̸∈ E(C) also follows
from Observation A.5.13(2).

If instead the flow f is 1
z -integral for some z ∈ N, then we may assume κ ∈ 1

z ·N
and the demand (∆,∇) it routes to be in

( 1
z · N

)V . We can then treat f as an
integral flow in G(z) routing demand (z ·∆, z ·∇) with congestion ⌈κ⌉, i.e., for each
edge e, we put a total of f(e) · z ≤ κz units of flow on the duplicates of e in G(z),
distributed evenly among the z duplicates so that each of them receives at most ⌈κ⌉
units of flow. Applying the same argument as before in G(z) proves the lemma for
this case.

Finally, note that the rerouted flow f ′ is 1
zξ -integral so f ′ ∈ QE≥0 (recall that

our definition of flow requires rational values).

Corollary A.5.15. Given a flow f with congestion κ in G and a target level i, there
is a flow f ′ in G routing the same demand as f does with congestion ⌈κ⌉

(
1 + 1

η

)
such that ∑

e∈Xi

f ′(e)wH(e) ≤ |f ′| ·O
(
n · η logn

ϕ

)
.

Additionally, it holds that f ′(e) ≤ f(e) for all e ∈ X>i.

Proof. The corollary simply follows by applying Lemma A.5.14 to every level-i
expander in an arbitrary order, using the fact that the vertex-sizes of the level-i
expanders sum up to n and a level-i expanding edge e has weight wH(e) ≤ |C| for
C being the level-i expander e belongs to.

Lemma A.5.8 can now be proved.

Lemma A.5.8. Given a flow instance I = (G, c,∆,∇) and a ϕ-expander hierarchy
H of G (of height η), for any integral (∆,∇)-flow f of congestion κ ∈ N there exists
an equivalent flow f ′ of congestion (η+1)κ such that wH(f ′) ≤ |f ′| ·O

(
n · η

2 logn
ϕ

)
.

Proof. Let fη+1 := f be the given integral flow with congestion κη+1 = κ. From
i = η to 1, we apply Corollary A.5.15 on fi+1 and κi+1 on target level i, getting a
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flow fi with congestion κi ≤ ⌈κi+1⌉
(

1 + 1
η

)
. By induction, it is easy to see that

κi ≤ κ · (η + 2− i). The returned flow f ′′ is then set to f1, which has congestion
κ(η + 1), with the property that∑

e∈E\D

f ′′(e)wH(e) ≤ η · |f ′′| ·O
(
n · η logn

ϕ

)

using that each rerouting does not affect (or can only decrease) flows on higher-level
edges by Observation A.5.13(2). The lemma then follows from Lemma A.5.9 which
asserts that the weights of DAG edges on a path are bounded by the weights of
expanding edges on it, up to an additive factor of n which is dominated.

The above lemma shows that there is a fractional flow which is also short.
While this is good enough to guarantee that our push relabel algorithm returns
an approximate flow, we note in the following corollary that, by paying another
log(n)-factor in congestion, we can assume the short flow is integral. This observation
will be useful later in Section A.6.2.

Corollary A.5.16. Given a flow instance I = (G,∆,∇) routable with congestion
κ ∈ N in a graph G equipped with a ϕ-expander hierarchy H of height η, there
is an integral flow f routing I with congestion O(κη logn) such that wH(f) =
|f | ·O

(
n · η

2 logn
ϕ

)
.

Proof. The existence of a fractional such flow is given by Lemma A.5.8. By Corol-
lary A.4.4, we get a short integral flow f1 routing 1

6 fraction of ∥∆∥1. On the residual
demand (∆f ,∇f ) we may apply the same argument again in G (not in Gf1) and get
a short integral f2 routing 1

6 fraction of ∥∆f1∥ Repeating this O(logn) times until
the demand becomes empty, we get O(logn) flows f1, . . . ,fO(logn) in G, each with
congestion O(κη) and wH(fi) = O

(
|fi| · nη

2 logn
ϕ

)
, for which f := f1+· · ·+fO(logn)

routes I. We also have wH (f) ≤ wH (f1)+· · ·+wH
(
fO(logn)

)
≤ O

(
|f | · nη

2 logn
ϕ

)
,

proving the corollary.

A.6 The Sparse-Cut Algorithm

A central building block in constructing expander decompositions or even expander
hierarchies in general is to either solve a flow problem or find a sparse cut in the
graph. In this section we provide such a subroutine using our push-relabel algorithm.
Our algorithm to build the expander hierarchy (in Section A.7) will heavily rely on
the following theorem which we prove here.

Theorem A.6.1. Given a diffusion instance I = (G, c,∆,∇) on a strongly con-
nected n-vertex graph G, a ϕ-expander hierarchy H of (G\F, c) of height η, and some
κ ∈ N with 1/ϕ, κ ≤ n, there is an Õ(n2 · κη

4

ϕ2 ) time algorithm SparseCut(I, κ, F,H)
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that finds a flow f with congestion κ and, if |f | < ∥∆∥1, a cut ∅ ̸= S ⊊ V with
absf (S) = ∇(S) and exf (S) = exf (V ) such that

c(EG(S, S)) ≤ O(|f |) + min{volF,c(S), volF,c(S)}
κ

. (A.3)

Remark A.6.2. When F = ∅ and κ = 1, Theorem A.6.1 is an O(1)-approximate
maximum flow algorithm because it either routes all the source, otherwise there is a
cut S where c(EG(S, S)) = O(|f |), which certifies that f is an O(1)-approximation.
One can view this theorem as a generalization of our approximate maximum flow
algorithm, as explained in the proof of Section A.5 and Theorem A.5.7, where we
do not quite have a ϕ-expander hierarchy of the full graph, but only of G \ F for
some edge set F . The quality of the flow (and cut) we can find here will depend on
the edge set F (see the volF -terms in the theorem statement). As we will see later
in Section A.7, the guarantees here are good enough for the sparse-cut subroutines
we need when building the expander hierarchy: in particular, using Theorem A.6.1
we can either certify that F is Θ̃( 1

κ )-expanding in G or else find a sparse cut with
respect to F .

The Algorithm. We first describe the algorithm for Theorem A.6.1 whose pseu-
docode is given in Algorithm A.2.

Algorithm A.2: SparseCut(I = (G, c,∆,∇), κ, F,H)

1 Let h :=
⌈

4η4·cA.6.5·log7 n·κ
ϕ2 · n

⌉
, cκ := κ · c, and

wG(e) :=
{

wH(e) for e ∈ E \ F (see (A.1))
n for e ∈ F

.

2 Run PushRelabel(G, cκ,∆,∇,wG, h) (Theorem A.4.1) to get a flow f .
3 if |f | = ∥∆∥1 then return f
4 else
5 Let wf be wG extended to Gf , except set wf (−→e ) := 0 for e ∈ DH.
6 Let S0 = {s ∈ V : ∆f (s) > 0}.
7 Compute wf -distance levels Si :=

{
v ∈ V : distwf

Gf
(S0, v) = i

}
in the

residual graph Gf .
8 return f and the cut (S≤i, S≤i) minimizing

cκf (EGf
(S≤i, S≤i))−min{volF (S≤i), volF (S≤i)}.

The main idea is to run our push-relabel algorithm to try to route the demand
(∆,∇). If it fails to find a large enough flow, we will show how to extract a
“sparse cut” from the residual graph. In order to run our push-relabel algorithm
(Theorem A.4.1 and Algorithm A.1), we need to supply it with a weight function w.
However, we do not yet have a ϕ-expander hierarchy of the whole graph G, but only
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of G \ F . A natural idea is to extend the weight function wH to all of G, assigning
edges in F a large weight.

Let H be the given hierarchy for G \ F . Let

h :=
⌈

4η4 · cA.6.5 · log7 n · κ
ϕ2 · n

⌉
= O

(
n · η4 log7 n · κ

ϕ2

)
, (A.4)

for a constant cA.6.5 that will be defined later in (A.6). Let cκ := κ · c as in
Algorithm A.2. We apply Theorem A.4.1 on the flow instance Iκ := (G, cκ,∆,∇)
to height h and weight function wG where wG(e) := wH(e) for e ∈ E \ F and
wG(e) := n for e ∈ F . Let f be the flow returned by Theorem A.4.1. If |f | = ∥∆∥1,
we are done. Otherwise |f | < ∥∆∥1, in which case by Theorem A.4.1(i) we have
distwG

Gf
(s, t) > 3h for any ∆f (s) > 0 and ∇f (t) > 0. In this case we need to find a

sparse cut.

Running Time. The weight function wG can be computed in O(mη) time by
Lemma A.5.3. The distance layers can be computed with a standard shortest path
algorithm (e.g., Dijkstra’s algorithm [Dij59]) in Õ(m) time. By Theorem A.4.1
and Claim A.5.5, the running time of the PushRelabel() call is Õ

(
n2 · κη

4

ϕ2

)
.

Analysis in a Unit-Capacitated Multi-Graph. By the equivalence between
the uncapacitated and capacitated definitions of ϕ-expanding (see Fact A.3.5), we
will assume (without loss of generality), for the remainder of this section, in our
analysis that G is a unit-capacitated multi-graph instead of a capacitated simple
graph. That is, c = 1 and cκ = κ · 1. Recall that the capacities are bounded by n2

(Section A.3), and thus after replacing each capacitated edge with multiple parallel
edges the graph contains m ≤ n4 edges.

Finding a Sparse Cut. To locate a sparse cut when G \ F is the empty graph
(that is, when we want to build the first level of expander decomposition) the
following strategy is standard (see e.g. [HRW17; SW19]) and sufficient for us: Let
S0 = {s : ∆f (s) > 0} and compute the distance layers Si = {v : distwG

Gf
(S0, v) = i}.

Now at least one of the level cuts EG(S≤i, S≤i) must be sparse. The proof of this
strategy follows from a simple ball-growing argument.

Unfortunately, even when the underlying graph G \ F is a DAG, the above
strategy fails. The problem is that there might be too many DAG-edges crossing the
level cuts. To solve this, we will modify the weight function slightly by setting all
forward DAG edges to have weight 0. In particular, we let wf be the weight function
on E(Gf ), where wf (e) = wG(e) for all e except for wf (−→e ) = 0 for e ∈ DH.

As we will see in the remainder of this section, if we compute the distance layers
with respect to wf , at least one of the level cuts must be sparse. This means that
the algorithm to find such a sparse cut is quite simple: just compute the distances,
and output the sparsest of the level cuts. While the algorithm itself is simple,
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showing the existence of such a sparse level cut turns out to be nontrivial. There
are essentially three types of edges we want to argue are sparse in most level cuts.

DAG edges of H. The modification to the weight function makes it so that only
DAG edges used in the flow can be in a level-cut, of which there are on average
O(|f |) crossing each level cut.

Edges in F . These edges can be handled by a ball-growing argument (see proof
of Lemma A.6.4), similar to the case when constructing a single level ex-
pander decomposition. This shows that most level cuts (S≤i, S≤i) have at
most min{volF (S≤i), volF (S≤i)} edges from F crossing them. However, our
modification of setting some weights to zero might have reduced the number
of layers. So we must argue that we still have enough level cuts left in the
graph, or, equivalently, we want the distance from any source to any sink in
the residual graph to still be Ω(h). We argue this in Lemma A.6.3.

Expanding edges of H. These are arguably the trickiest edges to handle and is
thus the focus of the majority of our analysis. We want to argue that most
level cuts have few expanding edges of H in them. In the original graph G,
each expander in H has a low diameter. If we can say that this is also the
case in the residual graph Gf , we can argue that each expander will only span
a few level cuts, so most level cuts do not have any expanding edges at all.
Using the properties of expanders and how the residual graph is constructed
by reversing short augmenting paths, we show something in this direction. We
prove in Section A.6.2 a “low-diameter expander pruning lemma” which states
that a large portion of each expander in H remain intact and of low diameter
also in the residual graph Gf , and that there are only a few “pruned” edges
which cannot contribute too much to the size of all level cuts.

The Modified Weight Function. We begin by showing that although the
weights of some edges are set to 0 in wf , the distance in the residual graph remains
large. Overloading notation, let

distw
Gf

(v) := min
∆f (s)>0

distw
Gf

(s, v).

Lemma A.6.3. If distwG

Gf
(v) > 3h, then distwf

Gf
(v) > h.

Proof. Consider a vertex v and let P be the shortest path with respect to wf from an
unsaturated source to v in Gf . Thus, the wf -weight of P is distwf

Gf
(v) = wG(P \−→D)

because the weight wf is the same as wG except that the weights of all forward
DAG-edges are set to zero.

We note that wG satisfies the assumption of Lemma A.5.9 (in the graph Gf , with
the DAG −→D), i.e., that wG(e) ≥ |τu − τv| for any edge e = (u, v) since wG(e) = n
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for e ∈ F and otherwise it follows from the definition (A.1) of wH. Hence we have

wG(P ∩ −→D) ≤ n+ wG(P \ −→D) = n+ distwf

Gf
(v).

Since distwG

Gf
(v) is the shortest distance to v (with respect to wG), we have

3h < distwG

Gf
(v) ≤ wG(P ) = wG(P ∩ −→D) + wG(P \ −→D) ≤ n+ 2distwf

Gf
(v).

Rearranging, we see that distwf

Gf
(v) > 3h−n

2 ≥ h, as h ≥ n.

Level Cuts. Let
Si :=

{
v ∈ V : distwf

Gf
(v) = i

}
be the distance levels in the residual graph with respect to this reduced weight
function wf . By Lemma A.6.3, we know that S≤h ̸= V . Theorem A.6.1 now directly
follows from the below key lemma that establishes the existence of a sparse level
cut. In the remainder of the section we prove Lemma A.6.4.

Lemma A.6.4. There exists a level cut S≤i with 0 ≤ i ≤ h such that

cκf (EGf
(S≤i, S≤i)) ≤ O(|f |) + min{volF (S≤i), volF (S≤i)}. (A.5)

Proof of Theorem A.6.1. We take (S≤i, S≤i) as the output cut (S, S). By definition,
Theorem A.4.1(i), and Lemma A.6.3, we have S0 = {s : exf (s) > 0} and S≤h ∩ {t :
absf (t) < ∇(t)} = ∅, and therefore exf (S≤i) = exf (V ) and absf (S≤i) = ∇(S≤i)
hold.

What remains is to show that a cut (S, S) satisfying (A.5) (which, by Lemma A.6.4
our algorithm will find whenever |f | < ∥∆∥1) also satisfies the output requirement
(A.3) of Theorem A.6.1, i.e., cκ(EG(S, S)) ≤ O(|f |)+min(volF (S), volF (S)). Indeed
this is the case since cκf (EGf

(S, S)) = cκ(EG(S, S))−fout(S) ≥ cκ(EG(S, S))− |f |
by Fact A.3.1.

A.6.1 Existence of Sparse Level Cuts
To prove Lemma A.6.4, we show that each expander, while in the residual graph,
has a relatively large portion that still has a low diameter. Fixing a level ℓ in
the hierarchy, let

{
C

(1)
ℓ , C

(2)
ℓ , . . . , C

(k)
ℓ

}
be the strongly connected components of

(G \F ) \X>ℓ. That is, C(i)
ℓ is a level-ℓ expander and denote by X(i)

ℓ = Xℓ ∩E(C(i)
ℓ )

the set of level-ℓ expanding edges in C
(i)
ℓ .

We now argue that except for a small subset of “pruned” edges P (i)
ℓ , the edges

of the expander remain well-connected and more importantly stay relatively close
to each other.

Lemma A.6.5. There exists a subset P (i)
ℓ ⊆ X

(i)
ℓ such that
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(1) for each pair e1, e2 ∈ X(i)
ℓ \ P

(i)
ℓ , we have distwf

Gf
(−→e1 ,
−→e2) ≤ O

(∣∣C(i)
ℓ

∣∣η3 log7 n

ϕ2

)
,

and

(2)
∣∣∣P (i)
ℓ

∣∣∣ ≤ O (η log6 n
κϕ

)
· |f |.

With Lemma A.6.5 (whose proof we defer to Section A.6.2) we can now prove
Lemma A.6.4. First we prove the below intermediary lemma. Recall that −→F is the
set of forward edges of F in the residual graph. Let

cA.6.5 ≥ 1 be the constant hidden in the O(·) notation in Lemma A.6.5(1). (A.6)

Lemma A.6.6. There are g ≥ h
4 level cuts S≤i1 , S≤i2 , . . . , S≤ig with 0 ≤ i1 < i2 <

· · · < ig ≤ h such that∑
1≤j≤g

cκf

(
EGf

(S≤ij , S≤ij ) \ −→F
)
≤ O (|f | · h) .

Proof. Let Pall :=
⋃
ℓ

⋃
i P

(i)
ℓ where the P (i)

ℓ ’s are obtained from Lemma A.6.5. Let

Sbad :=

0 ≤ i ≤ h : EGf
(S≤i, S≤i) ∩

−−−−−−−−−−−→(⋃
ℓ

Xℓ \ Pall

)
̸= ∅


be the set of level cuts that contain at least one expanding edge not in Pall, and
let Sgood := {0, 1, . . . , h} \ Sbad. By Lemma A.6.5(1), we know that |Sbad| ≤
cA.6.5 · nη

3 log7 n
ϕ2 · η ≤ h

4 since there are η levels in the hierarchy and our choice of h
in (A.4). This means that there are still |Sgood| = h− |Sbad| ≥ h

4 “good” level cuts
Si.

By definition of distwf

Gf
, an edge e with cκf (e) > 0 can be in at most wf (e) level

cuts. There are only a few types of edges that can contribute to the size of a good
(i ∈ Sgood) level cut cκf (EGf

(S≤i, S≤i)):

(i) Backward edges ←−e . These have residual capacities cκf (←−e ) = f(e). The
contribution of these (across all good level cuts) can be bounded by∑

←−e ∈
←−
E

cκf (←−e )wG(e) =
∑
e∈E

f(e)wG(e) = wG(f).

(ii) Forward edges −→e from F . These we do not care about in this lemma and will
handle later.

(iii) Forward DAG edges −→e . We have set w(−→e ) = 0, so they cannot cross a level
cut.
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(iv) Forward edges −→e , where e is a level-ℓ expanding edge inside some level-ℓ
strongly connected component C(i)

ℓ . By the definition of Sgood, we know that
e ∈ P (i)

ℓ , so there are not too many of these edges. Note that wG(−→e ) ≤ |C(i)
ℓ |

and that these have residual capacity cκf (e) ≤ cκ(−→e ) = κ (recall that for the
purpose of the analysis, we assume a unit-capacitated multi-graph, i.e., c = 1).

As a result, we can bound

∑
i∈Sgood

cκf

(
EGf

(S≤i, S≤i) \
−→
F
)
≤ wG(f) + κ ·

(∑
ℓ

∑
i

∣∣∣P (i)
ℓ

∣∣∣ · ∣∣∣C(i)
ℓ

∣∣∣)

≤ O (|f | · h) + κ · η ·O
(
η log6 n

κϕ
· |f | · n

)
≤ O (|f | · h) ,

where we used Lemma A.6.5(2) and wG(f) = O(|f | · h) by Theorem A.4.1(ii).
Lemma A.6.6 follows by letting {i1, . . . , ig} := Sgood.

We can now do a similar ball-growing argument as in Lemma A.5.10 to prove
Lemma A.6.4.

Lemma A.6.4. There exists a level cut S≤i with 0 ≤ i ≤ h such that

cκf (EGf
(S≤i, S≤i)) ≤ O(|f |) + min{volF (S≤i), volF (S≤i)}. (A.5)

Proof. Let S≤i1 , . . . , S≤ig be the level cuts given by Lemma A.6.6, and let

Z :=
∑

1≤j≤g
cκf

(
EGf

(S≤ij , S≤ij ) \ −→F
)
≤ O(|f | · h).

By an averaging argument, at least half of the S≤ij ’s satisfy

cκf

(
EGf

(S≤ij , S≤ij ) \ −→F
)
≤ 2Z

g
≤ O(|f |). (A.7)

Let i∗1 < · · · < i∗g/2 be indices satisfying (A.7), and let Uj := S≤i∗
j·n
\ S≤i∗(j−1)·n

for
each 1 ≤ j ≤

⌊
g

2n
⌋
. Let k :=

⌊
g

2n
⌋
≥ g

4n . That is, we first split the distance levels
into g/2 blocks at i∗1, . . . , i∗g/2, and then merge every n consecutive blocks to form
the Uj ’s. Observe that since i∗j·n ≥ i∗(j−1)·n + n, we must have

distwF

Gf
(Uj , Uj+2) > n (A.8)

for every j. We will now only consider level cuts that are between some Uj and Uj+1

and bound the contribution of edges from −→F to them using a ball-growing argument.
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Note that if volF (U≤1) = 0 or volF (U≤k) = 0, then the lemma is vacuously true,
and therefore we assume otherwise. We show that there exists a 1 ≤ j ≤ k such that

cκf

(
EGf

(U≤j , U≤j) ∩
−→
F
)
≤ min{volF (U≤j), volF (U≤j)}, (A.9)

which proves the lemma. Assume for contradiction that none of the Uj satisfies
(A.9). Because of (A.8) and that the weight of any edge is bounded by n we know
that all edges in EGf

(U≤j , U≤j) with positive capacities must be in EGf
(Uj , Uj+1).

Let volκF (S) := κvolF (S). If volF (U≤k/2) ≤ volF (U≤k/2) then we have

volκF (U≤j) ≥ volκF (U≤j−1) + cκf

(
EGf

(U≤j , U≤j) ∩
−→
F
)

for 1 ≤ j ≤ k/2 which with the assumption of (A.9) implies that

volκF (U≤j) ≥
(

1 + 1
κ

)
volκF (U≤j−1) =⇒ volκF (U≤k/2) ≥

(
1 + 1

κ

)k/2−1
> n6

since k/2 − 1 ≥ k/4 ≥ h
64n (by Lemma A.6.6 we have g ≥ h/4) and that h ≥

1000nκ logn by (A.4). This is a contradiction because the volκF (S) of any S should
always be bounded by 2κm ≤ n6, where recall that m ≤ n4 is the total capacities of
the input graph and κ ≤ n is required by Theorem A.6.1. Similarly, if volF (U≤k/2) >
volF (U≤k/2), then we have

volκF (U≤j) ≥ volκF (U≤j+1) + cκf

(
EGf

(U≤j , U≤j) ∩
−→
F
)

for k/2 < j < k and thus

volκF (U≤j) ≥
(

1 + 1
κ

)
volκF (U≤j+1) =⇒ volκF (U≤k/2+1) ≥

(
1 + 1

κ

)k/2−1
> n6.

In both cases we have arrived at a contradiction, proving the lemma.

A.6.2 Robustness of Directed Expander Hierarchy under Flow
Augmentation

In this section we prove Lemma A.6.5. There are two main ingredients to this (which
are independent of each other), each of which we believe might be of independent
interest.

(a) We show a generalization of the classic fact that expanders have low diameters.
In particular, in Lemma A.6.7 we show that for any weight function w ≥ 0, if
ν satisfies ν(v) ≥

∑
e∈δG(v) w(e) and is σ-expanding in G, then the graph has

w-diameter Õ(1/σ). This indeed generalizes the unweighted pure-expander
setting when w = 1 and ν = degE .
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(b) We show an expander pruning lemma saying that (directed) expanders are
robust to path reversals (as well as some other updates, like increasing ν).
Indeed, a path reversal changes the size of any (directed) cut by at most
one, similar to what happens when deleting an edge. This allows us to show
Lemma A.6.9, with similar guarantees as standard expander pruning, but
which supports path reversals instead of edge deletions.

In order to prove Lemma A.6.5, for each level-i expander C in H, we set up an
appropriate ν ∈ RV≥0 and σ ≈ 1/n such that the fact that ν is σ-expanding is a
certificate that C is initially of low-diameter Õ(1/σ) = Õ(n) with respect to edge
weights wG, via (a). We then show that throughout the run of the push relabel
algorithm, a large part of C remains σ-expanding (with respect to ν). Indeed, every
time we find an augmenting path in the push relabel algorithm, the residual graph
changes by reversing the augmenting path, so we can apply (b). We have to be
slightly careful here and use the additional fact that the augmenting paths found
by our push relabel algorithm are short (Lemma A.4.8) in order to not blow up
the diameter. At the end of the algorithm, (a) will imply that, except for a small
pruned part of C, the expanding edges in C remain of low diameter.

Diameter of Expanders with Weighted Edges

We begin by showing (a) in the lemma below, a generalization of the standard fact
that expanders have low diameters. Indeed, when ν(v) = deg(v) and w(e) = 1
it recovers the unweighted case. Note that we are using σ instead of ϕ to avoid
confusion with the ϕ in the ϕ-expander hierarchy: One should think of σ as being
very small so that 1/σ corresponds to a certain notion of diameter induced by the
weight function wG. In particular, σ can be as small as Õ(1/n), while the value ϕ
for the expander hierarchy will be set to 1/no(1).

Lemma A.6.7. Suppose ν ∈ RV≥0 is σ-expanding in H = (V,E) and edge weights
w ∈ NE such that for all v ∈ V , ν(v) ≥

∑
e∈δH (v) w(e). Then for any s, t ∈ V such

that ν(s),ν(t) > 0 we have distw
H(s, t) ≤ O(log(ν(V ))/σ).

Proof. The proof follows a standard ball-growing argument. Note that U := {v ∈
V : ν(v) > 0} is strongly connected; otherwise, there will be a sparse cut. Let
s, t be the vertices with ν(s),ν(t) > 0 such that D := distw

H(s, t) is maximized,
and assume for contradiction that D > 16

⌈
log 4ν(V )

σ

⌉
= O(log(ν(V ))/σ). Let

Li := {v ∈ U : distw
H(s, v) = i}.

Let ν′ ∈ R{0,...,D}≥0 be defined as follows: First, we add ν(Li) to ν′(i). Then,
for each e ∈ E such that e = (u, v) with distw

H(s, u) < distw
H(s, v), we add re :=

w(e)
distw

H
(s,v)−distw

H
(s,u)+1 to ν′(i) for each distw

H(s, u) ≤ i ≤ distw
H(s, v). Observe that

re ≥ 1/2 by the fact that distw
H(·, ·) is the shortest-distance function and w(e) ≥ 1.
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Moreover,

ν(L≤i) ≤
∑

0≤j≤i
ν′(j) ≤ 2ν(L≤i) and ν(L≥i) ≤

∑
D≥j≥i

ν′(j) ≤ 2ν(L≥i)

hold because ν(v) ≥
∑
e∈δH (v) w(e) for all v. By design, for each 0 ≤ i < D we

have
min{ν′(i),ν′(i+ 1)} ≥

∑
e∈EH (L≤i,L≤i)

re ≥
1
2
∣∣EH(L≤i, L≤i)

∣∣ .
Also, by the expansion guarantee of H, we have

|EH(L≤i, L≤i)| ≥ σ ·min
{

ν(L≤i),ν(L≤i)
}
≥ σ

2 ·min

∑
j≤i

ν′(j),
∑
j≥i+1

ν′(j)

 .

With these we can now do a standard ball-growing argument. Let h := ⌊D/2⌋. If∑
j≤h ν′(j) ≤

∑
j>h ν′(j), then∑

j≤i+1
ν′(j) ≥

(
1 + σ

4

)
·
∑
j≤i

ν′(j)

holds for all 0 ≤ i ≤ h and therefore∑
j≤h

ν′(j) ≥
(

1 + σ

4

)h
· ν′(0) ≥

(
1 + σ

4

)h
≥ 4ν(V ),

by ν′(0) ≥ ν(s) ≥ 1, which is a contradiction. On the other hand, if
∑
j≤h ν′(j) >∑

j>h ν′(j), then similarly∑
j≥i

ν′(j) ≥
(

1 + σ

4

)
·
∑
j≥i+1

ν′(j)

holds for all h ≤ i ≤ D and therefore∑
j≥h

ν′(j) ≥
(

1 + σ

4

)D−h
· ν′(D) ≥

(
1 + σ

4

)h
≥ 4ν(V ),

a contradiction as well. This proves the lemma.

Expander Pruning under Path-Reversals

Now we show (b) in the lemma below. Note that for our purposes, we only
need an existential expander pruning lemma, so we do not care about making it
algorithmically efficient. There are a few different types of updates we support, the
main ones being reversing a path and adding some volume to ν, tailored for our
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use later in this section. We note that the lemma should seamlessly extend to also
support edge deletions (as is the usual goal of expander pruning) with the same
guarantees as the path reversals, but we do not need it for our purposes, hence we
skip it. Since many flow and cut algorithms work via reversing paths, we believe
our expander pruning lemma might be of independent interest.

Fact A.6.8. Let G = (V,E) be a graph and G′ be obtained from G by reversing a
path in it. Then, we have for each S ⊆ V that

∣∣∣|EG(S, V \S)|− |EG′(S, V \S)|
∣∣∣ ≤ 1.

Lemma A.6.9 (Expander Pruning under Path-Reversals). Given ν ∈ RV≥0 such
that ν is σ-expanding in G = (V,E), one can (inefficiently) maintain pruned sets
∅ = P (0) ⊆ P (1) ⊆ · · · ⊆ P (k) ⊆ V while G undergoes k updates, the i-th of which
either

(1) adds a vertex vi to G with volume ν(vi) := 0,

(2) adds an edge ei to G whose endpoints are not in P ,

(3) adds ∆i ∈ N to ν(vi) for some vertex vi, or

(4) reverses a path Ri in G that does not intersect P ,

where P denotes the current pruned set, such that

• if the i-th update is of type (1) or (2), then21 P (i) = P (i−1), and

• ν(i) is σ
8 -expanding in G(i) \ P (i) and ν(i)(P (i)) ≤ O(ki/σ +

∑
j≤i ∆j), with

G(i) and ν(i) denoting the graph and vertex weights after the i-th update and
ki denoting the number of path reversals in the first i updates.

Proof. We describe how the pruned set P (i) is obtained from P (i−1). We maintain
for all i the invariant that P (i) can be written as the disjoint union of two sets P (i)

+

and P
(i)
− such that22

ν(i)(P (i)) ≥ 8
σ

(∣∣∣EG(i)(P (i)
+ , P (i))

∣∣∣+
∣∣∣EG(i)(P (i), P

(i)
− )
∣∣∣+
∣∣∣EG(i)(P (i)

+ , P
(i)
− )
∣∣∣) .
(A.10)

Given that P (i−1) satisfies (A.10) in G(i−1), we observe that if we initialize P (i) ←
P (i−1), then it satisfies (A.10) in G(i) since we are not adding edges or reversing
paths intersecting P , and increasing vertex weights also only makes the left-hand
side larger.

After P (i) is initialized, we repeat the following procedure: As long as there is a
cut S that is σ

8 -sparse with respect to ν(i) in G(i) \ P (i), we include it to P (i) by
21It is natural that the weight of the prune set is independent from the number of operations

(1) and (2), because if ν was σ-expanding before, then it remains so after such an operation.
22Recall that with EH(A,B) and EH(B,A), we mean B = H \B.
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setting P (i) ← P (i) ∪ S. To see that this does not break the invariant, we assume
without loss of generality that S is out-sparse, i.e.,

ν(i)(S) ≤ ν(i)(S) and
∣∣EG(i)\P (i)(S, S)

∣∣ < σ

8 · ν
(i)(S),

where S := (V (G(i)) \ P (i)) \ S. Then, we show that we can add S into P (i)
+ while

preserving the invariant. To see this, we compute

ν(i)(P (i) ∪ S) = ν(i)(P (i)) + ν(i)(S)

≥ 8
σ

(∣∣∣EG(i) (P (i)
+ , P (i))

∣∣∣+
∣∣∣EG(i) (P (i), P

(i)
− )
∣∣∣+
∣∣∣EG(i) (P (i)

+ , P
(i)
− )
∣∣∣)

+ 8
σ

∣∣EG(i)\P (i) (S, S)
∣∣

≥ 8
σ

(∣∣∣EG(i) (P (i)
+ ∪ S, P (i) ∪ S)

∣∣∣+
∣∣∣EG(i) (P (i) ∪ S, P

(i)
− )
∣∣∣+
∣∣∣EG(i) (P (i)

+ ∪ S, P
(i)
− )
∣∣∣) ,

which is precisely (A.10) for the new P (i) and its partition (P (i)
+ , P

(i)
− ). The last

inequality follows from that the edges counted in both lines are exactly the same,
except for EG(i)(P (i)

+ , S) which is counted in the former but not the latter. The case
where S is an in-sparse cut can be shown symmetrically (except that it will not be
added to P (i)

− ).
We further show that (A.10) implies the desired upper bound on ν(i)(P (i)).

Overloading notation, we extend the vertex set of V := V (G(0)) to be V (G(i)) by
adding isolated vertices with weights 0. Note that ν(0) remains σ-expanding in
G(0) after this extension. From this point of view, we see that G(i) is obtained
from G(0) by adding edges, increasing vertex weights, and reversing paths; no
vertex addition is involved now. We first assume that ν(0)(P (i)) ≤ 2ν(0)(V )/3, i.e.,
ν(0)(P (i)) ≤ 2 min{ν(0)(P (i)),ν(0)(P (i))}. We know by the expansion guarantee of
G(0) that both P

(i)
+ and P

(i)
− are not sparse in G(0) and therefore

ν(0)(P (i)) = ν(0)(P (i)
+ ) + ν(0)(P (i)

− ) ≤ 2
σ

(∣∣∣EG(0)(P (i)
+ , P

(i)
+ )
∣∣∣+
∣∣∣EG(0)(P (i)

− , P
(i)
− )
∣∣∣)

= 2
σ

(∣∣∣EG(0)(P (i)
+ , P (i))

∣∣∣+
∣∣∣EG(0)(P (i), P

(i)
− )
∣∣∣+ 2

∣∣∣EG(0)(P (i)
+ , P

(i)
− )
∣∣∣) ,

where the first inequality was based on

min
{

ν(0)(P (i)
+ ),ν(0)(P (i)

+ )
}
≥ 1

2ν(0)(P (i)
+ )

and

min
{

ν(0)(P (i)
− ),ν(0)(P (i)

− )
}
≥ 1

2ν(0)(P (i)
− )
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by our assumption. As such, we have

ν(i)(P (i)) ≤
2
σ

(∣∣∣EG(0) (P (i)
+ , P (i))

∣∣∣+
∣∣∣EG(0) (P (i), P

(i)
− )
∣∣∣+ 2

∣∣∣EG(0) (P (i)
+ , P

(i)
− )
∣∣∣)+

∑
j≤i

∆j

(i)
≤

2
σ

(∣∣∣EG(i) (P (i)
+ , P (i))

∣∣∣+
∣∣∣EG(i) (P (i), P

(i)
− )
∣∣∣+ 2

∣∣∣EG(i) (P (i)
+ , P

(i)
− )
∣∣∣+ 2ki

)
+
∑
j≤i

∆j

≤
2
σ

(
2
∣∣∣EG(i) (P (i)

+ , P (i))
∣∣∣+ 2

∣∣∣EG(i) (P (i), P
(i)
− )
∣∣∣+ 2

∣∣∣EG(i) (P (i)
+ , P

(i)
− )
∣∣∣)+

4ki

σ
+
∑
j≤i

∆j

(ii)
≤

ν(i)(P (i))
2

+
4ki

σ
+
∑
j≤i

∆j ,

where (i) follows from

EG(r)(P (i)
+ , P (i)) ∪ EG(r)(P (i)

+ , P
(i)
− ) = EG(r)(P (i)

+ , P
(i)
+ )

and
EG(r)(P (i), P

(i)
− ) ∪ EG(r)(P (i)

+ , P
(i)
− ) = EG(r)(P (i)

− , P
(i)
− )

for r ∈ {0, i} with Fact A.6.8, and (ii) follows from (A.10). This implies ν(i)(P (i)) ≤
O(ki/σ +

∑
j≤i ∆j).

The case when ν(0)(P (i)) > 2ν(0)(V )/3 can be argued similarly: Consider the
moment when we added S to P (j) for some j ≤ i such that ν(0)(P (j)) ≤ 2ν(0)(V )/3
but ν(0)(P (j) ∪ S) > 2ν(0)(V )/3. Applying the calculation above we know that
ν(j)(P (j)) ≤ O(kj/σ +

∑
k≤j ∆j) at this moment, before S is included. This gives

that
2
3ν(0)(V ) < ν(0)(P (j)) + ν(0)(S)

≤ ν(j)(P (j)) + ν(j)(S)

≤ O(kj/σ +
∑
k≤j

∆k) + ν(j)(V )
2

≤ O(kj/σ +
∑
k≤j

∆k) + ν(0)(V )
2 +

∑
k≤j

∆k,

which implies ν(0)(V ) ≤ O(kj/σ+
∑
k≤j ∆k) ≤ O(ki/σ+

∑
j≤i ∆j). Since ν(i)(P (i))

can be trivially upper bounded by ν(i)(V ), we get ν(i)(P (i)) ≤ ν(0)(V )+
∑
j≤i ∆j ≤

O(ki/σ +
∑
j≤i ∆j), which is the bound we wanted. This completes the proof of

Lemma A.6.9.

Proof of Lemma A.6.5

Now we have the two ingredients (a) and (b) in order to prove our Lemma A.6.5.
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Lemma A.6.5. There exists a subset P (i)
ℓ ⊆ X

(i)
ℓ such that

(1) for each pair e1, e2 ∈ X(i)
ℓ \ P

(i)
ℓ , we have distwf

Gf
(−→e1 ,
−→e2) ≤ O

(∣∣C(i)
ℓ

∣∣η3 log7 n

ϕ2

)
,

and

(2)
∣∣∣P (i)
ℓ

∣∣∣ ≤ O (η log6 n
κϕ

)
· |f |.

Let us focus on a level-ℓ expander C. We first describe the high-level strategy of
the proof.

Constructing Initial Expander. By our analysis in Section A.5, we know that
all expanding edges in C are only Õ(|C|/ϕ) far away from each other, with respect to
wG-distance. This lets us find an appropriate ν ∈ RH≥0 and σ ≈ ϕ2

|C| , in Claim A.6.11,
such that ν(v) ≥

∑
e∈δH (v) wG(e) and ν is σ-expanding in H, where H is some

subgraph of Cκ.23 By our generalized “expanders have low diameter” argument in
Lemma A.6.7, (H,ν, σ) is now a certificate/witness that the expanding edges in H
are of low-diameter Õ(|C|/ϕ2). We will set H to the graph we would get if we run
a cut-matching game on C, where in each round we find a short matching. The
graph H will precisely consist of edges certifying that C is of low diameter, but not
include irrelevant parts of C which might be far from all expanding edges in C.

Handling Path-Reversal. Next we will consider how the graph develops when
we run our push-relabel augmenting paths algorithm. Throughout, we will maintain
(H,ν, σ) and a small pruned set P as a certificate/witness that most edges from C
are still of low-diameter, via our expander pruning Lemma A.6.9. In particular, ν
will be Θ(σ)-expanding in H \ P .

(a) Truncating the Path. In particular, consider what happens when we want to
reverse an augmenting path R. Let R′ be the subpath from the first vertex in
H \ P to the last vertex in H \ P . Note that when focusing on H, we do not
care about how the path R looks like outside of the subpath R′. Nevertheless,
note that it is still possible for R′ to go outside of H \ P (to V \H or P ).

(b) Bounding Path Length. We first notice that, since our push relabel algorithm
almost finds shortest paths (Lemma A.4.8), it must be the case that R′ is of
wG-length Õ(|C|/ϕ2) since H \ P is still of low diameter.

(c) Adding New Vertices to H. We add all vertices on R′ which are not already
in H \P as “fresh” vertices to H (in particular, if R′ intersects the pruned set
P we add back new copies of these vertices), and add all the edges of R′ not
already in H \ P to H (using operations (1) and (2) in Lemma A.6.9). Note

23Recall that Cκ is the graph with all edges duplicated κ times—indeed, the flow algorithm
will work in this graph.
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Figure A.2: Illustration of how a path reversal is handled. After truncating the
path from the first intersection with H \ P to the last, we add vertices on the path
not in H into the graph. If the path goes into the pruned set P , we also add the
corresponding “fresh” vertices to the graph and “reroute” the path segment inside
the un-pruned part which creates the blue segments. The final path that we reverse
(via Lemma A.6.9(4)) at the end consists of the black and blue path segments.

that H might no longer be a subgraph of C (as R′ can move outside of C). In
fact, this is necessary: the expanding edges of C will at the end of the push
relabel algorithm be of low diameter inside of Gκf , but not necessarily inside
the induced subgraph Gκf [C]. We remark that technically H may now contain
multiple copies of the same vertex in G, but only one of these copies will be
“active” and the others will be in P .

(d) Performing Path-Reversal. We then reverse the path R′ (using operation (4)
in Lemma A.6.9), which might increase the pruned set P a bit.

(e) Increasing Vertex Weights. Additionally we must increase ν(v) for the vertices
v incident to R′ a bit, to maintain that ν(v) ≥

∑
e∈δH (v) wG(e) after we added

some edges to H (using operation (3) in Lemma A.6.9). This again might
increase the pruned set P a bit, and thus we will increase ν(v) proportional
to the wG-length of R′ (which we argued above is not too long) in order to
control this blow-up.

At the end, after all augmenting paths, ν is still Θ(σ)-expanding in H \ P , and
the pruned set P is small, which lets us conclude Lemma A.6.5.

We begin with this useful claim, which will allow us to set up the appropriate
vertex volume ν.

Claim A.6.10. For every 1-respecting demand (∆,∇) on X
(i)
ℓ we can route it by

an integral flow in C
(i)
ℓ with congestion O(η logn/ϕ) such that each flow path has

wG-length at most O
(∣∣∣C(i)

ℓ

∣∣∣ η2 logn/ϕ
)

.

Proof. Every 1-respecting demand on X(i)
ℓ , by definition of expansion and the max-

flow min-cut theorem Fact A.3.4, is routable in C
(i)
ℓ with congestion 1

ϕ , and hence



126 PAPER A. MAXFLOW BY AUGMENTING PATHS IN n2+o(1) TIME

also with integral congestion ⌈ 1
ϕ⌉ ≤

2
ϕ = O( 1

ϕ ) (since ϕ ≤ 1). Note that we may
restrict the expander hierarchy H to C(i)

ℓ (only keeping expanding edges of level at
most ℓ). The claim then follows from Corollary A.5.16 (we do not use edges from F
for this routing, so we have wG(e) = wH(e)).

Proof of Lemma A.6.5. Let X := X
(i)
ℓ and C := C

(i)
ℓ (that is, X are the expanding

edges inside some level-ℓ expander C). Consider running the cut-matching game24

of Theorem A.3.6 on degX to construct a witness W (embeddable into C) in which
degX is ψCMG-expanding (with 1

ψCMG
= O(log2 n)). Every time we are given a

bipartition (νA,νB) of degX , we apply Claim A.6.10 to find a matching −→M and ←−M
between volA and volB that are routable in C with congestion O(η logn/ϕ) such that
each edge is embedded into a path of wG-weight O

(
|C| η2 logn/ϕ

)
. Overall, after

tCMG = O(log2 n) rounds, we get a witness W embeddable into C with congestion
κW := O(η log3 n/ϕ) where each edge of W is embedded into a path of wG-length
D := O

(
|C| η2 logn/ϕ

)
. We let H0 ⊆ C be the image of the embedding (that is,

H0 consist of the union (after removing duplicates) of edges on all paths in the
embedding of W to C, and only vertices incident to those edges).

We will construct vertex volumes ν0 ∈ NV (H0) as follows. For each edge eW =
(u, v) ∈ E(W ), let PeW

⊆ H0 be the embedding path of (u, v) into H0. For each
e ∈ PeW

, we add wG(e) to the vertex weights of both of its endpoints. We then add
D to both ν0(u) and ν0(v). (Now, note that ν0 is almost a scaled up version of degX :
in fact ν0 = νa0 + νb0 where D · degX ≤ νa0 ≤ tCMGD · degX , and ∥νb0∥1 ≤ 2∥νa0 ∥1).
This construction guarantees ν0(v) ≥

∑
e∈δH0 (v) w(e).

Since degX is ψCMG-expanding in W and embeddable into H0 with congestion
κW , and as we noted before, ν0 ≈ D · degX , the following claim is reasonable.

Claim A.6.11. If σ := ψCMG
4DκW

= Ω
(

1
κWD log2 n

)
, then ν0 is σ-expanding in H0.

Proof. Consider some cut S ⊆ V (H0), with ν0(S) ≤ ν0(S). We want to argue that
|EH0(S, S)| ≥ σν0(S) and |EH0(S, S)| ≥ σν0(S). We argue the former, and the
latter is symmetric.

Consider the multiset of edges E′ =
⋃
eW∈E(W ) PeW

from the embedding from
W to H0. Since this embedding has congestion κW , we know that |E′(S, S)| ≤
κW |EH0(S, S)|, so it suffices to show that |E′(S, S)| ≥ ψCMG

4D ν0(S). We write
E′(S, S) = E′1∪E′2, where E′1 consists of those edges e which comes from embedding
paths PeW

where eW ∈ EW (S, S), and E′2 are the remaining ones.
We now bound ν0(S) as follows. Recall that for each edge eW = (u, v) ∈ E(W ),

we added D to ν0(u) and ν0(v), as well as wG(e) to the two endpoints of e for
each e on PeW

. In particular, the total contribution of eW to all of ν0 (and thus to
24While the cut-matching game in Theorem A.3.6 is randomized and only works with high

probability, here we may simply assume that the randomness used in the cut-matching game are
such that it succeeds (indeed such random bits exists, and in this section we only need existence of
the following witness W and embedding).
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ν0(S)) is at most 4D. If either u or v is in S, we can charge this cost of 4D to the
contribution of eW to volE(W )(S).

The only volume in ν0(S) we have not accounted for now, is exactly the volume
coming from edges eW = (u, v) ∈ E(W ) where u, v ∈ S, but for which the path
PeW

intersects S. Such edges eW can contribute at most 2D to the volume of ν0(S),
and they must also contribute at least one edge in E′2.

The above reasoning shows that ν0(S) ≤ 2D · |E′2| + 4D · volE(W )(S). Since
W is a ψCMG-expander, we have |E′1| ≥ |EW (S, S)| ≥ ψCMGvolE(W )(S) (each
edge eW ∈ EW (S, S) must clearly have a counterpart in E′1). Thus we conclude
ν0(S) ≤ 2D · |E′2|+4D · |E′1|/ψCMG, and hence that ψCMG

4D ν0(S) ≤ |E′1|+ |E′2|, which
proves the lemma.

Setup. Now we can initialize ν ← κ · ν0 and H ← (H0)κ (that is H0, but with
each edge duplicated κ times). By construction, H is a subgraph of Gκ, and
from Claim A.6.11 we know that ν is σ-expanding in H. Also, by construction,
ν(v) ≥

∑
e∈δH (v) w(e) (and hence by Lemma A.6.7, of diameter O( log(nκ)

σ ), and
recall that κ ≤ poly(n)). We also know that ν ≥ κ ·D · degX .

Now we consider reversing each flow path in f one at a time, following the order
the paths are discovered by the push-relabel algorithm. For simplicity we regard f
as a flow in the subdivided graph Gκ, and hence that each flow path sends exactly
a single unit of flow. We are going to maintain the subgraph H of Gκf and that ν is
σ
8 -expanding in H \P for a pruned set P throughout the reversals via Lemma A.6.9.
In fact, we will sometimes need to add back vertices from P into H, and when we
do so we will add them as fresh/forked new vertices. Therefore technically speaking
H will not necessarily be a subgraph of Gκf , since some vertices might occur more
than once in H. However, all but one copy of each vertex will be in P , so we still
always maintain that H \ P is subgraph of Gκf .

Low-Diameter Invariant. After each path reversal, we will increase some of the
vertex weights via Lemma A.6.9 to ensure that ν(v) ≥

∑
e∈E(H\P )∩δ(v) wG(e) holds

for all v ∈ V (H) \ P . Note that by construction of H and ν, this holds initially.
This together with the fact that ν is σ

8 -expanding in H \P shows that the subgraph
G[V (H) \ P ] has wG-diameter O(logn/σ) by Lemma A.6.7.

Dealing with Path Reversal. Suppose we have dealt with the first j − 1 flow
paths already, and now we are preparing to reverse the j-th flow path Rj in Gκfj−1

.
If Rj does not intersect with V (H), then nothing needs to be done. Otherwise,
we take the first point sj and the last point tj on Rj that intersect V (H) \ P and
replace Rj with the subpath between them. We now ensure to add all vertices from
Rj to H, which are not already in H \ P via Lemma A.6.9. Importantly, when
we add an already pruned vertex v ∈ P , we use a fresh instance of this vertex
(so that the newly added v′ will be in V (H) but not in P , see also Figure A.2).
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Indeed Lemma A.6.9 only allows reversing paths that do not intersect P . Since
sj , tj ∈ V (H) \ P , by the low-diameter invariant above we know that

distwG

Gκ
fj−1

(sj , tj) = O(logn/σ)

and thus wG(Rj) = O(logn/σ) as well by Lemma A.4.8 (recall f is obtained by
running our push-relabel algorithm of Theorem A.4.1 on Gκ, and the push relabel
algorithm will find almost shortest paths). We can now for each e ∈ Rj add e to
H. After doing so, we go back and for each of the new edge (u, v) added to H,
we increase ν(u) and ν(v) by wG(e) to ensure that ν(v) ≥

∑
e∈E(H\P )∩δ(v) wG(e)

holds for all v ∈ V (H) \ P . The reason why we first add all edges and then do the
vertex weight increments is to make sure the pruned set does not grow while adding
edges. Note that these edge additions are valid as none of them are incident to P
due to us using fresh vertices. By wG(Rj) = O(logn/σ), we also conclude that the
total amount we just added to the vertex weights is O(logn/σ).

Finally, we reverse Rj in H, via Lemma A.6.9. The pruned set P may grow
according to Lemma A.6.9 after each vertex volume increment and path reversal.
One can verify that all the invariants are maintained.

Summary. In total, we have |f | path reversals, and each also increased ∥ν∥1 by
O(logn/σ). At the end, by Lemma A.6.9, the total volume of the pruned set P is
bounded by:

ν(P ) = O

(
|f |
(

1
σ

+ logn
σ

))
= O

(
|f | · κWD log3 n

)
= O

(
|f | ·D · η log6 n

ϕ

)
Since we have ν ≥ κ ·D · degX initially (and this never changes as ν only grows),
volX(P ) ≤ O( |f |η log6 n

κϕ ), and hence P can be incident to at most O( |f |η log6 n
κϕ ) many

edges from X. The rest of X, by the low-diameter invariant, are reachable from each
other in H (and hence in Gκf ) by a path of wG-length O(logn/σ) = O

(
|C|η3 log7 n

ϕ2

)
.

This completes the proof of Lemma A.6.5.

A.7 Building an Expander Hierarchy

In this section, we show how to construct an expander hierarchy of the input graph
that was used earlier in this paper for deriving the weight function needed by our
push-relabel algorithm in Section A.5.

Theorem A.7.1. There is a randomized algorithm that, given an n-vertex ca-
pacitated simple graph (G, c), with high probability constructs a 1/no(1)-expander
hierarchy H = (D,X1, . . . , Xη) of (G, c) with η = O(logn) in n2+o(1) time.
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In particular, we show the following Theorem A.7.2, from which Theorem A.7.1
immediately follows if we choose, e.g., ϕ = exp

(
− logn

(log logn)1/3

)
.

Theorem A.7.2. Given an n-vertex simple capacitated graph (G, c) and a parameter

0 < ϕ < 2
−ω
(

log n√
log log n

)
sufficiently small, there is a randomized n2+o(1)

ϕ3 time
algorithm that with high probability constructs a ϕ/no(1)-expander hierarchy H =
(D,X1, . . . , Xη) of (G, c) with η = O(logn).

In fact, our Theorems A.7.1 and A.7.2 achieve an additional property that each
Xi is a separator of G \X>i, where X is a separator of H if none of the edges in F
has both endpoints in the same strongly connected component of H. This is because
we will construct each Xi by repeatedly finding cuts in G and removing edges from
one of the directions (i.e., EG(S, S) or EG(S, S) for some S) which disconnects the
two sides of the cuts.

A.7.1 Overview and Setup
We first give a high-level overview of the algorithm, where for simplicity we assume
the graph is unit-capacitated, since both the analysis and the algorithm itself extend
seamlessly to the capacitated setting. Note that the first level of the expander
hierarchy is easy to compute via standard expander decomposition techniques.
Recall that Gi := G \X>i for any i. That is, we can get three edge sets D,X1, X2
such that D is a DAG, X1 is ϕ-expanding in G1, and |X2| is small (on the order of
ϕm). To construct the second level and onward, one immediate idea is to simply
do expander decomposition with respect to the volume induced by X2, which is
in fact doable by incorporating our sparse-cut algorithm of Theorem A.6.1 into
the framework of e.g., [NSW17; BPS20; HKPW23]. If the returned edge set X3
happens to be a subset of X2, then we can set X2 ← X2 \ X3 and continue to
run expander decomposition on X3. As the number of edges in the terminal set
decreases roughly by a factor of ϕ each time, after O(log1/ϕ n) iterations we will get
the desired expander hierarchy.

The issue is that the edge set X3 we need to cut when doing expander decompo-
sition with respect to the volume induced by X2 may not be a subset of X2 and
hence, it “cuts through” the strong components of G1. Indeed, it might necessarily
be the case that X3 includes edges from X1 or even from D; in general given any
F ⊆ E there might not be a separator contained in F that makes F expanding
in the remaining graph. Having X3 ⊊ X2 would result in a non-nested expander
hierarchy which is incompatible with our sparse-cut algorithm once we recurse on
both sides of the cut.

To further understand why this breaks the previous layers, notice that asX3 ⊊ X2
the graph G1 = G \X>1 in which X1 is expanding changes. This would potentially
decrease the well-connectivity of G1 and make X1 no longer expanding. To overcome
this, we apply a seemingly näıve approach: Whenever we find X3, we immediately
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remove X3 \X2 from G1 (note that it suffices to remove X3 \X2). We then try to
further refine the strongly connected components of G1 into smaller pieces so that
X1 is still expanding in this graph. As a result, some edges that were previously in
X1 got removed from G1, and to accommodate them we further add these edges
into X2. Since the volume induced by X2 increases, it may no longer be expanding
in G2 = G \X3, and to fix it we similarly refine G2 by putting more edges into X3,
which in turn may result in us moving even more volume to X2, and so on. While
this creates a loop between the two steps that seemingly takes Ω(n) rounds, we
show that with careful analysis and algorithmic implementation, this number can
actually be bounded.

Intuition of Analysis

Ideal Scenario. To see why the number of iterations can be bounded, let us first
consider the ideal case that (1) if we remove D edges from G1, then we can find a
set D′ of O(D) edges in G1 to be further removed so that X1 remains expanding in
it, and (2) if we add A new edges to X2, then we can find a set A′ of O(ϕA) edges
to be removed from G2 (hence added to X3) so that X2 remains expanding in G2.
In this case, we can easily see that the number of edges to be removed from G1 and
the number of edges to be added to X2 in fact decrease by an O(ϕ) < 1/2 factor
each round, which means that the number of rounds is bounded by O(logn). If we
further consider the third level X3, then we can see that there are O(logn) rounds
of interaction between X2 and X3, each of which generates another O(logn) rounds
of interaction between X1 and X2. Therefore, we can bound the total number of
iterations of the algorithm by O(logn)η where η is the height of the final hierarchy
we construct. To this end, notice that the number of terminal edges is reduced
by roughly a factor of O(ϕ) in each level, and thus we can bound η by roughly
O(log1/ϕm). Choosing ϕ < 1/no(1) sufficiently small (for instance, ϕ = 2−

√
logn),

this shows that the algorithm will terminate in O(logn)O(log1/ϕ m) = no(1) iterations,
which is what we are aiming for.

The question thus now becomes: Is this ideal scenario achievable? Existentially,
by standard expander arguments, such edge sets always exist. Thus, we may hope
to generalize and apply existing expander pruning algorithms (e.g., [SW19; BPS20;
HKPW23; SP24]) to locate them by replacing the flow algorithm used by these
frameworks with the sparse-cut subroutine we developed in Section A.6. Note that
it is NP-hard to compute expander decomposition/pruning exactly, but as in most
standard approaches we can afford some multiplicative approximation as long as
the number of edges still goes down by half each round.

Fixing Hierarchy with Few Cuts. However, none of these algorithms locate
the entire edge sets in one shot. Instead, they work by repeatedly finding sparse
cuts in the graph and recurse on both sides U1 and U2 of the cut. But notice that
our Theorem A.6.1 when running on subgraph G[U ] requires an expander hierarchy
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of G[U ] \Xi (when we are at level i trying to build expander decomposition with
respect to Xi). Although at the beginning of the algorithm, we have obtained from
the previous layers a hierarchy Hprev of G \Xi, if the first sparse cut we found is
not contained in Xi, then we can no longer extract a valid hierarchy of G[U ] \Xi

from Hprev. In this case, we need to first go down to the pervious layers and fix
their hierarchy before coming back to level i and continue locating sparse cuts. This
invalidates our previous ideal analysis.

Fortunately for us, some of these previous algorithms (specifically [BPS20;
HKPW23]) follow the framework established by [NS17; Wul17] which allows one
to argue that we can locate all these edges in nε calls for some ε = o(1) to the
sparse-cut subroutines in total.25 As a result, the number of times we need to go
back to the previous level is bounded by roughly nε (the O(logn) factor induced by
the reduction of edges is overwhelmed by this term). Choosing ϕ to be even smaller
(yet still 1/no(1)), we can ensure that the total of calls to the sparse-cut subroutines
throughout the whole construction is nε log1/ϕ n = no(1).

Amortized vs Expected Worst-Case Recourse. Another issue with applying
previous approaches is that these algorithms only have amortized recourse guarantees.
For example, in the first case where we remove D edges from G1, instead of always
returning an edge set D′ of O(D) edges, the amortized guarantee only ensures
that if we remove k batches D1, . . . , Dk edges from G1, then the algorithm returns
D′1, . . . , D

′
k such that |D′1| + · · · + |D′i| = O(D1 + · · · + Di) for every i ∈ [k].

Unfortunately, amortized guarantees would break the above analysis of having the
size of the edge sets reduced by half each iteration, as we might have a single large
update early, and then a large number of small updates later with no decrease in
size.

To overcome this, we observe that while worst-case output recourse might be
algorithmically challenging to achieve in these algorithms, our analysis works if we
can obtain a weaker expected worst-case recourse. Indeed, consider again the ideal
scenario except that the size of D′ and A′ is only O(D) and O(ϕA) in expectation
respectively. By the law of total expectation, we can argue that the expected number
of edges needed to be fixed still decreases by half each iteration. Even though we can
no longer conclude that the number of iterations is bounded by exactly logm, notice
that after 100 logm rounds the expected number of edges needed to be fixed drops
to at most m−99. By Markov’s inequality, this still shows that with high probability
the interaction between the two levels is bounded by 100 logm. In Section A.7.1
we describe how we modify previous algorithms to achieve the expected worst-case
output recourse.

We remark that this is the only place in our analysis that requires randomness
and the only reason why our final algorithm is not deterministic—indeed, the

25This is not technically accurate as we do still need to recurse on the smaller side of the cuts,
but in this case we get a size reduction and all the recursions are vertex-disjoint.
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randomized cut-matching game of [Lou10] can be easily replaced with a deterministic
one [BPS20].

A Data Structure Point-of-View.

To formally capture the interaction between the current level and the previous levels,
we employ a data structure perspective and define the following. In the remainder
of the section, let m ≤ n4 be the total capacities of the edges in G.

Definition A.7.3. A (k, α, β, ϕ, T )-hierarchy maintainer M is a randomized data
structure that maintains a subgraph GM ⊆ G of a capacitated graph (G, cG) such
that after each of the following operations it provides a ϕ-expander hierarchy HM
of (GM, cG) with height η(H) ≤ k.

• Init(G, cG): Given an n-vertex simple capacitated graph (G, cG), the data
structure in expected T (n) time computes a separator X ⊆ E of expected
capacity E[cG(X)] ≤ αm and initializes GM ← G \ X. The output of the
subroutine is X.

• Cut(D): Let {U1, . . . , Uk} be the SCCs of GM. The input is a separator
D of GM such that for each Ui either D ∩ GM[Ui] = ∅ or D ∩ GM[Ui] =
EGM[Ui](Si, Si) for some Si ⊆ Ui. The adversary removes D from GM, i.e., it
sets GM ← GM \D. Let UD be the union of SCCs that intersect with D. In
response, the data structure in expected T (|UD|) time computes a separator
A ⊆ GM[UD] of the new GM of expected capacity E[cG(A)] ≤ βcG(D) and
update GM ← GM \A. The output of the subroutine is A.

Our main technical result in this section is the following lemma which says
that we can design a (k + 1, αno(1)ϕ, ·, ·, ·)-hierarchy maintainer using a (k, α, ·, ·, ·)-
hierarchy maintainer, thus reducing the number of separator edges by a factor
no(1)ϕ ≪ ϕΩ(1) for ϕ sufficiently small. The blow-up in the other parameters are
carefully set to be manageable.

Lemma A.7.4. Given a (k, αprev, βprev, ϕprev, Tprev)-hierarchy maintainer Mprev
for an n-vertex simple capacitated graph (G, c), for any L ∈ N there exists some
δL ≤ (logn)LO(L) such that for any ϕ < O

(
1

δLLβprevnO(1/L)

)
sufficiently small we

can construct a (k + 1, α, β, ϕ′, T )-hierarchy maintainer M with

α ≤ ϕ · δLnO(1/L) · αprev,

β ≤ δLnO(1/L),

ϕ′ ≥ min
{
ϕprev,

ϕ

δL

}
,

T (n) = δLn
O(1/L) · Õ

(
n2

ϕϕ2
prev

+ Tprev(n)
)
.

(A.11)
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Note that the value of βprev only affects the value of ϕ we can choose but
not the new β for M. We first show that Lemma A.7.4 in fact already implies
Theorem A.7.2, restated below.

Theorem A.7.2. Given an n-vertex simple capacitated graph (G, c) and a parameter

0 < ϕ < 2
−ω
(

log n√
log log n

)
sufficiently small, there is a randomized n2+o(1)

ϕ3 time
algorithm that with high probability constructs a ϕ/no(1)-expander hierarchy H =
(D,X1, . . . , Xη) of (G, c) with η = O(logn).

Proof of Theorem A.7.2. We choose L = Θ(
√

log logn) for which

δL ≤ (logn)L
O(L)
≤ 2log logn·Θ(

√
log logn)Θ(

√
log log n)

≤ 2(log logn)Θ(
√

log log n)
= no(1).

Observe that there is a trivial (0, 1, 0, 1, O(n2))-hierarchy maintainer M0 which

on Init() simply returns every edge. Since ϕ < o

(
2
− log n√

log log n

)
is sufficiently

small, we have ϕ ≤
(

1
δLn2/L

)2
and ϕ < O

(
1

δLLβnO(1/L)

)
for β = δnO(1/L) ≤

no(1). Therefore, starting from M0, for each k > 0 we can apply Lemma A.7.4
on Mk−1 to get a

(
k,
√
ϕ
k
, no(1), ϕ/no(1), Tk

)
-hierarchy maintainer Mk, where

Tk(n) := δ
O(k)
L · nO(k/L) · Õ(n2/ϕ3). As such, for η = 2 log1/ϕ(4n4) < L, by calling

Mη.Init(G) we get a ϕ/no(1)-expander hierarchy of G \X of height η ≤ O(logn)
for some edge set X with expected size E[cG(X)] ≤ cG(E) · (

√
ϕ)η ≤ 1/4. Thus, by

Markov’s inequality, with probability at least 3/4 the set X is empty, meaning that
the hierarchy we got is indeed a ϕ/no(1)-expander hierarchy of G. The expected
running time of the algorithm is

lognL
O(L) · nO(log1/ϕ n)/L · Õ(n2/ϕ3) = Ô(n2/ϕ3)

time since O(log1/ϕ n)/L ≤ o(
√

log logn)/L = o(1). Repeating this O(logn) time
we succeed in worst-case time with high probability. This proves the theorem.

We now briefly sketch on how we prove Lemma A.7.4. To boost the quality of
the maintainerMprev, let F be the result of runningMprev.Init(G). Our algorithm
essentially takes the k-level hierarchy maintained by Mprev and constructs the
(k + 1)-th level of it in order to reduce the number of non-expanding edges by
roughly a factor of ϕ. Thus, we start with the terminal set F and run expander
decomposition in G with respect to F . In other words, the goal is to compute a
separator X such that F is ϕ-expanding in G \X. If we then have an expander
hierarchy H = (D,X1, . . . , Xk) of G\ (F ∪X) then we can set Xk+1 = F and obtain
an expander hierarchy of G \X. Needless to say, we will use Mprev to maintain
such H, and thus throughout the algorithm we need to ensure H is a hierarchy of
G \ (X ∪ F ) by properly calling Mprev.Cut().
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To compute an expander decomposition with respect to F , we start with an
empty X and let U be the SCCs of GM = G \X which is initially U = {V }.26 For
each U ∈ U , we attempt to locate a sparse cut in G[U ] via the sparse-cut algorithm
we developed in Section A.6. Note that as X is a separator of G and U is strongly
connected, G[U ] is the same as GM[U ]. If we find a sparse cut D, then we include
D into X which effectively splits U into (at least) two SCCs on which we recurse our
construction. In addition, to ensure thatMprev holds a hierarchy of G\ (F ∪X), we
need to call Mprev.Cut(D) to remove D from GMprev . Observe that since D is a
cut in G[U ] and the SCCs of GMprev form a refinement of U , the input requirement
of GMprev .Cut(D) is satisfied. After Mprev further refines its SCCs and outputs
an A ⊆ GMprev [U ], meaning that now it maintains a hierarchy of G \ (F ∪A ∪X),
we add A into F to preserve our invariant. Note that doing all these also ensures
that we have an expander hierarchy of G[U ] \ F at all times, which is required by
our sparse-cut algorithm. Indeed, if we take the SCCs of GMprev contained in U
and restrict H to these SCCs, then we get an expander hierarchy of G[U ].

Fact A.7.5. For a ϕ-expander hierarchy H = (D,X1, . . . , Xη) of (G, cG) and
U ⊆ V such that for each W ∈ SCC(G) either W ⊆ U or W ∩ U = ∅, the
sequence H[U ] := (D ∩G[U ], X1 ∩G[U ], . . . , Xη ∩G[U ]) is a ϕ-expander hierarchy
of (G[U ], cG).

Having the overall picture, it now remains to implement the steps efficiently
and achieve the desired expected guarantee. For this we adapt and generalize the
framework of [HKPW23] which maintains expander decomposition by repeatedly
finding sparse cuts and thus fits our purposes well.27 We give an overview of their
framework below.

Overview of [HKPW23]

To certify expansion and locate sparse cuts, [HKPW23] employed a celebrated
approach of embedding a witness into each G[U ]. Informally speaking, a witness is
an Ω̃(1)-expander with approximately the same degree profile as that of F and is
embeddable into G[U ] with congestion Õ(1/ϕ). It may be hard to construct such a
witness directly in few calls to the sparse-cut algorithm since we may repeatedly
find rather unbalanced sparse cuts which makes the number of iterations Ω(n). To
overcome this, instead of a single witness for G[U ], [HKPW23] used a series of
witnesses that contain additional fake edges that are counted toward the expansion
guarantee of the witness yet are not embeddable into G[U ].

26Here we assume the graph is initially strongly connected.
27It is worth mentioning that there is a recent work of [SP24] which improves the almost-linear

running time of [HKPW23] to near-linear one. They sidestepped the multi-level approach of
[NSW17; BPS20; HKPW23] by a novel push-pull-relabel flow algorithm that allowed them to
implement the trimming strategy of [SW19]. We leave adapting their framework or our use case as
an interesting open direction.
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Witness with Fake Edges. While a witness with fake edges does not immediately
certify the expansion of the graph, it provides fairly useful information that the
graph does not contain a balanced sparse cut. Let us start with a threshold R and
attempt to construct a witness with R fake edges. In each attempt, we either find a
balanced sparse cut of size Ω̃(R) which we then recurse on both sides with a decent
size reduction or we certify that no such balanced sparse cut exists in the graph.
In the next iteration, we decrease the parameter R to be R′ and then repeat the
above loop until we certify there is no Ω̃(R′)-balanced sparse cut either. Crucially,
even though as R′ decreases we might not get a large size reduction when recursing
on both sides of the cut anymore, by setting up the expansion parameter properly
in each level, we can in fact guarantee that if we found much more than Ω̃(R/R′)
sparse cuts in the graph, then there would have been a Ω̃(R)-balanced sparse cut in
the graph that we start with which contradicts with our R-witness constructed. By
setting the R value of a level-ℓ witness to be nℓ/L for some L = ω(1), the algorithm
only needs to run the sparse-cut algorithm n1/L = no(1) time when computing and
maintaining expander decomposition.

Note that there are two notions of levels in our algorithm: One is the level of
the expander hierarchy, and we maintain each level of hierarchy with L levels of
witnesses. To avoid confusion, in the remainder of this overview the term level
means the level of witnesses except when we deliberately use the term hierarchy
level.

Reparing Witnesses. This idea of using fake edges with decreasing expansion
and balance parameters was initiated in [NS17; Wul17] and has been later used
either explicitly or implicitly in many other expander decomposition/pruning al-
gorithms [NSW17; BPS20]. What [HKPW23] differs from previous work is the
explicit usage of witnesses and the way they set up and repair them which allows for
maintaining expander decomposition under updates by directly finding sparse cuts.
To be more specific, consider a strongly connected component U for which we want
to maintain its expansion. Their algorithm maintains L witnesses W0, . . . ,WL with
R0, . . . , RL fake edges, where Rℓ is supposed to be roughly |U |ℓ/L. For each update
to the graph, the algorithm first checks for each witness whether there are edges in
it that are embedded into an updated part. If so, these real edges are replaced by
fake edges. This increases the number of fake edges in the witnesses which might
break the invariant of Rℓ ≈ |U |ℓ/L (and in particular, if R0 ≫ 0, then we have failed
to certify the expansion of G[U ]). Their algorithm thus attempts to repair such an
invalid witness from the higher-level witness Wℓ+1. This is done by setting up a
flow problem which corresponds to embedding a sufficiently large number of fake
edges in Wℓ+1 into G[U ] so that it becomes valid for level ℓ, and if it fails to do
so, the algorithm finds a sparse cut. A careful charging argument is then used in
[HKPW23] to bound the total update time throughout a sequence of updates.
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Challenges in Adaptation. To adapt their framework to our use case, we
replace the standard push-relabel/blocking flow algorithm used in [HKPW23] with
the weighted push-relabel algorithm we developed. An immediate challenge for this
is that our flow algorithm is not local in the sense that it cannot be used to only
explore a small neighborhood around the sources. This is in contrast to the classic
unweighted push-relabel algorithm which can explore a region with k edges in O(k)
time. While the idea of having witnesses with decreasing number of fake edges in
principle, as we have touched upon above, allows one to at least intuitively argue that
the number of times we need to call sparse-cut algorithm is small, [HKPW23] used
a more direct potential-based analysis which heavily relies on their local running
time. Thus, we need to apply a different analysis strategy than theirs and prove
additional stability properties of their witnesses (see Section A.7.3) which then allow
us to incorporate the conceptual guarantee of the high-level fake-edges framework
into the specific ways [HKPW23] maintained their witnesses.

Another modification we made to [HKPW23] is the rebuilding strategy. Previ-
ously, [HKPW23] attempts to repair a witness whenever it contains too many fake
edges. However, this only gives an amortized output recourse which is insufficient
for our analysis when interacting with previous hierarchy levels. To overcome this
we use a fairly standard strategy: Instead of fixing every witness whenever possible,
we set a larger grace period for them and consider a witness valid as long as the
number of fake edges it contains falls into its corresponding grace period. We then
for each update sample a random witness level to be rebuilt. By appropriately
setting the sampling probability, we can ensure that (1) each witness will be rebuilt
with high probability before it becomes invalid (this is due to the larger grace period
we set) and (2) we achieve a worst-case output recourse in expectation. While
this random rebuilding approach is commonly used, due to the interaction with
previous hierarchy levels, during a repair of a witness we might need to abort the
current repair, re-sample a higher witness level, and start from there instead. This
complication makes the analysis of our expected guarantee fairly cumbersome (see
Section A.7.5). We remark that the stability properties we mentioned earlier also
play a role in achieving the expected worst-case guarantee.

Organization. In the remainder of the section we present our modification to
[HKPW23] with new constructs and analyses which ultimately lead to a proof
of Lemma A.7.4. In particular, in Section A.7.2 we apply our flow algorithm of
Theorem A.6.1 to construct and repair witnesses. In Section A.7.3 we establish
certain stability properties of the witnesses that are key to our analyses. In Sec-
tion A.7.4 we present the main algorithm of maintaining expander decomposition
while interacting with the previous layers via Mprev. In Section A.7.5 we prove
that the described algorithm has the desired expected guarantee. Finally, in Sec-
tion A.7.6 we put everything together and arrive at a proof of Lemma A.7.4 (and
hence Theorem A.7.1).
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A.7.2 Constructing and Repairing Witnesses

Let (G, cG) be the input capacitated graph for which we want to construct an
expander hierarchy. Throughout the section, we let m ≤ n4 denote the sum of
capacities of edges in G. We start by giving a formal definition of a witness adapted
from [HKPW23, Definition 2.1] and generalized straightforwardly to the capacitated
setting.

Definition A.7.6 (R-Witness). For a capacitated simple graph (W, c) with V (W ) =
V (G), a vector r ∈ NV , and an embedding ΠW→G from W to G, the tuple
(W, c, r,ΠW→G) is an (R,ϕ, ψ)-out-witness of (G, cG, F ) for F ⊆ V ×V with respect
to γ ∈ NV if

(1) ∥r∥1 ≤ R,

(2) degF,cG
(v) ≤ degW,c(v) + r(v) ≤ 1

ψdegF,cG
(v) holds for all v ∈ V ,

(3) for every cut (S, S) with γ(S) ≤ γ(S) we have c(EW (S, S)) + r(S) ≥
ψ(volW,cW

(S) + r(S)), and

(4) ΠW→G embeds (W, c) into (G, cG) with congestion 1
ϕψ .

If (W, c, r,ΠW→G) is an (R,ϕ, ψ)-out-witness of (G, cG, F ) and (←−W, c, r,Π←−
W→G) is

an (R,ϕ, ψ)-out-witless of (←−G, cG,
←−
F ), both with respect to γ, then (W, c, r,ΠW→G)

is an (R,ϕ, ψ)-witness of (G, cG, F ) with respect to γ.

Note that the r vector corresponds to the concept of fake edges introduced in
Section A.7.1.28 It is easy to see that if R = 0, then F is Ω(ϕψ2)-expanding in G,
and we prove a more general version of this below which says this is even the case
for R sufficiently small Claim A.7.9. Oftentimes c, r, and ΠW→G will be clear from
context, in which case we may simply refer to W as the witness of (G, cG, F ). In
the remainder of the paper we will assume both R and ψ are reasonably bounded by
some polynomials in n. More specifically, we assume R ≤ n10 and ψ ≥ 1/n. Indeed,
the choice of ψ will be made explicit in (A.19), and R is going to be upper-bounded
by the total volume of the graph which by capacity scaling is at most n10.

The r vector can be seen as some “fake” edges of the witness which do not
exist in the real graph G. While having a witness with many fake edges does not
certify that F is expanding in G, it does still shows that there is no balanced sparse
cut in G with respect to F . A cut S in (G, cG) is B-balanced with respect to F if
min{volF,cG

(S), volF,cG
(S)} ≥ B.

28That is, each vertex v has r(v) incident fake edges. The r vector is easier to maintain when
the graph is updated while suffices for the purpose of [HKPW23]. Indeed, when some vertices S
are removed from the graph, it is unclear where in the remaining graph one should add fake edges
corresponding to those incident to S; instead, with the r vector one can simply increase r(v) for
each remove edge incident to v ∈ V \ S.
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Claim A.7.7. If there is a (R,ϕ, ψ)-witness (W, c, r,ΠW→G) of (G, cG, F ) with
respect to any γ, then there is no 2R

ψ -balanced ϕψ2

2 -sparse cut in (G, c) with respect
to F .

Proof. Consider any cut S with 2R
ψ ≤ volF,cG

(S) ≤ volF,cG
(V \ S). If γ(S) ≤

γ(V \ S), then we have

min{c(EW (S, V \ S)), c(EW (V \ S))} + r(S) ≥ ψ(volW,c(S) + r(S)) ≥ ψvolF,cG (S) ≥ 2R

by Definition A.7.6(2) and (3). This implies min{c(EW (S, V \ S)), c(EW (V \
S, S))} ≥ ψ

2 volF,cG
(S), and by the fact that (W, c) embeds into (G, cG) via ΠW→G

with congestion 1
ψϕ by Definition A.7.6(4), we have min{cG(EG(S, V \S)), cG(EG(V \

S, S))} ≥ ϕψ2

2 volF,cG
(S). A symmetric argument applied to the case where γ(S) >

γ(V \S) shows that min{cG(EG(S, V \S)), cG(EG(V \S, S))} ≥ ϕψ2

2 volF,cG
(V \S) ≥

ϕψ2

2 volF,cG
(S) as well. Therefore, such an S can not be a ϕψ2

2 -sparse cut.

Claim A.7.8. If a (not necessarily strongly connected) subgraph G[U ] has volume
volF,cG

(G[U ]) < 1/ϕ, then F is ϕ-expanding in (G[U ], cG).

Proof. It suffices to consider the case when G[U ] is strongly connected by the
definition of ϕ-expanding. Since cG(EG[U ](S,U \ S)) ≥ 1 for all S ⊆ U and
volF,cG

(S), volF,cG
(S) < 1/ϕ, we have F is ϕ-expanding in (G[U ], cG).

Claim A.7.9. If there is a (R,ϕ, ψ)-witness for (G, cG, F ) with respect to any γ

where R < 1/ϕ, then F is ϕψ2

2 -expanding in (G, cG).

Proof. The existence of a (R,ϕ, ψ)-witness by Claim A.7.7 implies that there is no
2R
ψ -balanced ϕψ2

2 -sparse cut in (G, cG) with respect to F . This suggests that G
can only have one strongly connected component with volumes at least 2R

ψ ≤
2
ϕψ ,

otherwise there is a cut with no edges that separate two such components which would
lead to a contradiction. By Claim A.7.8, F is ϕψ

2 -expanding in those components
with small volume. On the other hand, consider the only component U in G that
has volume at least 2

ϕψ . Note that Claim A.7.7 also suggests that there is no
2R
ψ -balanced ϕψ2

2 -sparse cut in (G[U ], cG) with respect to F . Indeed, the same cut
would have been 2R

ψ -balanced ϕψ2

2 -sparse in (G, cG) as well if it existed. However, if
a cut in (G[U ], cG) has volume less than 2

ϕψ , then it can never be ϕψ2

2 -sparse since
G[U ] is strongly connected. This shows that F is ϕψ2

2 -expanding in (G[U ], cG) as
well, hence in (G, cG).
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Algorithms for Constructing R-Witnesses. We will have two primitives which
tries to construct R-witnesses for some set of terminal edges F , both which are
based on our sparse cut algorithm from Section A.6.

• CutOrEmbed which either finds a Ω̃(R)-balanced sparse cut or an R-witness.
This is done by running a standard cut-matching game.

• PruneOrRepair which takes an R-witness as input, and either finds a
Ω̃(R′)-balanced sparse cut or an R′-witness for some R′ ≤ R. This is done by
attempting to embed the fake edges in the R-witness further into the graph.

Let cA.6.1 ∈ N be a universal constant such that the cut Theorem A.6.1 returns
satisfies

c(EG(S, S)) ≤ cA.6.1 · |f |+ volF,c(S)
κ

.

Let z := 20 logn be fixed throughout the rest of the section.

Lemma A.7.10 (Analogous to [HKPW23, Lemma 3.1]). Given an n-vertex
strongly connected simple capacitated graph (G, cG), terminal edge set F ⊆ E,
vectors r,γ ∈ ZV≥0, an (R,ϕ, ψ)-witness (W, c, r,ΠW→G) of (G, cG, F ) with re-
spect to γ, a parameter R′ ≥ 0 such that R′ ≤ R ≤ ψ

8zvolF,cG
(V ), and a ϕ′-

expander hierarchy H of (G \ F, cG) with height O(logn), there is an algorithm
PruneOrRepair(G,F,W, c, r, ΠW→G, ϕ, ψ,R

′,H) that either outputs

1. a set S ⊆ V with ψ
16z ·R

′ ≤ volF,cG
(S)+r(S) ≤ 8z

ψ ·R such that cG(EG(S, S)) <
ϕψ3

256 · (volF,cG
(S) + r(S)) or

2. an (R′, ϕ, ψ′)-out-witness (W ′, c′, r′,ΠW ′→G) of (G, cG, F ) with respect to γ,
where ψ′ := ψ4

2048cA.6.1z2 = Ω
(

ψ4

log2 n

)
.

The algorithm runs in time Õ
(

n2

ϕϕ′2ψ4

)
.29

Proof. We follow essentially the same proof strategy as [HKPW23, Lemma 3.1]
but with parameters tailored to our needs. We set up a diffusion instance I =
(G, cG,∆,∇) with ∆ := z · 8

ψ · r and ∇ := degF,cG
+ r. Note that I is a diffusion

instance as R ≤ ψ
8zvolF,c(V ). Also note that z ≥ log ∥∆∥1. We are going to

compute a flow f∗ routing (∆,∇) in G with congestion κz for κ := 1024·cA.6.1·z
ϕψ4

by invoking Theorem A.6.1 z times. Let f∗ := 0. While ∥∆∥1 > R′, we run
SparseCut(I, κ, F,H) in Theorem A.6.1 to find a flow f . If f routes half of the
demand, i.e., |f | ≥ 1

2∥∆∥1, then we update f∗ ← f∗ + f and set ∆ ← ∆f to
be the residual supply while keeping the sink intact and then repeat. Otherwise,
we have exf (V ) > 1

2∥∆∥1 >
1
2R
′ and |f | < 1

2∥∆∥1. In this case we will find a
sparse cut and output it in Case 1. Let S be the cut outputted by Theorem A.6.1

29Note that as in [HKPW23], the algorithm does not need to take γ as an input.
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on this invocation. We have volF,cG
(S) + r(S) ≥ r(S) ≥ ψ

8zexf (S) ≥ ψ
16zR

′ and
volF,cG

(S) + r(S) = ∇(S) = absf (S) ≤ 8z
ψ R. Also, Theorem A.6.1 asserts that

cG(EG(S, S)) ≤ cA.6.1 · |f |+ volF,cG
(S)

κ
<
cA.6.1 · 4z

ψ r(S) + volF,cG
(S)

κ

≤ ϕψ3

256 · (volF,cG
(S) + r(S))

where we used that volF,cG
(S) + r(S) ≥ ψ

8z∆(S) and |f | < 1
2∥∆∥1 ≤ 4z

ψ r(S). This
shows that S indeed satisfies the output requirement of Lemma A.7.10.

If none of the calls to Theorem A.6.1 routes less than half of the demand, we
end up with a flow f∗ with exf∗(V ) ≤ R′ and congestion κz. In this case we can
construct a new witness (W ′, c′, r′,ΠW ′→G) in Case 2 as follows. Initialize W ′ as
W , (and ΠW ′→G as ΠW→G consequently), c′ as c, and r′ as 8

ψr. By a standard
flow decomposition argument, we can in Õ(n2) time decompose f∗ into at most n2

flow paths Pi that sends ci units of flow from (ui, vi). For each such flow path Pi,
we add an edge (ui, vi) with capacity c′(ui, vi) = ci to W ′, merging parallel edges if
exists. We then decrease r′(ui) by ci. We argue that (W ′, c′, r′,ΠW ′→G) forms an
(R′, ϕ, ψ′)-out-witness of (G, cG, F ) with respect to γ.

Properties (1) and (4). The fact that ∥r′∥1 ≤ R′ is by definition. The new
embedding ΠW ′→G has congestion at most 1

ϕψ + z · 1024·cA.6.1·z
ϕψ4 ≤ 1

ϕψ′ .

Property (2). Observe that degW ′,c′(v) + r′(v) is initialized to degW,c(v) +
8z
ψ · r(v) ∈

[
degF,cG

(v), 8z
ψ2 · degF,cG

(v)
]
. Also note that each v absorbs at most

z ·∇(v) = z(degF,cG
(v)+r(v)) units of demand. For each flow path Pi from ui to vi

with ci units of flow, degW ′,c′(ui) + r′(ui) stays the same while degW ′,c′(v) + r′(v)
increases by ci. As a result, we have

degW ′,c′(v) + r′(v) ≤ 8z
ψ2 · degF,cG

(v) + z(degF,cG
(v) + r(v)) (A.12)

(∗)
≤ 10z

ψ2 · degF,cG
(v) (A.13)

≤ 1
ψ′

degF,cG
(v). (A.14)

Note that as in [HKPW23] we will use the stronger bound of (∗) later.

Property (3). Consider a cut S where γ(S) ≤ γ(S) for which c(EW (S, S)) +
r(S) ≥ ψ(volW,c(S) + r(S)).
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• If c(EW (S, S)) ≥ r(S): We have volW ′,c′(S) + r′(S) ≤ 10z
ψ2 volF,cG

(S) ≤
10z
ψ2 (volW,c(S) + r(S)) by (A.14). This implies

c′(EW ′(S, S)) + r′(S) ≥ c(EW (S, S)) ≥ 1
2(c(EW (S, S)) + r(S))

≥ ψ

2 (volW,c(S) + r(S)) ≥ ψ3

20z (volW ′,c′(S) + r′(S)).

• If c(EW (S, S)) < r(S) and r′(S) > 1
2 r(S): We have

c′(EW ′(S, S)) + r′(S) ≥ 1
2(c(EW (S, S)) + r(S)) ≥ ψ

2 (volW,c(S) + r(S))

≥ ψ3

20z (volW ′,c′(S) + r′(S)).

• If c(EW (S, S)) < r(S) and r′(S) ≤ 1
2 r(S): The flow paths with tails in S

send precisely 8z
ψ r(S)− r′(S) ≥ 4z

ψ r(S) units of flow, within which at most
z ·∇(S) = z(volF,cG

(S) + r(S)) units are absorbed in S Since each path Pi
with ci units of flow from S to S turn into an edge of capacity ci in EW ′(S, S),
we have c′(EW ′(S, S)) ≥ 4z

ψ r(S) − z(volF,cG
(S) + r(S)). We can bound

volF,cG
(S) ≤ volW,c(S) + r(S) ≤ 1

ψ (c(EW (S, V \ S)) + r(S)) ≤ 2
ψr(S), which

then gives c′(EW ′(S, V \ S)) ≥ 2z
ψ r(S) ≥ z · volF,cG

(S) ≥ ψ2

10z2 (volW ′,c′(S) +
r′(S)).

As ψ′ ≤ min
{
ψ3

20z ,
ψ2

10z2

}
, Property (3) is preserved. Since the running time

of the algorithm is dominated by O(logn) calls to Theorem A.6.1 which runs in
Õ
(

n2

ϕϕ′2ψ4

)
, the proof is completed.

By running the cut-matching game of Theorem A.3.6 with our sparse-cut algo-
rithm of Theorem A.6.1, we can also obtain the following lemma which constructs
an initial witness. As the proof is fairly standard, we defer it to Section A.10.

Lemma A.7.11. Given an n-vertex strongly connected graph G = (V,E), terminal
edge set F ⊆ E, parameters ϕ,R, and a ϕ′-expander hierarchy H of G \ F with
height O(logn), there is an algorithm CutOrEmbed(G, cG, F, ϕ,R′) that either
output

1. a set S ⊆ V such that min{cG(EG(S, S)), cG(EG(S, S))} < ϕ · volF,cG
(S) and

1
4tCMG

R ≤ volF,cG
(S) ≤ 1

2 volF,cG
(V ) or

2. a γ ∈ NV and an (R,ϕ, ψ̃)-witness (W, c, r,ΠW→G) of (G, cG, F ) where ψ̃ =
Ω
(

1
log3 n

)
with respect to γ.

The algorithm runs in time Õ
(

n2

ϕϕ′2

)
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A.7.3 Stability of Witnesses
Following the framework of [HKPW23], our algorithm maintains for each strongly
connected component U of the current graph and each ℓ ∈ {0, . . . , L} a witness
(WU,ℓ, cU,ℓ, rU,ℓ,ΠWU,ℓ→G[U ]). To maintain these witnesses, we will repeatedly find
sparse cuts in the graph and remove them until we have certified such cuts do not
exist. After each cut is found, we may also update the volume with which the
witness needs to certify in response to Mprev.Cut(). We handle these updates
through the subroutine UpdateWitness(U, S,A) implemented in Algorithm A.3.
The subroutine removes the cut S from U and then increases the terminal set from
F to F ∪A, while making sure that all the WU,ℓ’s remain valid witnesses.

Each cut S that we call UpdateWitness() on will either correspond directly
to a call to the Cut() function in Definition A.7.3, in which case we refer to S as
an external cut, or correspond to the sparse cut found internally when maintaining
witnesses (specifically through Lemmas A.7.10 and A.7.11), in which case we refer
to S as an internal cut. To handle the updates, the algorithm simply projects
each witness WU,ℓ onto U \ S and removes edges in it that are no longer embedded
into the new G[U \ S]. It also makes necessary increases to the value of rU,ℓ(v)
when new edges are added to F to ensure the validity of the witnesses. Note that
we essentially ignore S and are not projecting WU,ℓ onto it. This is because once
UpdateWitness(U, S,A) is called, as we shall see in Algorithm A.5, our algorithm
will immediately reconstruct all the witnesses of S entirely from scratch.

We take a rather modularized approach and guarantee that all witnesses, once
constructed or repaired, will only be updated using UpdateWitness(). Therefore,
before giving the full details on how the subroutine is used in Section A.7.4 and how
the parameters are set, we first establish several stability properties that are key to
our analysis later.

First note that each WU,ℓ remains a valid witness, albeit with an increase in
∥rU,ℓ∥1.

Claim A.7.12. After each call to UpdateWitness(), the tuple (WU,ℓ, cU,ℓ, rU,ℓ,
ΠWU,ℓ→G[U ]) remains a valid (∞, ϕ, ψℓ)-witness of (G[U ], cG, F ) with respect to γU .

Proof. Observe that for each edge e′ = (u, v) removed from WU,ℓ, there is a corre-
sponding increase in rU,ℓ(u) and rU,ℓ(v) by cU,ℓ(e′). Likewise, each newly added
terminal edge (u, v) has a corresponding increase in rU,ℓ(u) and rU,ℓ(u) by cG(u, v).
Let U ′ and F ′ be the set U and F before the update. Let W ′U ′,ℓ, c′U ′,ℓ, and r′U ′,ℓ be
the old witness. We thus have for each u ∈ U that(

degWU,ℓ,cU,ℓ
(v) + rU,ℓ(v)

)
−
(

degW ′
U′,ℓ

,cU,ℓ
(v) + r′

U′,ℓ(v)
)

= (degF,cG
(v) − degF ′,cG

(v)).
(A.15)

Thus, Property (2) is preserved. Property (4) is trivially preserved as well since
the congestion of ΠWU,ℓ→G[U ] can only decrease. For Property (3), consider a cut
(T,U \ T ) in the new U with γU (T ) ≤ γU (U \ T ). As γU ′(T ) ≤ γU ′((U \ T ) ∪ S)
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Algorithm A.3: Implementation of UpdateWitness()

global : the terminal edge set F
1 function UpdateWitness(U, S ⊆ U,A ⊆ G[U ])

// remove S from U and add A into the terminal set F
2 for ℓ ∈ {0, . . . , L} do
3 for e ∈ EG[U ](S, S) ∪ EG[U ](S, S) and e′ ∈ Π−1

WU,ℓ→G[U ](e) do
4 Let e′ = (u, v). Increase rU,ℓ(u) and rU,ℓ(v) by cU,ℓ(e′) and

remove e′ from WU,ℓ.
5 for e = (u, v) ∈ A \ F do
6 Increase rU,ℓ(u) and rU,ℓ(v) by cG(e).

7 Replace U in U with U \ S and S.
8 Let WU\S,ℓ be WU,ℓ[U \ S], rU\S,ℓ be rU\S,ℓ restricted to U \ S, and

γU\S be γU restricted to U \ S.
9 Update U ← U \ S and F ← F ∪A.

clearly holds, we have

cU,ℓ

(
EW ′

U′,ℓ
(T, (U \ T ) ∪ S)

)
+ r′U ′,ℓ(T ) ≥ ψ(volW ′

U′,ℓ
,cU,ℓ

(T ) + r′U ′,ℓ(T ))

by the properties of the old witness. Using the above arguments we can derive

rU,ℓ(T )− r′U ′,ℓ(T )

≥
(

cU,ℓ

(
EW ′

U′,ℓ
(T, (U \ T ) ∪ S)

)
− cU,ℓ

(
EWU,ℓ

(T,U \ T )
))

+ (volF,cG
(T )− volF ′,cG

(T ))

which implies

cU,ℓ(EWU,ℓ
(T,U \ T )) + rU,ℓ(T )
≥ ψ(volW ′

U′,ℓ
,cU,ℓ

(T ) + r′U ′,ℓ(T )) + (volF,cG
(T )− volF ′,cG

(T ))

≥ ψ(volWU,ℓ,cU,ℓ
(T ) + rU,ℓ(T ))

when combined with (A.15). This proves that (WU,ℓ, cU,ℓ, rU,ℓ,ΠWU,ℓ→G[U ]) is an
(∞, ϕ, ψ)-out-witness of (G[U ], cG, F ). The proof on the reversed graph follows
analogously.

We further argue that the increase in ∥rU,ℓ∥1 is relatively stable with respect to
internal cuts and is mostly dominated by external cuts. In particular, we consider
the following scenario.
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Scenario A.7.13. Suppose at some moment (WU,ℓ, cU,ℓ, rU,ℓ,ΠWU,ℓ→G[U ]) is an
(R,ϕ, ψℓ)-witness of (G[U ], cG, F ). Let U0 be the set U and F0 be the set F at
this moment. There is then a sequence of r calls to UpdateWitness(U, Si, Ai)
for Si ⊆ Ui−1 (where Ui := Ui−1 \ Si) and Ai ⊆ G[Ui−1] such that the cut Si
has δi := min{cG(EG[Ui−1](Si, Si)), cG(EG[Ui−1](Si, Si))} boundary capacities and
there are at most ∆i = 2cG(Ai) units of volume added after the i-th update. Let
Fi := Fi−1 ∪Ai be the terminal edge set after the i-th update.

Remark A.7.14. Note that Scenario A.7.13 models the case when these are the only
changes made to WU,ℓ. Later in Section A.7.4 we will perform periodic reconstruction
of WU,ℓ which is not characterized by Scenario A.7.13, and we will ensure that the
stability properties established in this section are used only when Scenario A.7.13
applies.

We first bound how much ∥rU,ℓ∥1 can grow in terms of the δi’s assuming there
is no terminal addition at all, i.e., Ai = ∅ for all i ∈ [r]. We make the following
observation regarding the boundary edges of a union of cuts.

Observation A.7.15. Suppose there is a sequence of cuts S1, . . . , Sk in a graph
G = (V,E) with Si ⊆ Vi−1 where V0 := V and Vi := Vi−1 \ Si and consider
S :=

⋃
j∈J Sj for some J ⊆ [k]. Then, we have

EG(S, S) ⊆
⋃
i∈J

EG[Vi−1](Si, Si) ∪
⋃
i ̸∈J

EG[Vi−1](Si, Si).

Lemma A.7.16. In Scenario A.7.13, suppose Ai = ∅ for all i ∈ [r], then after the
r updates we have ∥rUr,ℓ∥1 ≤ 3R

ψℓ
+ 4

ψ2
ℓ
ϕ

∑
j∈[r] δj.

Proof. Let us call a cut Si out-sparse if cG(EG[Ui−1](Si, Si)) ≤ cG(EG[Ui−1](Si, Si))
and in-sparse otherwise. Let

Sout :=
⋃

Sj is out-sparse
Sj and Sin :=

⋃
Sj is in-sparse

Sj ,

be cuts in G[U0], for which by Observation A.7.15 we have

cG
(
EG[U0](Sout, Sout)

)
≤
∑
j∈[r]

δj and cG
(
EG[U0](Sin, Sin)

)
≤
∑
j∈[r]

δj . (A.16)

Let D := E(G[U0]) \ E(G[Ur]) be the set of edges that are deleted from G[U ] after
the r updates. Note that the each increase in rUr,ℓ(v) from the initial rU0,ℓ(v) for
v ∈ Ur corresponds to an edge e incident to v in WU0,ℓ that embeds into a deleted
edge, i.e., ΠWU0,ℓ→G[U0](e) ∩D ̸= ∅. Let D−1 ⊆ E(WU0,ℓ) be the set of such edges.
We can analyze the size of |D−1| by considering an e ∈ D−1.
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• If both endpoints of e are in Uk, then ΠWU0,ℓ
(e) must use one edge in

EG[U0](Sout, Sout) ∪ EG[U0](Sin, Sin) since it must enters and leaves one of
Sout and Sin.

• If e ∈ EWU0,ℓ
(Sout, Sout), then ΠWU0,ℓ→G[U0](e) ∩ EG[U0](Sout, Sout) ̸= ∅; simi-

larly, if e ∈ EWU0,ℓ
(Sin, Sin), then ΠWU0,ℓ→G[U0](e) ∩ EG[U0](Sin, Sin) ̸= ∅.

• Otherwise, we have e ∈ EWU0,ℓ
(Sout, Sout) or e ∈ EWU0,ℓ

(Sin, Sin).

This gives us the bound of

cU,ℓ(D−1) ≤ 1
ψℓϕ
·
(
cG
(
EG[U0](Sout, Sout)

)
+ cG

(
EG[U0](Sin, Sin)

) )
+ cU,ℓ

(
EWU0,ℓ

(Sout, Sout)
)

+ cU,ℓ
(
EWU0,ℓ

(Sin, Sin)
)

by the congestion of ΠWU0,ℓ→G[U0] from Property (4). To bound the right-hand side,
we prove the following claim.

Claim A.7.17. For any (R,ϕ, ψ)-witness (W, c, r,ΠW→G) we have c(EW (S, S)) ≤
1
ψ (c(EW (S, S)) +R) for all S ⊆ V .

Proof. Note that c(EW (S, S)) ≤ min{volW,c(S), volW,c(S)} and thus it suffices
to bound the latter. If γ(S) ≤ γ(S), then since W is an out-witness we have
volW,c(S) ≤ volW,c(S) + r(S) ≤ 1

ψ (c(EW (S, S)) + r(S)) ≤ 1
ψ (c(EW (S, S)) + R).

Similarly, if γ(S) > γ(S), then since ←−W is an out-witness we have volW,c(S) ≤
volW,c(S) + r(S) ≤ 1

ψ (c(E←−
W

(S, S)) + r(S)) ≤ 1
ψ (c(EW (S, S)) +R).

Following Claim A.7.17, we have

c(D−1) ≤ 2
ψℓϕ
·
∑
j∈[r]

δj + 1
ψℓ

(
cU0,ℓ

(
EWU0,ℓ

(Sout, Sout)
)

+R
)

+ 1
ψℓ

(
cU0,ℓ

(
EWU0,ℓ

(Sin, Sin)
)

+R
)

≤ 4
ψ2
ℓϕ

∑
j∈[r]

δj + 2R
ψℓ
.

The lemma follows by adding the initial value of ∥rU0,ℓ∥1 ≤ R to the above quantity.

Now, we consider the more general case where Ai may be non-empty. Moreover,
we would like to derive a bound in terms only of external cuts. Let δext be the sum
of δi’s for which Si is an external cut. Let ∆ := ∆1 + · · ·+ ∆r. We derive a bound
when the following conditions are met.

Condition A.7.18. The following holds.
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(i) Each internal cut Si satisfies δi ≤ ϕψ2
ℓ

128 volFi−1,cG
(Si).

(ii) Each cut Si satisfies either volFi−1,cG
(Si) ≤ 1

4 volF0,cG
(U0) or volFi−1,cG

(Si) ≤
1
2 volFi−1,cG

(Ui−1) when it is found.

(iii) ψℓ ≤ 1
16 , R,∆ ≤ ψℓ

64 volF0,cG
(U0), and δext ≤ ϕψ2

ℓ

800 volF0,cG
(U0).

Observe that in either case of (ii), we have by (iii) that

volFr,cG
(Si) ≤ volFi−1,cG

(Si) + ∆

≤ max
{

1
4volF0,cG

(U0), 1
2volFi−1,cG

(Ui−1)
}

+ ∆

≤ 5
8volFr,cG

(U0). (A.17)

We will later show that Condition A.7.18 indeed holds (with high probability)
throughout our algorithm for expander decomposition maintenance. For now we
assume this is the case and prove the following Lemma A.7.20 using Lemma A.7.19
whose proof is deferred to Section A.10.

Lemma A.7.19. Given a graph G = (V,E) and a sequence of cuts S1, . . . , Sk where
Si ⊆ Vi−1 with Vi := Vi−1 \ Si and V0 := V satisfies∑
i∈[k]

min
{

cG(EG[Vi−1](Si, Si)), cG(EG[Vi−1](Si, Si))
}
< ϕ ·

∑
i∈[k]

volF,cG
(Si) (A.18)

and ∑
i∈[k]

volF,cG
(Si) ≤ α · volF,cG

(V ),

there is a
(
min

{
α
2 , 1− α

}
volF,cG

(V )
)
-balanced

(
2ϕmin

{
1, α

1−α

})
-sparse cut in

(G, c) with respect to F .

Essentially, the above lemma says that if one can successively carve out many
“small” sparse cuts Si, then the original graph must have contained a “large” sparse
cut. Now, in the following lemma, we establish that most of the change in r and
volF comes from the external cuts.

Lemma A.7.20. In Scenario A.7.13, if Condition A.7.18 holds, then we have
∥rWUr,ℓ

∥1 ≤ Γ and volFr,cG
(Ur) ≥ volFr,cG

(U0)− Γ for Γ := 4(R+∆)
ψℓ

+ 8
ψ2

ℓ
ϕ
δext.

Proof. Observe that we may imagine there is 0-th update with an empty cut S0
with A0 := A1 ∪ · · · ∪Ar, and after running UpdateWitness(U, S0, A0) we have
∥rU,ℓ∥1 ≤ R+ ∆ and WU,ℓ being a witness of (G[U ], cG, Fr) at which point we start
considering Scenario A.7.13 with Ai = ∅ for all i ∈ [r]. Note that Condition A.7.18(i)
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still holds in this case as well as (A.17). Also note that volFr,cG
(U0) ≤ 2volF0,cG

(U0)
by the bound on ∆ and thus Condition A.7.18(iii) implies R,∆ ≤ ψℓ

32 volFr,cG
(U0)

and δext ≤ ϕψ2
ℓ

400 volFr,cG
(U0).

Let Bi := volFr,cG
(U0)− volFr,cG

(Ui) =
∑
j∈[i] volFr,cG

(Sj) be the total volume
of the first i cuts. We first show that Br ≤ 1

8 volFr,cG
(U0) must hold under the

input assumption. Otherwise, let i be such that Bi ≤ 1
8 volFr,cG

(U0) and Bi+1 >
1
8 volFr,cG

(U0). By volFr,cG
(Si+1) ≤ 5

8 volFr,cG
(U0) with (A.17) we know Bi+1 ≤

3
4 volFr,cG

(U0). Let Sint and Sext be the union of internal and external cuts among
the first i+ 1 cuts. We have∑

j∈[i+1]

δj ≤
ϕψ2

ℓ

128 volFr,cG
(Sint) + δext ≤

ϕψ2
ℓ

12 Bi+1

by Condition A.7.18(i) and that (1) volFr,cG
(Sint) ≤ Bi+1, (2) Bi+1 ≥ 1

8 volFr,cG
(U0),

and (3) δext ≤ ϕψ2
ℓ

400 volFr,cG
(U0). Because Bi+1 ≤ 3

4 volFr,cG
(U0), Lemma A.7.19 with

α ≤ 3/4 implies there is a
( 1

8 volFr,cG
(U0)

)
-balanced ϕψ2

ℓ

2 -sparse cut in (G[U0], cG)
with respect to Fr. This is a contradiction to Claim A.7.7 with the fact that
2(R+∆)
ψℓ

≤ 1
8 volFr,cG

(U0).
As a result, we may assume Br ≤ 1

8 volFr,cG
(U0). If Br ≤ 4(R+T )

ψℓ
, then we have∑

j∈[r] δj ≤
4(R+T )
ψℓ

· ϕψ
2
ℓ

128 + δext and the lemma follows by applying Lemma A.7.16.
Otherwise, letting S′int be the union of all internal cuts, if δext ≤ 31ϕψ2

ℓ

128 volFr,cG
(S′int)

then we must have∑
j∈[r]

δj ≤
ϕψ2

ℓ

128 volFr,cG
(S′int) + δext ≤

ϕψ2
ℓ

4 volFr,cG
(S′int) ≤

ϕψ2
ℓ

4 Br,

which again by Lemma A.7.19 with α ≤ 1/4 implies the existence of a Br

2 -balanced
ϕψ2

ℓ

2 -sparse cut which contradicts Claim A.7.7. To this end, we have shown that
δext ≥ 31ϕψ2

ℓ

128 volFr,cG
(S′int) and therefore

∑
j∈[r] δj ≤ 2δext. We can now apply

Lemma A.7.16 to conclude bound on ∥rWr,ℓ∥1.
As for the bound on volFr,cG

(Ur), by the discussion above if Br > 4(R+T )
ψℓ

then
∑
j∈[r] δj ≤ 2δext. Since Br ≤ 1

4 volFr,cG
(U0) this means that we must have

2δext ≥ ϕψ2
ℓ

4 Br, otherwise the same argument above implies the existence of Br

2 -
balanced ϕψ2

ℓ

2 -sparse cut that contradicts Claim A.7.7. This thus leaves us with
Br ≤ 8

ϕψ2
ℓ

δext which the lemma statement asserts.

A.7.4 Maintaining Expander Decomposition
We now present the algorithm for maintaining expander decomposition while in-
teracting with Mprev which in turn gives the algorithm for converting from k-level



148 PAPER A. MAXFLOW BY AUGMENTING PATHS IN n2+o(1) TIME

hierarchy to a (k + 1)-level one with significantly fewer cut edges. The overall
structure of our algorithms is similar to [HKPW23, Algorithm 3], and we use the
stability properties established earlier to derive an expected worst-case recourse
guarantee.

Setup. Given the input (k, αprev, βprev, ϕprev, Tprev)-hierarchy maintainer Mprev,
to maintain the (k + 1)-th level (and thereby getting a better maintainer M), we
will maintain the graph GM in which F is ϕ-expanding and its collection of strongly
connected components U . We start with F being the edge set not handled by
Mprev. For each U ∈ U we will maintain an estimate τU of volF,cG

(U), a vector
γU ∈ NU , and L + 1 witnesses (WU,ℓ, rU,ℓ,ΠWU,ℓ→G[U ]) for ℓ ∈ {0, . . . , L}, where
(WU,ℓ, rU,ℓ,ΠWU,ℓ→G[U ]) is an (∞, ϕ, ψℓ)-witness of (G[U ], cG, F ) with respect to
γU , with parameters

ψL := ψ̃ and ψℓ := 1
2 ·
(

ψ2
ℓ+1

2048 · cA.6.1 · z3L

)L
(A.19)

that satisfy
1
ψ0
≤ lognL

O(L)
and

ψ2
ℓ+1

ψ
1/L
ℓ

≥ Ω(log3L n). (A.20)

The algorithm will ensure that, with high probability, each ∥rW,ℓ∥1 falls between
ψℓ

10 τ
ℓ/L
U and τ

ℓ/L
U . This can be enforced deterministically by rebuilding a witness

whenever ∥rW,ℓ∥1 grows too large. However, that leaves us with only an amortized
guarantee which as we have argued in Section A.7.1 does not suffice for our pur-
poses. To achieve a stronger expected worst-case recourse, we define the following
distribution Rt,τ on {0, . . . , L} from which we will sample a random level to rebuild
after every update:

Pr
x∼Rt,τ

[x ≥ ℓ] := min
{

1, t

ψ2
0 · τ ℓ/L

· crb lnn
}

(A.21)

where crb is a fixed constant that controls the exponents in the with-high-probability
statements that we will establish later.

Algorithm A.4 is the implementation of the Init() and Cut() subroutines
which given input parameters L ∈ N and ϕ ∈ (0, 1) converts Mprev into a
(k + 1, α, β, ϕ′, T )-hierarchy maintainer M for parameters α, β, ϕ′, T that we will
establish in the end of the section. These subroutines rely on the internal subroutine
MaintainExpander(U, ℓ) whose implementation is given in Algorithm A.5.

We say that WU,ℓ is rebuilt if MaintainExpander(U, ℓ) enters Line 23. Recall
that one of our goals is to ensure that ∥rU,ℓ∥1 falls between ψℓ

10 τ
ℓ/L
U and τ

ℓ/L
U , and

we show that this is indeed the case right after WU,ℓ is rebuilt.

Lemma A.7.21. If WU,ℓ is rebuilt at Line 23, then the new (WU,ℓ, cU,ℓ, rU,ℓ,

ΠWU,ℓ→G[U ]) is a
(
ψℓ

10 τ
ℓ/L
U , ϕ, ψℓ

)
-witness of (G[U ], cG, F ).
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Algorithm A.4: Implementation of (k+1, α, β, ϕ′, T )-hierarchy maintainer

global : parameters L ∈ N and ϕ ∈ (0, 1)
global : the graph GM maintained by M
global : the collection U of SCCs of GM
global : the terminal edge set F

1 function Init(G, cG)
2 Initialize F ←Mprev.Init(G, cG).
3 Initialize GM ← G and U ← {V }.
4 Let X ←MaintainExpander(V, L).
5 Run PostProcess(V ) and then return X.
6 function Cut(D)
7 GM ← GM \D.
8 X ← ∅ and Q← ∅.
9 Let UD ← {U ∈ U : D ∩G[U ] ̸= ∅} and UD :=

⋃
U∈UD

U

10 for U ∈ UD do
// see input requirement of Cut()

11 Let DU := D ∩G[U ] and SU ⊆ U be such that
volF,cG

(SU ) ≤ volF,cG
(U \ SU ) and either EG[U ](SU , SU ) or

EG[U ](SU , SU ) equals DU .
// UpdateWitness() remove SU from U and add AU to F

12 Run AU ←Mprev.Cut(DU) and UpdateWitness(U, SU , AU).
13 Sample k ∼ RcG(DU )/ϕ+2cG(AU ),τU

and
X ← X ∪MaintainExpander(U, k) .

14 Add SU to Q.
15 for S ∈ Q do X ← X ∪MaintainExpander(S, L).
16 Run PostProcess(UD) and then return X.
17 return X.
18 function PostProcess(Y )

// ensure U is exactly the SCCs of GM
19 for U ∈ U such that U ⊆ Y do
20 Let U1, . . . , Uk be the strongly connected components of G[U ].
21 Replace U in U by U1, . . . Uk.

Proof. We have ∥rU,ℓ∥1 = ∥r1∥ + ∥r2∥ ≤ ψℓ

10 · τ
ℓ/L
U . Let ψ′ℓ := ψ4

ℓ+1
2048·cA.6.1·z2 as in

Lemma A.7.10. We have ψℓ ≤ 1
2ψ
′
ℓ
2 by (A.19). We then have degWU,ℓ,cU,ℓ

(v) +
rU,ℓ(v) ≤ 2

ψ′
ℓ
degF,cG

(v) ≤ 1
ψℓ

degF,cG
(v). Also, the congestion of ΠWU,ℓ→G[U ] is

bounded by 2 · 1
ϕψ′

ℓ
≤ 1

ϕψℓ
. It thus remains to verify Property (3). Consider a cut

where γU (S) ≤ γU (S). We have c1(EW1(S, S)) + r1(S) ≥ ψ′ℓ(volW1,c1(S) + r1(S)).
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Algorithm A.5: Maintaining expander decomposition

global : a hierarchy Hprev of GM \ F maintained by Mprev

1 function MaintainExpander(U, ℓ)
2 if volF,cG

(U) < 1/ϕ then return ∅.
3 X ← ∅ and Q← ∅.
4 loop
5 if ℓ = L then
6 τU ← ψ2

0
64zvolF,cG

(U).
7 Run procedure CutOrEmbed(G[U ], cG, F, ϕ, ψL

10 τU ,Hprev[U ]).
8 else
9 Run procedures PruneOrRe-

pair(G[U ], cG, F, rU,ℓ+1,WU,ℓ+1,ΠWU,ℓ+1→G[U ], ϕ, ψℓ+1,
ψℓ

20 ·
τ
ℓ/L
U ,Hprev[U ]) and PruneOrRe-

pair(←−G [U ], cG, F, rU,ℓ+1,
←−
WU,ℓ+1,Π←−WU,ℓ+1→

←−
G [U ], ϕ, ψℓ+1,

ψℓ

20 ·

τ
ℓ/L
U ,Hprev[U ]).

10 if a cut S is returned then
11 Let D be edge sets among EG[U ](S, S) and EG[U ](S, S) with

smaller total capacities.
12 update X ← X ∪D and GM ← GM \D
13 Let A←Mprev.Cut(D) and run UpdateWitness(U, S,A).

// assert A ⊆ U
14 Add S to Q.
15 if a sample k ∼ R2cG(A),τU

satisfies k > ℓ then
16 Update X ← X ∪MaintainExpander(U, k).
17 break.

18 else
19 if ℓ = L then
20 Set (WU,L, cU,L, rU,ℓ,ΠWU,ℓ→G[U ]) to be the witness returned

by CutOrEmbed(), and γU ← γ.
21 else
22 Let (W1, c1, r1,ΠW1→G[U ]) and (W2, c2, r2,ΠW2→

←−
G [U ]) be the

witnesses returned by PruneOrRepair().
23 Set WU,ℓ ←W1 ∪

←−
W2, cU,ℓ ← c1 + c2, and rU,ℓ ← r1 + r2.

// the witness WU,ℓ is rebuilt

24 break.

25 if ℓ > 0 then X ← X ∪MaintainExpander(U, ℓ− 1).
26 for S ∈ Q do X ← X ∪MaintainExpander(S,L).
27 return X.
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Note that due to Property (2), it holds that ψ′ℓ(degW2,c2(v)+r2(v)) ≤ degW1,c1(v)+
r1(v) ≤ 1

ψ′
ℓ
(degW2,c2(v) + r2(v)). Consequently, we have

cU,ℓ(EWU,ℓ
(S, S)) ≥ c1(EW1(S, S))

≥ ψ′ℓ(volW1,c1(S) + r1(S))

≥ ψ′ℓ
2

2 (volWU,ℓ,cU,ℓ
(S) + rU,ℓ(S)).

Similarly, if γU (S) > γU (S), then

cU,ℓ(EWU,ℓ
(S, S)) ≥ c2(E←−

W2
(S, S)) = c2(EW2(S, S))

≥ ψ′ℓ(volW1,c1(S) + r1(S)) ≥ ψ′ℓ
2

2 (volWU,ℓ,cU,ℓ
(S) + rU,ℓ(S)).

This concludes the proof.

As we have a bound on how large rU,ℓ(v) can be, the bound of Lemma A.7.10
with respect to volF (S) + rU,ℓ(S) can be used to bound the actual volume.

Claim A.7.22. Each cut S found at Line 9 satisfies (1) min{cG(EG[U ](S, S)),
cG(EG[U ](S, S))} ≤ ϕψ2

ℓ+1
128 volF,cG

(S), and (2) volF,cG
(S) ≥ ψ2

ℓ+1ψℓ

640z τ
ℓ/L
U .

Proof. The cut S found by Lemma A.7.10 satisfies

min{cG(EG[U ](S, S)), cG(EG[U ](S, S))} ≤
ϕψ3

ℓ+1
256 (volF,cG

(S) + rU,ℓ+1(S))

and volF,cG
(S) + rU,ℓ+1(S) ≥ ψℓ+1

16z ·
ψℓ

20 τ
ℓ/L
U . By Definition A.7.6(2), we have

rU,ℓ+1(S) ≤ 1
ψℓ+1

volF,cG
(S), and therefore volF,cG

(S)+rU,ℓ+1(S) ≤ 2
ψℓ+1

volF,cG
(S).

The claim follows.

Recall that a cut passed to UpdateWitness() is internal if it comes from
Line 13 in Algorithm A.5 and external if it comes from Line 12 in Algorithm A.4.
We further call such an internal cut level-(ℓ + 1) as it is found based on WU,ℓ+1
when running MaintainExpander(X, ℓ).

Definition A.7.23. A witness WU,ℓ is valid if since the last time it was rebuilt, we
only call RemoveCut(U, S,A) on it with either external or level-ℓ′ internal cuts
with ℓ′ ≤ ℓ; otherwise, WU,ℓ is invalid.

A witness WU,ℓ is being rebuilt from the moment the algorithm enters Main-
tainExpander(X, k) for some k ≥ ℓ until either it is actually rebuilt or the call
to MaintainExpander(X, k) returns. By definition, if WU,ℓ is currently being
rebuilt, then so are all WU,ℓ′ with ℓ′ < ℓ. Observe that a witness is always valid



152 PAPER A. MAXFLOW BY AUGMENTING PATHS IN n2+o(1) TIME

unless either it is currently being rebuilt or has volume volF,cG
(U) < 1/ϕ (due to

the early return on Line 2).30 Let us call such a U with volF,cG
(U) < 1/ϕ negligible.

Observation A.7.24. Each witness WU,ℓ for a non-negligible U remains valid
unless it is currently being rebuilt, in which case it must actually be rebuilt before
the call to the corresponding MaintainExpander(U, k) returns. Moreover, if the
algorithm is currently running MaintainExpander(U, ℓ), then all WU,k where
k > ℓ are valid.

Observation A.7.25. If U becomes negligible at some point, then it remains
negligible afterward.

Consider two timestamps t1 < t2 throughout the execution of the algorithm.

Definition A.7.26. A tuple (U, ℓ, t1, t2) is active if (i) U is non-negligible at time
t2 (and thus from t1 to t2 by Observation A.7.25) and (ii) WU,ℓ is not rebuilt nor
being rebuilt in any point of time between t1 and t2 (inclusively).

Consider an active tuple (U, ℓ, t1, t2). Let δ(U,ℓ)
ext (t1, t2) be the sum of the ca-

pacities of DU ’s of the Cut(D) calls that happen from time t1 to t2. Likewise,
let ∆(U,ℓ)(t1, t2) be two times the sum of the capacities of A’s of the Update-
Witness(U, S,A) calls happened in this period of time. In other words, ∆(U,ℓ) is
an upper bound on the units of volume increased in U from t1 to t2. We show
that for an active tuple (U, ℓ, t1, t2), with high probability both δ

(U,ℓ)
ext (t1, t2) and

∆(U,ℓ)(t1, t2) are bounded. Note that as the value of τU only changes in Maintain-
Expander(U,L), during this period of time τU remains unchanged (otherwise WU,ℓ

would have been rebuilt at some point in between). Also note that it is important to
establish the bound against any (possibly adversarial) sequence of Cut() calls, since
as we have seen earlier we will encapsulate this hierarchy maintainer into another
one that has a better quality. The update sequence we see now thus depends on our
previous outputs (hence the previous randomness used).

Lemma A.7.27. For any (possibly adaptive adversarial) sequence of Cut() and
any active tuple (U, ℓ, t1, t2), with high probability, we have ∆(U,ℓ)(t1, t2) ≤ ψℓ

10 τ
ℓ/L
U

and δ(U,ℓ)
ext (t1, t2) ≤ ϕψ2

ℓ

40 τ
ℓ/U
U . 31

Proof. Let ∆i be two times the total capacities of A in the i-th call of Remove-
Cut(U, S,A) from time t1 to t2. If ∆(U,ℓ)(t1, t2) > ψℓ

10 τ
ℓ/L
U , then the probability that

30Note that this would have been vacuously true if our algorithm does not have the early break
on Line 17 in Algorithm A.5 (like in [HKPW23, Algorithm 3]). Still, if we break early on Line 17,
then the call to MaintainExpander(X, k) on Line 16 will be in charge of rebuilding WU,ℓ.

31The exponent in the with high probability statement depends on our choice of the constant
crb in (A.21).
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none these subroutines called MaintainExpander(U, k) for some k ≥ ℓ (which
scheduled WU,ℓ to be rebuilt) is at most

∏
i

(
1 − ∆i

ψ2
0τ

ℓ/L
U

· crb lnn
)

≤ exp

(
−
∑

i

∆i · crb lnn
ψ2

0τ
ℓ/L
U

)
≤ exp

(
−crb lnn

10ψ0

)
≤ n−crb/10.

Similarly, let Di be the total capacities cG(DU ) of DU in the i-th call to Cut(D)
from time t1 to t2. If δ(U,ℓ)

ext (t1, t2) =
∑
iDi >

ϕψ2
ℓ

40 τ
ℓ/U
U , then the probability that

none of the Cut() called MaintainExpander(U, k) for some k ≥ ℓ is at most

∏
i

(
1 − Di

ϕ
· 1
ψ2

0τ
ℓ/L
U

· crb lnn
)

≤ exp

(
−
∑

i

Di

ϕ
· crb lnn
ψ2

0τ
ℓ/L
U

)
≤ exp

(
−crb lnn

40

)
= n−crb/40.

Consequently, with high probability, the bounds of ∆(U,ℓ)(t1, t2) ≤ ψℓ

10 τ
ℓ/L
U and

δ
(U,ℓ)
ext (t) ≤ ϕψ2

ℓ

40 τ
ℓ/L
U hold if WU,ℓ is not currently scheduled to be rebuilt. Observe

that we generate new randomness for each of our random choices, and thus this
high probability guarantee works against any update sequence.

In light of Lemma A.7.27, let K be the event such that

∆(U,ℓ)(t1, t2) ≤ ψℓ
10 τ

ℓ/L
U and δ

(U,ℓ)
ext (t1, t2) ≤ ϕψ2

ℓ

40 τ
ℓ/L
U (A.22)

hold for all active tuples (U, ℓ, t1, t2). Observe that there are only poly(n) effective
timestamps throughout any possible execution of the algorithm32 and for each
effective timestamp there are only O(n) possible U ’s at this time since they are
vertex-disjoint, and thus by Lemma A.7.27 and a union bound K happens with high
probability.

Lemma A.7.28. Conditioned on K, for any U ∈ U and time t, if WU,L is not
currently being rebuilt at time t, then we have ψ2

0
128zvolF,cG

(U) ≤ τU ≤ ψ2
0

32zvolF,cG
(U);

moreover, and for each ℓ ∈ {0, . . . , L}, if WU,ℓ is not currently being rebuilt at time
t, then ∥rU,ℓ∥1 ≤ τ ℓ/LU holds.

Proof. We prove the statement by an induction on the time t. Fix a U ∈ U and
ℓ ∈ {0, . . . , L} for which WU,ℓ is not currently being rebuilt. Consider the last
time t(U,ℓ)last < t that it was rebuilt. Let U0 and F0 be the set U and F at time
t
(U,ℓ)
last . By the inductive hypothesis at time t(U,ℓ)last , we have τU ≤ ψ0

32zvolF0(U0). Note
that the value of τU remains unchanged from t

(U,ℓ)
last to t, otherwise WU,ℓ would

have currently been being rebuilt. By Lemma A.7.21, we have ∥rU0,ℓ∥1 ≤ ψℓ

10 τ
ℓ/L
U .

Observe that (U, ℓ, t(U,ℓ)last , t) is active, and thus what happens from t
(U,ℓ)
last to t is

32The subroutine UpdateWitness() will be called at most n times and F ⊆ E always hold so
there will be at most O(m) terminal additions.
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modeled by Scenario A.7.13. Our goal is thus to apply Lemma A.7.20 on WU,ℓ

(with R ≤ ψℓ

10 τ
ℓ/L
U ) to bound the increase in ∥rU,ℓ∥1. For that we need to verify that

Condition A.7.18 holds. In the remainder of the proof we adapt the notation in
Scenario A.7.13 (e.g., Ui, Si, and Fi).

Condition A.7.18(i). Note that by Observation A.7.24, WU,ℓ is currently valid,
meaning that all the internal cuts Si for which UpdateWitness(U, Si, ·) is called
are of level-ℓ′ for ℓ′ < ℓ. By Claim A.7.22, each such cut Si satisfies

min{cG(EG[Ui−1](Si, Si)), cG(EG[Ui−1](Si, Si))} ≤
ϕψ2

ℓ′+1
128 volFi−1,cG

(Si)

≤ ϕψ2
ℓ

128 volFi−1,cG
(Si).

Condition A.7.18(ii). For external cuts, since we always let SU be the side
with smaller volume on Line 12 in Algorithm A.4, we indeed have volFi−1,cG

(Si) ≤
1
2 volFi−1,cG

(Ui−1). This is the same for internal cuts of level-L by Lemma A.7.11.
For ℓ < L, by Lemma A.7.10, every such cut Si satisfies volFi,cG

(Si) + rU,ℓ′+1(S) ≤
8z

ψℓ′+1
R for some ℓ′ < ℓ if (WU,ℓ′+1, rU,ℓ′+1,ΠWU,ℓ′+1→G[U ]) is an R-witness at the

time ti it was found. By the inductive hypothesis at time ti, we have R ≤ τ (ℓ′+1)/L
U ≤

τU ≤ ψ2
0

32zvolF0,cG
(U0), and thus we have volFi,cG

(Si) ≤ 1
4 volF0,cG

(U0).

Condition A.7.18(iii). The fact that δℓ ≤ 1
16 is straightforward. That R ≤

ψℓ

64 volF0,cG
(U0) is by Lemma A.7.21 which shows that right after the rebuild we have

R = ∥rU,ℓ∥1 ≤ ψℓ

10 τ
ℓ/L
U . Applying the bound of τU ≤ ψ2

0
32zvolF,cG

(U0) establishes the
fact. For the last two bounds, by the conditioning on K, we have ∆(U,ℓ)(t(U,ℓ)last , t) ≤
ψℓ

10 τ
ℓ/L
U and δ

(U,ℓ)
ext (t(U,ℓ)last , t) ≤

ϕψ2
ℓ

40 τ
ℓ/L
U . With τU ≤ ψ0

32zvolF0,cG
(U0), we additionally

have ∆(U,ℓ)(t(U,ℓ)last , t) ≤
ψℓ

64 volF0,cG
(U0) and δ

(U,ℓ)
ext (t(U,ℓ)last , t) ≤

ϕψ2
ℓ

800 volF0,cG
(U0).

Therefore, against any update sequence, with high probability Condition A.7.18
holds. Applying Lemma A.7.20 on WU,ℓ (with R := ψℓ

10 τ
ℓ/L
U , ∆ := ∆(U,ℓ)(t(U,ℓ)last , t),

and δ
(U,ℓ)
ext (t(U,ℓ)last , t)), we conclude that ∥rU,ℓ∥1 ≤ 4(R+∆)

ψℓ
+ 8

ψ2
ℓ
ϕ
δext ≤ τ ℓ/LU .

For the bound on τU , we use our previous arguments when ℓ = L. Notice
that τU is set to ψ2

0
64zvolF,cG

(U) at time t(U,L)
last on Line 6 in Algorithm A.5. As we

have argued above, Lemma A.7.20 applied on WU,L implies that the volume of
the current U is at least 64z

ψ0
τU −

(
4(R+∆)
ψℓ

+ 8
ψ2

ℓ
ϕ

)
≥ 64z

ψ2
0
τU − τU ≥ 32z

ψ2
0
τU (where

R ≤ ψL

10 τU , ∆ := ∆(U,L)(t(U,L)
last , t), and δext := δ

(U,L)
ext (t(U,L)

last , t)). This proves the
upper bound of τU . On the other hand, the volume of U can increase by at most
∆(U,L)(t(U,L)

last , t) ≤ ψL

10 τU ≤
ψ0
10 τU . This shows that τU ≥ ψ2

0
128zvolF,cG

(U), which
completes the proof of the lemma.
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To this end, we can now essentially conclude the correctness of our algorithm,
except for the running time and output size guarantees that we will establish in
Section A.7.5. Below we prove several useful properties that our algorithm satisfies.

Essential Properties of Algorithm. Let X0 be the output of Init(G) and let
Xi be the output of Cut(Di) where Di is the i-th update to M. We first verify
that the outputs of Init(G) and Cut(D) are consistent with the graph GM that
our algorithm maintains internally (see Definition A.7.3 for the requirements).

Observation A.7.29. After the i-th call to Cut(), the graph GM is equal to
G\(X0∪D1∪X1∪· · ·∪Di∪Xi) with U being the collection of its strongly connected
components.

Observation A.7.30. The graph GM we maintain satisfies GM ⊇ GMprev , and
the terminal set F we maintain satisfies F ⊇ E(GM) \ E(GMprev).

Observation A.7.31. Whenever we call Lemma A.7.11 on Line 7 or Lemma A.7.10
on Line 9 in Algorithm A.5, the hierarchy Hprev[U ] is a ϕprev-expander hierarchy of
the graph G[U ] \ F .

Lemma A.7.32. Algorithms A.4 and A.5 maintain that F is ϕψ2
0

2 -expanding in
(GM, cG) after each update (M.Cut(D)) against an adaptive adversary.

Proof. After each update, for each U ∈ U and ℓ ∈ {0, . . . , L} we have that WU,ℓ is
not being rebuilt for all ℓ ∈ {0, . . . , L}. By Lemma A.7.28, with high probability,
if volF,cG

(U) ≥ 1/ϕ, then ∥rU,0∥ ≤ 1 which by Claim A.7.9 implies F is ϕψ2
0

2 -
expanding in (G[U ], cG) (note that by Claim A.7.12 WU,0 is indeed a valid witness
of (G[U ], cG, F )). On the other hand, if volF,cG

(U) < 1/ϕ, then F is also ϕψ2
0

2 -
expanding in (G[U ], cG) by Claim A.7.8. This completes the proof.

Claim A.7.33. On Line 13 in Algorithm A.5, the set D satisfies the input require-
ment of Mprev.Cut(D) (see Definition A.7.3), the call runs in Tprev(|U |) time,
and it returns an edge set A ⊆ E(G[U ]).

Proof. By Observation A.7.30, the graphGM is always a supergraph ofGMprev which
means that the SCC(GMprev) is a refinement of SCC(GM). Let U ′ ⊆ SCC(GMprev)
be the collection of SCCs of GMprev contained in U , where we must have that
U ′ :=

⋃
Ui∈U ′ Ui = U . Since D is a cut EG[U ](S,U \ S) for some S ⊆ U , for each

Ui ∈ U ′ if D ∩G[Ui] ̸= ∅ it must be that G ∩G[Ui] = EG[Ui](Si, Ui \ Si) for some
Si. Indeed, this will be the case if we let Si := S ∩ Ui. This shows that the
input requirement of Mprev.Cut(D) is satisfied and also that the set UD defined
in Definition A.7.3 is a subset of U . Therefore, Mprev.Cut(D) runs in Tprev(|U |)
time and returns an edge set A ⊆

⋃
Ui∈U ′ G[Ui] ⊆ G[U ].
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A.7.5 Bounding Expected Recourse and Running Time

It now remains to argue both the expected running time and the expected output
size of the subroutines Init and Cut. As the outputs of both these subroutines come
from the MaintainExpander algorithm, we focus on establishing the guarantees
for this function.

Good vs Bad States of Algorithm. In Section A.7.4 we have shown that
throughout the algorithm, with high probability, we have ∥rU,ℓ∥ ≤ τ

ℓ/L
U for all

non-negligible U that is not currently being rebuilt. Let us define this as a good
state of the algorithm and consider the following generalizations of this notion.

Definition A.7.34. A state of the algorithm is good if for all non-negligible U ∈ U
and ℓ ∈ {0, . . . , L} for which WU,ℓ is not currently being rebuilt it holds that
∥rU,ℓ∥ ≤ τ

ℓ/L
U ; and if WU,L is not currently being rebuilt then ψ2

0
128zvolF,cG

(U) ≤
τU ≤ ψ2

0
32zvolF,cG

(U) holds. The state is borderline if ∥rU,ℓ∥ ≤ 10
ψℓ
τ
ℓ/L
U holds for these

U and ℓ instead; and if WU,L is not currently being rebuilt then ψ2
0

128zvolF,cG
(U) ≤

τU ≤ ψ2
0

32zvolF,cG
(U) holds. The state is bad if it is not borderline.

The reason why we need Definition A.7.34 and in particular the definition of
borderline states for our analysis is that, while Lemmas A.7.27 and A.7.28 showed
that the algorithm is always in a good state with high probability, it is not true
that if we start from any good state, then we always stay in good states with high
probability. Indeed, we can be in a good state in which one of the witnesses has
∥rU,ℓ∥1 being very close to τ ℓ/LU , yet there is a constant probability that we will not
rebuild it in the next update (which leads us to a borderline state). Note that this is
not contradictory to Lemmas A.7.27 and A.7.28 because the probability that we are
in such good states is small. While it is not true that a good state remains good, we
can generalize Lemmas A.7.27 and A.7.28 and show that a good state never reaches
a bad state with high probability. We defer the proof of the following lemma to
Section A.10 since it is essentially identical to that of Lemmas A.7.27 and A.7.28.

Lemma A.7.35. Conditioned on the algorithm being in a good state at the current
moment, with high probability, the algorithm will remain in borderline states until
termination.

For simplicity of exposition, we will work with the quantities Sizeℓ(b, λ) and
Timeℓ(b, λ) that intuitively stand for the size of the cut MaintainExpander(U, ℓ)
will return respectively the running time of the call, where b = volF,cG

(U) and
λ = |U |. We formally define them as follows. Consider b ∈ {0, . . . ,m}, λ ∈
{0, . . . , n}, and ℓ ∈ {0, . . . , L}. Let Bb,λ,ℓ be the collection of all possible calls of
MaintainExpander(U, ℓ) that start when the algorithm is in a borderline state with
volF (U) ≤ b and |U | ≤ λ. For each run r ∈ Bb,λ,ℓ there are two random variables
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Sr ∈ {0, . . . ,m}33 and Tr ∈ {0, . . . ,poly(n)}34 which represent the capacities cG(X)
of X that this MaintainExpander(U, ℓ) call returns respectively the running
time of it; the randomness comes from both the sampling of k ∼ Rt,τ (on Line 13
in Algorithm A.4 and Line 15 in Algorithm A.5) and the expected guarantee of
Mprev.Cut() (see Definition A.7.3). Let Ω be the space of randomness. Let Sr(ω)
and Tr(ω) be the realization of Sr and Tr on randomness ω. Additionally, we let S̃r
and T̃r be random variables that act almost the same as Sr and Tr do, except if
for some randomness ω the run r ∈ Bb,λ,ℓ reaches a bad state then we define S̃r(ω)
and T̃r(ω) to both be realized to zero.

Definition A.7.36. We define Sizeℓ(b, λ) to be the random variable on range
{0, . . . ,m} such that Sizeℓ(b, λ)(ω) := maxr∈Bb,λ,ℓ

S̃r(ω) for all ω ∈ Ω. Likewise,
Timeℓ(b, λ) is a random variable on {0, . . . ,poly(n)} such that Timeℓ(b, λ)(ω) :=
maxr∈Bb,λ,ℓ

T̃r(ω) for all ω ∈ Ω.

Note that by definition, Sizeℓ(b, λ) and Timeℓ(b, λ) are increasing in both b and
λ. The reason why we define Sizeℓ(b, λ) and Timeℓ(b, λ) in terms of the rather
bizarre-looking S̃r and T̃r is to ensure that we can assume the algorithm to be in a
borderline state when doing the calculation which significantly simplifies matters.
To convert a bound on Sizeℓ(b, λ) and Timeℓ(b, λ) to the expected guarantee of
the Cut(D) subroutine, we use Lemma A.7.35 to argue that the contribution of
bad states to the actual expectation can be made as small as n−100 using the
following fact since the probability of reaching those states from a good one is
inverse polynomially small).

Fact A.7.37. If Y is a random variables in {0, . . . ,poly(n)} and E is an event that
happens with high probability, then E[Y ] ≤ E[Y | E ] + n−100.

This together with Lemma A.7.35 implies the following.

Lemma A.7.38. If the algorithm is in a good state right before running Maintain-
Expander(U, ℓ), then the subroutine runs in expected E[Timeℓ(volF,cG

(U), |U |)] +
n−100 time and outputs an X of expected size at most E[Sizeℓ(volF,cG

(U), |U |)] +
n−100.

Again, we recall that by Lemma A.7.28, with high probability, the algorithm is
always in a good state when running Cut(D) even against an adaptive adversary.
Consequently, it remains to bound E[Sizeℓ(b, λ)] and E[Timeℓ(b, λ)].

An Overestimating Approach. To bound the expected value of Sizeℓ(b, λ)
and Timeℓ(b, λ), we consider a run of MaintainExpander(U, ℓ) and write down a
recurrence that upper bounds them based on Algorithm A.5. We often deliberately

33Recall that m ≤ n4 is the total capacities in the graph G.
34It can be checked that the running time of the algorithm always runs in polynomial time.
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overestimate the expectation. More specifically, while we are in a borderline state
and might reach a bad state in the recursion which makes the realization of both
Sizeℓ(b, λ) and Timeℓ(b, λ) be defined as zero, we compute their values as if we are
always in borderline states. Note that since the values of these random variables
are non-negative, doing this can only overestimate their true values. This greatly
simplifies setting up the recurrence.

Setup. Consider the execution of MaintainExpander(U, ℓ) which finds cuts
S1, . . . , Sr through either Lemma A.7.11 or Lemma A.7.10 until we exit the while-
loop by either successfully constructing/repairing the witness WU,ℓ or sampling a
k > ℓ on Line 15. Observe that the final return set X can be written as the union
of four parts X(1) ∪X(2) ∪X(3) ∪X(4), where

• X(1) are edges added on Line 13,

• X(2) are edges found by recursively calling MaintainExpander(U, k) on
Line 16 (let us call this a fixing recursion),

• X(3) are edges found by recursively calling MaintainExpander(U, ℓ− 1) on
Line 25 (let us call this a downward recursion),

• X(4) are edges found by recursively calling MaintainExpander(S,L) on
Line 26 for all the cuts S (let us call this a rebuilding recursion).

The running time of MaintainExpander(U, ℓ) can be similarly split into what
it takes to compute each of the X(i)’s. We adapt the same notation as in Sce-
nario A.7.13: We let Fi be the terminal set after finding Si and running the
F ← F ∪A, and in particular F0 is the initial set F when MaintainExpander(U, ℓ)
is called. Let U0 := U and Ui := Ui−1 \ Si and let ∆i ≤ 2cG(Fi \ Fi−1) be the units
of volume added due to Si. We first prove some basic properties regarding the
volume of each Ui and Si.

Lemma A.7.39. For ϕ ≤ 1
4βprev

, we have

(1) E[volFi,cG
(Ui) | Fi−1, Ui−1] ≤ volFi−1,cG

(Ui−1) for all i ∈ [r],

(2) E[volFi,cG
(Ui)] ≤ volF0,cG

(U0) for all i ∈ [r],

(3) E[volFr,cG
(S1) + · · ·+ volFr,cG

(Sr)] ≤ (1 + 8ϕβprev)volF0,cG
(U0), and

(4) E[cG(X(1))] ≤ ϕ · E[volF0,cG
(S1) + · · ·+ volFr−1,cG

(Sr)].

Proof. Let Di be the set D defined on Line 11 when Si is found. By Lemma A.7.11
and Claim A.7.22, we have cG(Di) ≤ ϕ ·volFi−1,cG

(Si). Let Ai be the set A obtained
by A ← Mprev.Cut(Di) after Si is found. By the guarantee of Mprev, we have
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E[cG(Ai) | Si] ≤ βprev · cG(Di) ≤ βprevϕ · volFi−1,cG
(Si). Since we are adding at

most 2cG(Ai) units of volume to Ui−1 in total, we have

E[volFi,cG (Ui) | Ui−1, Fi−1, Si] ≤ volFi−1,cG (Ui−1)−volFi−1,cG (Si)+2βprevϕ·volFi−1,cG (Si)
(A.23)

and

E[volFi,cG
(Si) | Ui−1, Fi−1] ≤ volFi−1,cG

(Si) + 2βprevϕ · volFi−1,cG
(Si). (A.24)

As 2βprevϕ ≤ 1/2, we see that in expectation volFi,cG
(Ui) is smaller than the volume

volFi−1,cG
(Ui−1). This proves (1), and (2) simply follows from (1) and the law of

total expectation.
For (3), we add a

(
1−2βprevϕ
1+2βprevϕ

)
-multiple of (A.24) to (A.23) and get

E
[(

1 − 2βprevϕ

1 + 2βprevϕ

)
volFi,cG (Si) + volFi,cG (Ui) − volFi−1,cG (Ui−1)

∣∣∣ Ui−1, Fi−1, Si

]
≤ 0

which implies

E

∑
i∈[r]

volFi,cG
(Si)

 ≤ 1 + 2βprevϕ

1− 2βprevϕ
· volF0,cG

(U0) ≤ (1 + 8βϕ)volF0,cG
(U0)

for 2βprevϕ ≤ 1
2 . The bound on E[volFr,cG

(S1)+ · · ·+volFr,cG
(Sr)] then follows from

the observation that volFr,cG
(Si) = volFi,cG

(Si) for all i ∈ [r], since the Aj ⊆ Uj−1
which is disjoint from Si for j > i. Finally, (4) follows simply from Claim A.7.22
and the linearity of expectation.

Let us use uppercase letters (e.g., B,Λ) to denote random variables and lowercase
letters (e.g., b, λ) to denote their realizations. We first derive a recurrence of
Sizeℓ(b, λ) and Timeℓ(b, λ) for the topmost layer ℓ = L.

Lemma A.7.40. For ϕ < O
(

ψ3
0

βprev log3 n

)
sufficiently small, we have

E[SizeL(b, λ)] ≤ 3ϕb+ max
D1

E
B′∼D1

[E[SizeL−1(B′, λ) | B′]]

+ max
r∈{0,...,n}

max
D2,r

max
λ1,...,λr

E
(B1,...,Br)∼D2,r

∑
i∈[r]

E[SizeL(Bi, λi) | Bi]


(A.25)
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and

E[TimeL(b, λ)] ≤ Õ
(

1
ψ2

0

)
·
(
Õ

(
λ2

ϕϕ′

)
+ Tprev(λ)

)
+ max
D1

E
B′∼D1

[E[TimeL−1(B′, λ) | B′]]

+ max
r∈{0,...,n}

max
D2,r

max
λ1,...,λr

E
(B1,...,Br)∼D2,r

∑
i∈[r]

E[TimeL(Bi, λi) | Bi]

 ,
(A.26)

where D1 iterates over all distributions on {0, . . . ,m} with EB′∈D1 [B′] ≤ b, D2,r
iterates over all distributions on {0, . . . ,m}r such that EB1,...,Br∼D2,r

[Bi] ≤ 3
4b and

EB1,...,Br∼D2,r
[B1 + · · ·+Br] ≤ (1 + 8ϕβprev)B, and λ1, . . . , λr iterate over all such

sequences with λ1 + · · ·+ λr < λ.

To avoid the cumbersome expressions as in Lemma A.7.41, in the remainder
of the section we will slightly overload the notation and simply write, e.g., EB′

without the preceding maxD1 , and later in the description of lemma specifies the
properties that D1 has to satisfy. This means that we in fact consider all qualifying
distributions and pick the one that maximizes the expression. As a concrete example,
we will rewrite Lemma A.7.40 in the following form.

Lemma A.7.41 (Lemma A.7.40 restated). For ϕ < O
(

ψ3
0

βprev log3 n

)
sufficiently

small, we have

E[SizeL(b, λ)] ≤ 3ϕb+ E
B′

[E[SizeL−1(B′, λ) | B′]]

+ max
r,λ1,...,λr

E
B1,...,Br

∑
i∈[r]

E[SizeL(Bi, λi) | Bi]

 (A.27)

and

E[TimeL(b, λ)] ≤ Õ
(

1
ψ3

0

)
·
(
Õ

(
λ2

ϕϕ2
prev

)
+ Tprev(λ)

)
+ E
B′

[E[TimeL−1(B′, λ) | B′]]

+ max
r,λ1,...,λr

E
B1,...,Br

∑
i∈[r]

E[TimeL(Bi, λi) | Bi]

 ,
(A.28)

where B′ is a random variable satisfying E[B′] ≤ b, B1, . . . , Br are random variables
satisfying E[Bi] ≤ 3

4b and E[B1 + · · ·+Br] ≤ (1 + 8ϕβprev)b, and λ1, . . . , λr iterate
over all such sequences with λ1 + · · ·+ λr < λ.
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Proof. We first bound SizeL(b, λ), and by the linearity of expectation it suffices to
bound each of the X(1), X(2), X(3), and X(4).

• By Lemma A.7.39, X(1) has expected total capacities at most 3ϕb.

• The edge set X(2) is empty for MaintainExpander(U,L) as the k sampled
on Line 15 is never greater than L.

• The expected total capacities of X(3) is EB′ [E[SizeL−1(B′, λ) | B′]] where B′
a random variable indicating the volume of the set U when calling Maintain-
Expander(U,L− 1) on Line 25. By Lemma A.7.39, we have E[B′] ≤ B (the
volume might, with low probability, increase since the set of terminals ‘F ’
increase).

• Finally, for X(4), its total capacities is equal to
∑
i∈[r] E[Size(bi, λi, L)], where

bi is the volume of the cut Si and λi is the number of vertices in Si. By
Lemma A.7.39, if we let Bi be the random variables for bi, then we have
EB1,...,Br [B1 + · · · + Br] ≤ (1 + 8ϕβ)B. Moreover, as the Si’s are vertex-
disjoint and are proper cuts, we have λ1 + · · ·+ λr < λ. It remains to prove
the expected marginal of each Bi. By (A.24) and that 2βϕ ≤ 1

2 , we know that
using the volume upper-bound of Lemma A.7.11

E[volFi,cG
(Si) | Ui−1, Fi−1] ≤ 3

2volFi−1,cG
(Si) ≤

3
4volFi−1,cG

(Ui−1).

By the law of total expectation and Lemma A.7.39 this implies E[volFi,cG
(Si)] ≤

3
4 volF0,cG

(U0) or equivalently E[Bi] ≤ 3
4B.

This proves (A.27). We likewise bound each of the four parts of TimeL(b, λ) and
then apply the linearity of expectation to derive (A.28). Note that among them
it suffices to bound the time spent to compute X(1) as the other parts follow the
same recurrences as their counterparts in (A.27). For this we bound the number
of iterations the while-loop in MaintainExpander(U,L) takes and then use the
fact that the time spent in each iteration is dominated by calling CutOrEmbed()
(which by Lemma A.7.11 takes O( λ2

ϕϕ′ ) time) and runningMprev.Cut(D) (which by
Claim A.7.33 takes Tprev(λ) time).35 By Lemma A.7.11, we have volFi−1,cG

(Si) ≥
1

4tCMG
· ψL

10 τU where τU = ψ2
0

64zvolFi−1,cG
(Ui−1) according to Line 7 in Algorithm A.5.

This shows that volFi−1,cG
(Si) ≥ Ω

(
ψ3

0
log3 n

)
volFi−1,cG

(Ui−1), which by (A.23) gives

E[volFi,cG
(Ui) | Ui−1, Fi−1] ≤

(
1− Ω

(
ψ3

0

log3 n

))
volFi−1,cG

(Ui−1)

35Indeed, since a witness on U has at most |U |2 edges, the time it takes to update the witnesses
in UpdateWitness() can be easily charged to the time spent in constructing/repairing them.
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since ϕ < O
(

ψ3
0

βprev log3 n

)
is sufficiently small. By the law of total expectation, this

shows that

E[volFt,cG
(Ut)] ≤

(
1− Ω

(
ψ3

0

log3 n

))t
· b

and in particular E[volFt,|BcG
(Ut)] ≤ 1/λ for some t = Θ̃

(
1
ψ3

0

)
. By Markov’s

inequality, this means that Pr[volFt,cG
(Ut) > 0] ≤ 1/λ (note that volFt,cG

(Ut) is a
nonnegative integer). As the number of iterations is always bounded by λ because
each cut removes at least one vertex from U , the expected number of iterations is
Θ̃
(

1
ψ3

0

)
+ 1

λ · λ ≤ Θ̃
(

1
ψ3

0

)
. The expected time spent in computing X(1) is thus, by

the linearity of expectation, bounded by Õ
(

1
ψ3

0

)
·
(
Õ
(

λ2

ϕϕprev2 + Tprev(λ)
))

. This
proves (A.28).

We can similarly write a recurrence for Sizeℓ(b, λ) and Timeℓ(b, λ) for ℓ < L.
Recall from the beginning of this subsection that the recurrence we establish will
deliberately overestimate some quantities. In other words, in case that we recurse
to a bad state of the algorithm, we are still going to write the recurrence as if we
are in a borderline state.

Lemma A.7.42. For ϕ < O
(

ψ3
0

βprev log3 n

)
sufficiently small and ℓ < L, we have

E[Sizeℓ(b, λ)]

≤ O
(
ϕ

ψ2
0

)
b(ℓ+1)/L

+ Õ

(
1
ψ4

0

)
· E

∆

[
L∑

k=ℓ+1
min

{
1, ∆
bk/L

}
· E[Sizek(b+ ∆, λ− 1) | ∆]

]

+ E
B′

[E[Sizeℓ−1(B′, λ) | B′]] + max
r,λ1,...,λr

E
B1,...,Br

∑
i∈[r]

E[SizeL(Bi, λi) | Bi]


(A.29)
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and

E[Timeℓ(b, λ)]

≤ Õ
(

1
ψ5

0

)
·m1/L ·

(
Õ

(
λ2

ϕϕ2
prevψ

4
0

)
+ Tprev(λ)

)

+ Õ

(
1
ψ3

0

)
· E

∆

[
L∑

k=ℓ+1
min

{
1, ∆
bk/L

}
· E[Timek(b+ ∆, λ− 1) | ∆]

]

+ E
B′

[E[Timeℓ−1(B′, λ) | B′]] + max
r,λ1,...,λr

E
B1,...,Br

∑
i∈[r]

E[TimeL(Bi, λi) | Bi]

 ,
(A.30)

where ∆ is a random variable with E[∆] ≤ O
(
ϕβprev
ψ2

0

)
b(ℓ+1)/L, B′ is a random

variable with E[B′] ≤ b, B1, . . . , Br satisfy E[B1 + · · ·+Br] ≤ O
(

1
log3L n

)
b(ℓ+1)/L,

and λ1, . . . , λr satisfy
∑
i∈[r] λi < λ.

Proof. Recall that ∆i is the units of volume added after the i-th Si is found in the
while-loop of MaintainExpander(U, ℓ). Conditioned on the total number r of
the cuts found and the values of ∆1, . . . ,∆r, let ∆ := ∆1 + · · · + ∆r. If we call
MaintainExpander(U, k) for some k > ℓ on Line 16, then we can upper-bound
the current volume of U by b+ ∆. Therefore, the expected total capacities of X(2)

is bounded by
L∑

k=ℓ+1
min

{
1, ∆r

ψ2
0τ
ℓ/L
U

· crb lnn
}
· E[Sizek(b+ ∆, λ− 1) | ∆]

≤
L∑

k=ℓ+1
min

{
1, ∆
ψ2

0τ
ℓ/L
U

· crb lnn
}
· E[Sizek(b+ ∆, λ− 1) | ∆]

(A.31)

since the new U contains at most λ − 1 vertices after removing at least one cut
from it. By Definition A.7.36, the algorithm is in a borderline state when it enters
the current MaintainExpander(U, ℓ) which by Definition A.7.34 means that
ψ2

0
128z b ≤ τU ≤

ψ2
0

32z b. Therefore, (A.31) is further upper-bounded by (if we move the
ψ0-term in the denominator out to the beginning)

Õ

(
1
ψ4

0

)
·

L∑
k=ℓ+1

min
{

1, ∆
bk/L

}
· E[Sizek(b+ ∆, λ− 1) | ∆]. (A.32)

As the bounds on cG(X(3)) and cG(X(4)) are the same as in Lemma A.7.41, it
remains to (i) bound cG(X(1)) which by lcreflemma:expected-bounds is at most
ϕ · E[volF0,cG

(S1) + · · ·+ volFr−1,cG
(Sr)] in expectation and (ii) use the bound to

prove the expected value of ∆.
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By Definition A.7.34, we know that ∥rU,ℓ+1∥1 ≤ 10
ψℓ+1

τ
(ℓ+1)/L
U holds in the

beginning of this current run of MaintainExpander(U, ℓ). Observe that what
happened before we recurse on some MaintainExpander(X, k) is modeled by
Scenario A.7.13 with δext = 0. Similar to the proof of Lemma A.7.28, conditioned
on there being r cuts (i.e., none of the first r − 1 cuts sampled a k larger than ℓ on
Line 15), the probability that ∆1 + · · ·+ ∆r−1 > τ

(ℓ+1)/L
U is bounded by

∏
i∈[r−1]

(
1 − min

{
1, ∆i

ψ2
0τ

(ℓ+1)/L
U

· crb lnn
})

≤ exp

−
∑

i∈[r−1]

∆i · crb lnn
ψ2

0τ
(ℓ+1)/L
U

 ≤ n−crb .

In particular, with high probability, we can apply Lemma A.7.20 on WU,ℓ+1 at the
moment right after finding Sr but before we added the ∆r units of volume. In other
words, we pretend that the last cut Sr adds zero units of volume to U . Formally
speaking, letting ∆̃i = ∆i for i < r and ∆̃r = 0, we can verify that Condition A.7.18
holds with R = 10

ψℓ+1
τ

(ℓ+1)/L
U ≤ 10ψ0

32z volF0,cG
(U0) ≤ ψℓ+1

64 volF0,cG
(U0) and ∆̃ :=

∆̃1 + · · ·+ ∆̃r = ∆1 + · · ·+ ∆r−1 ≤ τ (ℓ+1)/L
U ≤ ψ2

0
32zvolF0,cG

(U0) ≤ ψℓ+1
64 volF0,cG

(U0).
Thus, Lemma A.7.20 shows that volFr−1,cG

(S1)+· · ·+volFr−1,cG
(Sr) ≤ 80

ψ2
ℓ+1

τ
(ℓ+1)/L
U .

As a result, conditioned on r and ∆1 + · · · + ∆r−1 ≤ τ
(ℓ+1)/L
U , the size of X(1)

is bounded by ϕ · O
(

1
ψ2

0

)
· τ (ℓ+1)/L
U ≤ ϕ · O

(
1
ψ2

0

)
· b(ℓ+1)/L in expectation. As

cG(X(1)) ≤ m always hold, this implies via the following Fact A.7.37 that after
removing the conditioning of ∆1 + · · · + ∆r−1 we still have E[cG(X(1)) | r] ≤ ϕ ·
O
(

1
ψ2

0

)
·b(ℓ+1)/L+n−100. By the law of total expectation, this implies unconditionally

E[cG(X(1))] ≤ ϕ ·O
(

1
ψ2

0

)
· b(ℓ+1)/L + n−100.

Moreover, notice that by (A.24) we have E[volFi,cG
(Si)] ≤ 3

2 volFi−1,cG
(Si) and

since volFr,cG
(Si) = volFi,cG

(Si) ≤ 3
2 volFi−1,cG

(Si) we further have

E[volFr,cG
(S1) + · · ·+ volFr,cG

(Sr)] ≤
120
ψ2
ℓ+1

τ
(ℓ+1)/L
U

≤ 120(ψ0b)(ℓ+1)/L

ψ2
ℓ+1

≤ 120b(ℓ+1)/L · ψ
1/L
0
ψ2
ℓ+1
≤ O

(
1

log3L n

)
b(ℓ+1)/L

by (A.20). This proves the bound on E[B1 + · · ·+Br].
It remains to bound the expected value of ∆ to finish our bound on cG(X(2))

via the expression (A.32) that we developed. For this we use the guarantee
of Mprev and that we add at most two units of volume per edge returned by
Mprev.Cut(D) which implies E[∆] ≤ 2βprev E[cG(X(1))] ≤ O

(
ϕβprev
ψ2

0

)
b(ℓ+1)/L +

n−99 ≤ O
(
ϕβprev
ψ2

0

)
b(ℓ+1)/L. This proves (A.29).



A.7. BUILDING AN EXPANDER HIERARCHY 165

For the recurrence (A.30) of Timeℓ(b, λ), similar to Lemma A.7.41, it suffices
to bound the number of iterations in the while-loop in MaintainExpander(U, ℓ).
Again, conditioned on ∆1 + · · · + ∆r−1 ≤ τ

(ℓ+1)/L
U , we have volF0,cG

(S1) + · · · +
volFr−1,cG

(Sr−1) ≤ 8
ψ2

ℓ+1
τ

(ℓ+1)/L
U . Yet, Claim A.7.22 suggests that volFi−1,cG

(Si) ≥
ψ2

ℓ+1ψℓ

640z τ
ℓ/L
U holds for each i ∈ [r]. Therefore, the number of iterations r can

be bounded by Õ
(

1
ψ5

0

)
· m1/L, where each iteration by Lemma A.7.10 takes

Õ
(

λ2

ϕϕ2
prevψ

4
0

)
+ Tprev(λ) time. This proves (A.30).

Solving the Recurrences

Having established Lemmas A.7.41 and A.7.42, we can now solve the recurrences.
In all of the recurrences, the only part not solvable by a simple induction is
when we recurse on MaintainExpander(S,L) (e.g., the maxr,λ1,...,λr EB1,...,Br[∑

i∈[r] E[SizeL(Bi, λi)]
]

term in (A.27)) since the expected total volume of the
cuts can grow larger than what we start with. We abstract this tricky part of the
recurrence and handle it by proving the following lemma which exploits the fact
that E[Bi] ≤ 3

4b.

Lemma A.7.43. For random functions f, g : {0, . . . ,poly(n)}2 → {0, . . . ,poly(n)}
with f(0, ·) = f(·, 0) = g(0, ·) = g(·, 0) = 0 that admit a recurrence relationship of
the form

E[f(b, λ)] ≤ E[g(b, λ)] + max
r,λ1,...,λr

E
B1,...,Br

∑
i∈[r]

E[f(Bi, λi) | Bi]

 (A.33)

where B1, . . . , Br are random variables satisfying E[Bi] ≤ 3
4b, E[B1 + · · ·+Br] ≤ (1+

γ)b for some γ < O
(

1
logn

)
sufficiently small and λ1, . . . , λr satisfy λ1 + · · ·+λr < λ,

we have

E[f(b, λ)] ≤ E[g(b, λ)] + max
p,̃λ1,...,̃λp

E
B̃1,...,B̃p

∑
i∈[p]

E[g(B̃i, λ̃i) | B̃i]

+ n−100, (A.34)

where B̃1, . . . , B̃p are random variables satisfying E[B̃1 + · · ·+ B̃p] ≤ O(logn)b and
λ̃1, . . . , λ̃p satisfy λ̃1 + · · ·+ λ̃p ≤ O(logn)λ and λ̃i < λ.36

36In principle we could put the E[g(b, λ)] part into the max expression by setting B̃0 = b

deterministically and λ̃0 = λ. The reason why there is a standalone term is to ensure that we can
later apply induction on λ for the terms in the max expression. In some future cases this may not
be required (e.g., when we already have a parameter decrease that facilitates induction), we may
for simplicity move the standalone term into the max expression.
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Proof. Let us expand the recurrence of (A.33) and consider its recursion tree. We
mark each node v in the tree with the values of b and λ, denoted by bv and λv, that
it corresponds to. Note that bv is not deterministic; rather it is a realization of a
random variable that we denote by Bv. Observe that it suffices to consider the part
of the tree that corresponds to recursion from f to f and then in the end sum over
the g(bv, λv) value for all nodes in the tree. Furthermore, we can ignore all nodes
with either bv = 0 or λv = 0 as both functions evaluate to zero on them.

By E[Bi] ≤ 3
4b and the law of total expectation, we know that for some d =

Θ(logn) all the depth-d nodes have E[Bv] ≤ (3/4)d · b ≤ n−c where c > 0 is an
arbitrarily large but fixed constant. As the sum of the λv’s decreases by at least one
in each level, the number of nodes in the whole tree is bounded by λ2 ≤ poly(n)
(there are at most λ levels, each consisting of at most λ nodes). Therefore, by
Markov’s inequality and a union bound, with high probability all depth-d nodes
have bv = 0, and we can safely ignore them and truncate the tree to have depth
d− 1. On the other hand, by E[B1 + · · ·+Br] ≤ (1 + γ)b and again the law of total
expectation, the expected value of the sum of Bv’s of all depth-t nodes are bounded
by (1 + γ)tb. For γ < O

(
1

logn

)
sufficiently small and t < d, the quantity (1 + γ)tb

is bounded by 2b. Therefore, the expected value of the sum of Bv’s in the whole
recursion tree is bounded in expectation by O(logn)b. Similarly, the sum of λv’s is
bounded by O(logn)λ. This shows that conditioned on the event that the tree has
depth at most d = O(logn) (which happens with high probability) we have

E[f(b, λ) | tree has depth d = O(logn)]

≤ E[g(b, λ)] + max
p,̃λ1,...,̃λp

E
B̃1,...,B̃p

∑
i∈[p]

E[g(B̃i, λ̃i) | B̃i]

 ,
where each B̃i and λi corresponds to the Bv and λv for some non-root v in the
tree. The lemma now follows by Fact A.7.37 since both f and g are polynomially
bounded.

We can now simplify Lemma A.7.41 via Lemma A.7.43. Indeed, the value
of γ := 8ϕβprev as in Lemma A.7.41 is sufficiently smaller than O

(
1

logn

)
when

ϕ < O
(

ψ3
0

βprev log3 n

)
.

Corollary A.7.44. For ϕ < O
(

ψ3
0

β log3 n

)
sufficiently small, we have

E[SizeL(b, λ)]
≤ 3ϕ · b+ E

B′
[E[SizeL−1(B′, λ) | B′]]

+ max
p,̃λ1,...,̃λp

E
B̃1,...,B̃p

∑
i∈[p]

E

[
3ϕ · B̃i + E

B′
i

[
E[SizeL−1(B′i, λ̃i) | B′i] | B̃i

]]+ n−100

(A.35)
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and

E[TimeL(b, λ)] ≤ Õ
(

1
ψ3

0

)
·
(
Õ

(
λ

ϕϕ2
prev

)
+ Tprev(λ)

)
+ max
p,̃λ1,...,̃λp

E
B̃1,...,B̃p

[∑
i∈[p]

E

[
Õ

(
1
ψ3

0

)
·

(
Õ

(
λ̃2
i

ϕϕ′

)
+ Tprev(λ̃i)

)

+ E
B′

i

[
E[TimeL−1(B′i, λ̃i) | B′i] | B̃i

] ]]
,

(A.36)

where B′ is a random variable satisfying E[B′] ≤ b, B̃1, . . . , B̃p are random variables
satisfying E[B̃1 + · · ·+ B̃p] ≤ O(logn)b, B′1, . . . , B′p are random variables satisfying
E[B′i | B̃i] ≤ B̃i, and λ̃1, . . . , λ̃p satisfy λ̃1 + · · ·+ λ̃p ≤ O(logn)λ and λ̃i < λ.37

Similarly, we can expand the term in (A.29) and (A.30) that corresponds to
recursion of MaintainExpander(S,L) using Corollary A.7.44.

Corollary A.7.45. For ϕ < O
(

ψ3
0

βprev log3 n

)
sufficiently small and ℓ < L, we have

E[Sizeℓ(/b, λ)]

≤ O
(
ϕ

ψ2
0

)
b(ℓ+1)/L

+ Õ

(
1
ψ4

0

)
E
∆

[
L∑

k=ℓ+1
min

{
1, ∆
bk/L

}
· E[Sizek(b+ ∆, λ− 1) | ∆]

]
+ E
B′

[E[Sizeℓ−1(B′, λ) | B′]]

+ max
q,̃λ1,...,̃λq

E
B̃1,...,B̃q

∑
i∈[q]

E

[
3ϕ · B̃i + E

B′
i

[
E[SizeL−1(B′i, λ̃i) | B′i]

]
| B̃i

]+ n−100

(A.37)

37Note that TimeL(b, λ) is always positive, and thus the n−100 term can be absorbed into the
big-O expression in the first line. In contrast to this, SizeL(b, λ) may be zero, and thus we need to
explicitly put the n−100 term.
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and

E[Timeℓ(b, λ)] ≤ Õ

(
1
ψ5

0

)
·m1/L ·

(
Õ

(
λ2

ϕϕ2
prevψ

4
0

)
+ Tprev(λ)

)
+ Õ

(
1
ψ4

0

)
· E

∆

[
L∑

k=ℓ+1

min
{

1,
∆
bk/L

}
· E[Timek(b+ ∆, λ− 1) | ∆]

]
+ E

B′

[
E[Timeℓ−1(B′, λ) | B′]

]
+ max

q,̃λ1,...,̃λq

E
B̃1,...,B̃q∑

i∈[q]

E

[
Õ

(
1
ψ3

0

)
·
(
Õ

(
λ̃2

i

ϕϕ2
prev

)
+ Tprev(λ̃i)

)
+ E

B′
i

[
E[TimeL−1(B′

i, λ̃i) | B′
i]
]

| B̃i

] ,
(A.38)

where ∆ is a random variable with E[∆] ≤ O
(
ϕβprev
ψ2

0

)
b(ℓ+1)/L, B′ is a random

variable with E[B′] ≤ b, B̃1, . . . , B̃q are random variables satisfying E[B̃1+· · ·+B̃q] ≤
O
(

1
log2L n

)
b(ℓ+1)/L, B′1, . . . , B′q are random variables satisfying E[B′i | B̃i] ≤ B̃i,

and λ̃1, . . . , λ̃q satisfy λ̃1 + · · ·+ λ̃q ≤ O(logn)λ and λ̃i < λ.

Proof. To see inequality (A.37), consider applying Corollary A.7.44 to each of the
E[SizeL(Bi, λi) | Bi] term in (A.29). This yields

max
r,λ1,...,λr

E
B1,...,Br

[∑
i∈[r]

E[SizeL(Bi, λi) | Bi]
]

≤ E
B1,...,Br

[∑
i∈[r]

E

[
3ϕ ·Bi + E

B′
i

[
E[SizeL−1(B′

i, λi) | B′
i

]
+ max

p(i) ,̃λ
(i)
1 ,...,̃λ

(i)
p(i)

E
B̃

(i)
1 ,...,B̃

(i)
p(i) ∑

j∈[p(i)]

E

[
3ϕ · B̃(i)

j + E
B

(i)
j

′

[
SizeL−1(B(i)

j

′
, λ̃

(i)
j ) | B(i)

j

′
]

| B̃(i)
j

] ∣∣∣ Bi

]]
,

(A.39)

where B′1, . . . , B′r are random variables satisfying E[B′i | Bi] ≤ Bi, B̃
(i)
1 , . . . , B̃

(i)
p(i) are

random variables satisfying E[B̃(i)
1 + · · ·+ B̃

(i)
p(i) | Bi] ≤ O(logn)Bi, B(i)

1
′
, . . . , B

(i)
p(i)

′

are random variables satisfying E[B(i)
j

′
| B̃(i)

j ] ≤ B̃
(i)
j , and λ̃

(i)
1 , . . . , λ̃

(i)
p(i) satisfy

λ̃
(i)
1 + · · · + λ̃

(i)
p(i) ≤ O(logn)λi and λ̃

(i)
j < λi. Observe that we can combine the

outer max and expectation with the inner ones, in which case if define B̃(i)
0 to be

a random variable that always realizes to Bi and define λ̃(i)
0 to be λi, then we can
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rewrite (A.39) as

max
q,̃λ1,...,̃λq

E
B̃1,...,B̃q

∑
i∈[q]

E

[
3ϕ · B̃i + E

B′
i

[
E[SizeL−1(B′i, λ̃i) | B′i]

]
| B̃i

]
where q corresponds to r + (p(1) + 1) + · · · + (p(r) + 1), λ̃1, . . . , λ̃q correspond to
λ̃

(1)
0 , . . . , λ̃

(r)
p(r) , and B̃1, . . . , B̃q correspond to B̃(1)

0 , . . . , B̃
(r)
p(r) . The random variables

B̃1, . . . , B̃q satisfy E[B̃1+· · ·+B̃q] ≤ O(logn)E[B1+· · ·+Br] ≤ O
(

1
log2L n

)
b(ℓ+1)/L,

B′1, . . . , B
′
q satisfy E[B′i | B̃i] ≤ B̃i, and λ̃1, . . . , λ̃q satisfy λ̃1+· · ·+λ̃q ≤ O(logn)(λ1+

· · ·+ λr) ≤ O(logn)λ and λ̃i ≤ λj < λ.38 The proof of (A.38) follows analogously.

We are finally ready to prove an actual bound on E[Sizeℓ(b, λ)] and E[Timeℓ(b, λ)].

Lemma A.7.46. For ϕ < O

(
ψ

O(L2)
0

βprev·L·m1/L

)
sufficiently small, E[Sizeℓ(b, λ)] ≤

O
(

1
ψ2

0

)
· ϕ · b(ℓ+1)/L.

Proof. We show that there exists a c ≥ Θ
(

1
ψ0

)
sufficiently large for which we

have E[Sizeℓ(b, λ)] ≤ cϕ · b(ℓ+1)/L. Note that it suffices to consider the case when
b ≥ 1/ϕ ≥ O(logn)O(L) due to the condition on Line 2 in Algorithm A.5. We
proceed by an induction on λ and ℓ. The base case of λ = 0 is trivial as λ = 0
implies b = 0. Consider now λ > 0 and ℓ = L. From (A.35) and the inductive
hypothesis, we have

E[SizeL(b, λ)]

≤ 3ϕ · b+ E
B′

[cϕB′] + max
p,̃λ1,...,̃λp

E
B̃1,...,B̃p

∑
i∈[p]

E

[
3ϕB̃i + E

B′
i

[cϕB′i] | B̃i

]+ n−100

≤ 3ϕ · b+ cϕ · b+ max
p,̃λ1,...,̃λp

E
B̃1,...,B̃p

∑
i∈[p]

E
[
3ϕB̃i + cϕB̃i | B̃i

]+ n−100

≤ (3 + c)ϕ · b+ (3 + c)ϕ ·O(logn)b+ n−100,

which is at most cϕ · b1+1/L for b ≥ 1/ϕ sufficiently large. To bound E[Sizeℓ(b, λ)]
for ℓ < L, we first prove the following helper claim.

38We remark that the reason why we can put everything into the max and expectation is because
(A.29) guarantees that λj < λ, so even though in Lemma A.7.43 we need to have a standalone
term E[g(b, λ)] handling the case when there is no decrease in λ, here we can simply put λi (which
corresponds to λ̃(i)

0 ) into the max and expectation expressions.
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Claim A.7.47. Assuming the inductive hypothesis, we have

E
∆

[
L∑

k=ℓ+1
min

{
1, ∆
bk/L

}
· E[Sizek(b+ ∆, λ− 1) | ∆]

]

≤ O(cϕ logn) · L ·
(
O

(
ϕβprev

ψ2
0

)
· b(ℓ+2)/L + b(ℓ+1)/L−1/L2

)
,

for E[∆] ≤ O
(
ϕβprev
ψ2

0

)
b(ℓ+1)/L.

Proof. By the linearity of expectation we can move the summation out of the
expectation. For k < L, we can bound the summand as follows:

E
∆

[
min
{

1,
∆
bk/L

}
· E[Sizek(b+ ∆, λ− 1) | ∆]

]
≤ E

∆

[ ∆
bk/L

· E[Sizek(2b, λ− 1)] + E[Sizek(2∆, λ− 1) | ∆]
]

≤
1

bk/L
· E[Sizek(2b, λ− 1)] · E[∆] + E

∆
[E[Sizek(2∆, λ− 1) | ∆]]︸ ︷︷ ︸

(i)

≤ 4cϕ

(
1

bk/L
b(k+1)/L ·O

(
ϕβprev

ψ2
0

)
b(ℓ+1)/L +

(
O

(
ϕβprev

ψ2
0

)
b(ℓ+1)/L

)(k+1)/L
)

≤ 4cϕ ·O
(
ϕβprev

ψ2
0

)
· b(ℓ+2)/L + 4cϕ · max

{
O

(
ϕβprev

ψ2
0

)
b(ℓ+1)/L, b(ℓ+1)/L−1/L2

}
≤ 8cϕ ·O

(
ϕβprev

ψ2
0

)
· b(ℓ+2)/L + 4cϕ · b(ℓ+1)/L−1/L2

.

For k = L, we can no longer substitute the E[(2∆)(k+1)/L] in (i) by 4E[∆](k+1)/L

since f(x) = x1+ε is convex for ε > 0 and thus Jensen’s inequality does not apply
anymore. As such We further expand this term using Corollary A.7.44. This gives
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us

E
∆

[E[SizeL(2∆, λ− 1) | ∆]]

≤ E

 max
p,̃λ1,...,̃λp

E
∆̃1,...,∆̃p

∑
i∈[p]

E

[
3ϕ · ∆̃i + E

∆′
i

[
E[SizeL−1(∆′

i, λ̃i) | ∆′
i

] ∣∣∣∣∣ ∆̃i

] ∣∣∣∣∣ ∆


≤ E

 max
p,̃λ1,...,̃λp

E
∆̃1,...,∆̃p

∑
i∈[p]

E

[
3ϕ · ∆̃i + E

∆′
i

[
cϕ · ∆′

i

] ∣∣∣ ∆̃i

] ∣∣∣∣∣ ∆


≤ E

 max
p,̃λ1,...,̃λp

E
∆̃1,...,∆̃p

∑
i∈[p]

E
[
(3 + c)ϕ · ∆̃i

] ∣∣∣ ∆


≤ (3 + c)ϕ ·O(logn) ·O

(
ϕβprev

ψ2
0

)
b(ℓ+1)/L,

where E[∆̃1 + · · ·+ ∆̃r | ∆] ≤ O(logn)(2∆) ≤ O(logn)∆. Substituting this back to
the above calculation, we get

E
∆

[
min

{
1, ∆
b

}
· E[SizeL(b+ ∆, λ− 1) | ∆]

]

≤ 1
b

· E[Sizek(2b, λ− 1)] · E[∆] + (3 + c)ϕ ·O(logn) ·O
(
ϕβprev

ψ2
0

)
b(ℓ+1)/L

≤ O(cϕ logn) ·
(

1
b

· b1+1/L ·O
(
ϕβprev

ψ2
0

)
b(ℓ+1)/L +O

(
ϕβprev

ψ2
0

)
b(ℓ+1)/L

)
≤ O(cϕ logn) ·O

(
ϕβprev

ψ2
0

)
· b(ℓ+2)/L.

The claim follows by summing over at most L different values of k.

With Claim A.7.47, we can now bound E[Sizeℓ(b, λ)] for b ≥ 1/ϕ via Corol-
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lary A.7.45 as follows:

E[Sizeℓ(b, λ)]

≤ O
(
ϕ

ψ2
0

)
b(ℓ+1)/L

+ Õ

(
1
ψ4

0

)
· E

∆

[
L∑

k=ℓ+1
min

{
1, ∆
bk/L

}
· E[Sizek(b+ ∆, λ− 1) | ∆]

]

+ E
B′

[
cϕ · (B′)(ℓ/L)

]
+ max
q,̃λ1,...,̃λq

E
B̃1,...,B̃q

∑
i∈[q]

E

[
3ϕ · B̃i + E

B′
i

[cϕ ·B′i] | B̃i

]
≤ O

(
ϕ

ψ2
0

)
b(ℓ+1)/L

+ Õ

(
1
ψ4

0

)
·O(cϕ logn) · L ·

(
O

(
ϕβprev

ψ2
0

)
· b(ℓ+2)/L + b(ℓ+1)/L−1/L2

)
+ cϕ · bℓ/L + (3 + c)ϕ ·O

(
1

log2L n

)
b(ℓ+1)/L

which is at most cϕ ·b(ℓ+1)/L for c ≥ Ω
(

1
ψ2

0

)
sufficiently large, ϕ < O

(
ψ

O(L2)
0

βprev·L·m1/L

)
sufficiently small, and b ≥ 1/ϕ ≥ Ω̃

(
1
ψ3

0

)O(L2)
. This proves the lemma.

The proof of E[Timeℓ(b, λ)] follows analogously.

Lemma A.7.48. For ϕ < O

(
ψ

O(L2)
0

βprev·L·m1/L

)
sufficiently small, E[Timeℓ(b, λ)] ≤

m1/L · b1/L · Õ
(

λ2

ϕϕ2
prevψ

4
0

+ Tprev(λ)
)

.

Proof. Let G(λ) = Õ
(

λ2

ϕϕ2
prevψ

4
0

+ T (λ)
)

be an upper bound on the time Maintain-
Expander(U, ℓ) on an λ-vertex U spends in the while-loop. We proceed by an
induction on λ and ℓ and show that E[Timeℓ(b, λ)] ≤ 2ℓ ·m1/L · b1/L ·G(λ) for ℓ < L
and E[TimeL(b, λ)] ≤ 2L · O(log2 n) ·m1/L · b1/L · G(λ). Again, due to the early
return on Line 2 in Algorithm A.5, it suffices to prove the bound for b ≥ 1/ϕ and

thus we may assume b ≥ Ω̃
(

1
ψ4

0

)O(L)
is sufficiently large. The base case is easy to
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verify. For ℓ = L, by the inductive hypothesis, (A.36) can be bounded by

E[TimeL(b, λ)]

≤ Õ

(
1
ψ3

0

)
·G(λ)

+ max
p,̃λ1,...,̃λp

E
B̃1,...,B̃p

∑
i∈[p]

E

[
Õ

(
1
ψ3

0

)
·G(λ̃i) + E

B′
i

[
2L−1 ·m1/L · (B′

i)1/L ·G(λ̃i)
] ∣∣∣B̃i

]
≤ Õ

(
1
ψ3

0

)
·G(λ) + Õ

(
1
ψ3

0

)
·O(logn)G(λ) + 2L−1 ·m1/L ·O(logn)b1/L ·O(logn)G(λ)

≤ 2L−1 ·O(log2 n) ·m1/L · b1/L ·G(λ)

since m1/L ≫ Õ
(

1
ψ3

0

)
. For ℓ < L, we prove a helper claim similar to Claim A.7.47.

Claim A.7.49. We have

E
∆

[
L∑

k=ℓ+1
min

{
1, ∆
bk/L

}
· E [Timek(b+ ∆, λ− 1) | ∆]

]

≤ 2L ·O(log2 n) ·O
(
ϕβprev

ψ2
0

)1/L
· L ·m1/L · b1/L ·G(λ)

for E[∆] ≤ O
(
ϕβprev
ψ2

0

)
b(ℓ+1)/L.

Proof. We first move the summation out of the expectation and bound each summand
as follows:

E
∆

[
min
{

1,
∆
bk/L

}
· E [Timek(b+ ∆, λ) | ∆]

]
≤ E

∆

[ ∆
bk/L

· E [Timek(2b, λ)] + E [Timek(2∆, λ) | ∆]
]

≤ 2L ·O(log2 n) ·m1/L ·
(
E[∆]
bk/L

· b1/L + E
∆

[∆1/L]
)

·G(λ)

≤ 2L ·O(log2 n) ·m1/L ·

(
O

(
ϕβprev

ψ2
0

)
b(ℓ+1−k)/L · b1/L +O

(
ϕβprev

ψ2
0

)1/L

· b(ℓ+1)/L2

)
·G(λ)

≤ 2L ·O(log2 n) ·O
(
ϕβprev

ψ2
0

)1/L

·m1/L · b1/L ·G(λ).

The claim follows by summing over at most L values of k.
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We can now expand (A.38) using Claim A.7.49 and get

E[Timeℓ(b, λ)]

≤ Õ

(
1
ψ5

0

)
·m1/L ·G(λ) + Õ

(
1
ψ4

0

)
· 2L ·O(log2 n) ·O

(
ϕβprev

ψ2
0

)1/L

· Lm1/Lb1/L ·G(λ)

+ E
B′

[
2ℓ−1 ·m1/L · (B′)1/L ·G(λ)

]
+ max

q,̃λ1,...,̃λq

E
B̃1,...,B̃q

∑
i∈[q]

E

[
Õ

(
1
ψ3

0

)
·G(λ̃i) + E

B′
i

[
2L ·m1/L · (B′

i)
1/L ·G(λ̃i)

]
| B̃i

]
︸ ︷︷ ︸

(i)

,

where we can bound the last term (i) by

Õ

(
1
ψ3

0

)
·G(λ) + 2L ·m1/L · max

q,̃λ1,...,̃λq

E
B̃1,...,B̃q

∑
i∈[q]

E[B̃i](1/L) ·G(λ̃i)


≤ Õ

(
1
ψ3

0

)
·G(λ) + 2L ·m1/L ·O(logn) ·G(λ) ·O

(
1

log2L n

)
b1/L

≤ Õ
(

1
ψ3

0

)
·G(λ) + m1/L

Ω(logn) ·G(λ) · b1/L.

Substituting this back into the above calculation, we can see that E[Timeℓ(b, λ)] is

at most 2ℓ ·m1/L ·G(λ) for ϕ < O

(
ψ

O(L2)
0

βprev·L·m1/L

)
sufficiently small and b ≥ 1/ϕ ≥

Ω̃
(

1
ψ5

0

)L
. Observe that 1

ψ0
≫ 2L by (A.20). This proves the lemma.

To this end, we can establish the expected guarantee ofM.Init() andM.Cut(D)
implemented in Algorithm A.4. Recall in Definition A.7.3 that UD is the union of
U ’s that intersect with the input cut D.

Lemma A.7.50. For 1
n < ϕ < O

(
ψ

O(L2)
0

βprev·L·m1/L

)
sufficiently small, the subroutine

Init(G) runs in expected m2/L · Õ
(

n2

ϕϕ2
prevψ

4
0

+ Tprev(n)
)

and outputs a set X of

expected size ϕ ·O
(

1
ψ2

0

)
·mO(1/L) · αprev ·m.

Proof. We initialize F as the output of Mprev.Init(G) which by its guarantee
satisfies E[cG(F )] ≤ αprev ·m. Therefore, the initial volume of V on which we run
MaintainExpander(V,L) is at most 2αprev ·m in expectation. Observe that the
algorithm is always in a good state in the beginning, and thus by Lemma A.7.38
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the expected output size of Init(G) is at most

E
F

[E[SizeL(2cG(F ), n)] | F ] ≤ E
F

[
O

(
1
ψ2

0

)
· ϕ · (2cG(F ))1+1/L

]
≤ ϕ ·O

(
1
ψ2

0

)
·m1/L · αprev ·m

by Lemma A.7.46 and it runs in expected

E
F

[E[TimeL(2cG(F ), n)] | F )] ≤ E
F

[
m2/L · Õ

(
n2

ϕϕ2
prevψ

4
0

+ Tprev(n)
)]

≤ m2/L · Õ
(

n2

ϕϕ2
prevψ

4
0

+ Tprev(n)
)

time by Lemma A.7.48. Note that PostProcess(V ) runs in O(n2) time using
[Tar72] and is therefore negligible.

Lemma A.7.51. For 1
n < ϕ < O

(
ψ

O(L2)
0

βprev·L·m1/L

)
sufficiently small, the subroutine

Cut(D) in expected m2/L · Õ
(
|UD|2

ϕϕ2
prevψ

4
0

+ Tprev(|UD|)
)

outputs a set X of expected

total capacities E[cG(X)] ≤ O
(

1
ψ5

0

)
·mO(1/L) · |D|.

Proof. Recall the implementation of Cut(D) in Algorithm A.4, where we visit each
U ∈ U that intersects with D and remove the corresponding cut from U . Observe
that the running time and output size can be computed for each U individually
by the linearity of expectation. Fix a U ∈ U . Note that U contributes to X and
the running time in two ways: one is when running MaintainExpander(U, k) on
Line 13, and the other is when running MaintainExpander(S,L) with S = SU on
Line 15. We bound these two terms separately. Recall that DU := D ∩G[U ] is the
set of edges that are removed from G[U ]. Let ∆U be two times the total capacities
of the edge set A output by Mprev.Cut(D ∩G[U ]) which upper bounds the units
of volume added to both U \ SU and SU . By the guarantee of Mprev, the expected
value of ∆U is upper-bounded by 2βprevcG(DU ). Note that the k we sampled on
Line 13 is from the distribution RcG(DU )/ϕ+∆U

. Let bU be the initial volume of U
and λU be the number of vertices in U .

Line 13. Note that when we call MaintainExpander(U, k) on Line 13, the
volume of U is upper-bounded by bU + ∆U . By Lemma A.7.46, conditioned on the
event K, we have τU ≥ Ω(ψ2

0bU ) and thus we can bound the expected output size of
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this call by

E
∆U

[
L∑

k=0

min
{

1, cG(DU )/ϕ+ ∆U

ψ2
0 · τk/L

U

}
· E[Sizek(bU + ∆U , λU ) | ∆U ]

]

≤ O

(
1
ψ4

0

)
· E

∆U

[
L∑

k=0

min
{

1, cG(DU )/ϕ+ ∆U

b
k/L
U

}
· E[Sizek(bU + ∆U , λU ) | ∆U ]

]
.

Moving the expectation into the summation, we can bound each summand by

E
∆U

[
min

{
1, cG(DU )/ϕ+ ∆U

b
k/L
U

}
· E[Sizek(bU + ∆U , λU ) | ∆U ]

]

≤ E
∆U

[
cG(DU )/ϕ+ ∆U

b
k/L
U

· E[Sizek(2bU , λU )] + E[Sizek(2∆U , λU ) | ∆U ]
]

≤ O

(
1
ψ2

0

)
· ϕ · E

∆U

[
cG(DU )/ϕ+ ∆U

b
k/L
U

· b(k+1)/L
U

]
+ E

∆U

[
∆(k+1)/L

U

]
︸ ︷︷ ︸

(i)

≤ O

(
1
ψ2

0

)
· ϕ ·

(
m1/L · (cG(DU )/ϕ+ 2βprevcG(DU )) + βprev · cG(DU )(k+1)/L

)
≤ O

(
1
ψ2

0

)
·m1/L · cG(DU )

when k < L. For k = L, as in Claim A.7.47 we likewise expand (i) using Corol-
lary A.7.44 and get
E

∆U

[E[SizeL(2∆U , λU ) | ∆U ]]

≤ E

 max
p,̃λ1,...,̃λp

E
∆̃1,...,∆̃p

∑
i∈[p]

E

[
3ϕ · ∆̃i + E

∆′
i

[
E[SizeL−1(∆′

i, λ̃i) | ∆′
i]
]

| ∆̃i

]+ n−100

∣∣∣∣∆U


≤ ϕ ·O(logn) · E[∆U ] +O(logn) ·O

(
1
ψ2

0

)
· ϕ · E[∆U ] ≤ ϕ ·O

(
logn
ψ2

0

)
· βprevcG(DU ).

Plugging this back into the above calculation we can conclude that

E
∆U

[
cG(DU )/ϕ+ ∆U

bU
· E[SizeL(2bU , λU )] + E[SizeL(2∆U , λU ) | ∆U ]

]

≤ O
(

1
ψ2

0

)
· ϕ · E

∆U

[
cG(DU )/ϕ+ ∆U

bU
·B1+1/L

U

]
+O

(
ϕ logn
ψ2

0

)
· (βcG(DU ))

≤ O
(

1
ψ2

0

)
·m1/L · cG(DU ).

Summing over O(L) values of k, we get that conditioned on the event K, the expected
contribution to X of Line 13 is bounded by O

(
L
ψ6

0

)
·m1/L ·cG(DU ). By Fact A.7.37
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this is asymptotically the same as the unconditional expectation. The expected
running time is easily bounded using Lemma A.7.48 by m2/L ·Õ

(
λ2

U

ϕϕ2
prevψ

4
0

+ T (λU )
)

.

Line 15. For the contribution of Line 15, note that since F is ϕψ2
0

2 -expanding in
(G[U ], cG) by Lemma A.7.32 before the this run of M.Cut(D), the volume of SU
before adding those ∆U units is at most 2cG(DU )

ϕψ2
0

. As such, the expected output size
of the MaintainExpander(SU , L) call on Line 15 is at most

E
∆U

[
SizeL

(
2cG(DU )
ϕψ2

0
+ ∆U , λU

)∣∣∣∆U

]

≤ E
∆U

[
SizeL

(
4cG(DU )
ϕψ2

0
, λU , L

)
+ SizeL (2∆U , λU )

∣∣∣∆U

]
≤ O

(
ϕ

ψ2
0

)((
cG(DU )
ϕψ2

0

)1+1/L
+ (βprevcG(DU ))1+1/L

)

≤ O
(

1
ψ6

0

)
·mO(1/L) · cG(DU )

since 1/ϕ ≤ n. The expected running time of this part, again, by Lemma A.7.48
is m2/L · Õ

(
λ2

U

ϕϕ2
prevψ

4
0

+ T (λU )
)

. Since the sum of cG(DU )’s among all U ∈ U is at
most cG(D) and the sum of λU ’s for which DU ̸= ∅ is |UD| (recall the definition of
UD in Definition A.7.3, the lemma follows.

This completes the discussion on expected output size and running time of the
subsection.

A.7.6 Putting Everything Together
To this end, we have developed all the technical parts needed for proving Lemma A.7.4.

Lemma A.7.4. Given a (k, αprev, βprev, ϕprev, Tprev)-hierarchy maintainer Mprev
for an n-vertex simple capacitated graph (G, c), for any L ∈ N there exists some
δL ≤ (logn)LO(L) such that for any ϕ < O

(
1

δLLβprevnO(1/L)

)
sufficiently small we

can construct a (k + 1, α, β, ϕ′, T )-hierarchy maintainer M with

α ≤ ϕ · δLnO(1/L) · αprev,

β ≤ δLnO(1/L),

ϕ′ ≥ min
{
ϕprev,

ϕ

δL

}
,

T (n) = δLn
O(1/L) · Õ

(
n2

ϕϕ2
prev

+ Tprev(n)
)
.

(A.11)
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Proof. The algorithm for the new hierarchy maintainer M is Algorithm A.4 with
the given parameters L and ϕ. By Observation A.7.29, the graph GM the algorithm
maintains is equal to what its output indicates (see Definition A.7.3). Moreover,
by Lemma A.7.32, with high probability, after every update F is ϕψ2

0
2 -expanding in

(GM, cG). By Observation A.7.30, the terminal set F that the algorithm maintains
is a superset of GM \ GMprev . Letting X := G \ GM, this implies if we set
HM := (D,X1, . . . , Xk, F \ X), where Hprev := (D,X1, . . . , Xk) is the k-level
ϕprev-expander hierarchy of (GMprev , cG), then it is easy to see that HM is an
min

{
ϕprev,

ϕψ2
0

2

}
-expander hierarchy of (GM, cG) with height k + 1. On the other

hand, if with inverse polynomially small probability F is not expanding in (GM, cG),
then we output X = F after that update and thus the HM defined above is still
a valid ϕprev-expander hierarchy of (GM, cG). This only affects the output size by
an additive n−100 factor in expectation and is thus negligible. Note that we can
maintain the HM after each update in time O(|UD|2) which is subsumed by the
running time of M.Cut(D) we established in Lemma A.7.51.

By Lemmas A.7.50 and A.7.51, the output edge set ofM.Init(G) andM.Cut(D)
has total capacities in expectation bounded by

(
ϕ ·O

(
1
ψ2

0

)
nO(1/L)

)
· αprev ·m and

O
(

1
ψ4

0

)
· mO(1/L) · cG(D). Therefore, we have α ≤

(
ϕ ·O

(
1
ψ2

0

)
nO(1/L)

)
· αprev

and β ≤ O
(

1
ψ5

0

)
· mO(1/L). The subroutines run in T (n) and T (|UD|) time, for

T (n) = nO(1/L) · 1
ψ4

0
· Õ
(

n2

ϕϕ2
prev

+ Tprev(n)
)

. Letting δL =
(

1
ψ0

)Θ(L2)
= (logn)LΘ(L)

sufficiently large, these become the bounds stated in (A.11).
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APPENDIX

A.8 Using Dynamic Trees for Capacitated Push-Relabel

In section Section A.4, we showed Algorithm A.1. The running time analysis
in Section A.4 only shows the desired running time Õ(m + n +

∑
e∈E

h
w(e) ) (of

Theorem A.4.1) when the edges are of unit capacity c(e) = 1. Here we show that
we can implement the same algorithm equally efficiently for any capacities, with the
use of dynamic trees [ST83].

In particular, we assume the following data structure (see [ST83] for details).

Lemma A.8.1 (Dynamic Trees [ST83; GT88]). There is a data structure which
maintains a collection of rooted trees T together with values ν ∈ ZE on the edges.
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The data structure supports the following operations, all in amortized O(logn) update
time.

• Link(e): if e = (u, v), add the edge to T , with v now the parent of u. Before
this update, v must not have any parent and u cannot be in the same tree as v.

• Delete(e): remove the edge e from T .

• FindMin(u): find the edge e with the minimum value ν(e) on the path from
u to the root of the tree which u is in. In case of ties, return the edge closest
to u.

• Add(u, x): set ν(e)← ν(e) + x for all edges e on the path from u to the root
of the tree containing u.

The idea is similar to how a standard push-relabel algorithm can be sped up
with dynamic trees (see [GT88]). We keep track of a set of rooted trees T , where
for each vertex u ∈ V , we pick an arbitrary admissible out-edge e = (u, v) as the
parent-edge in T . Indeed this forms a rooted tree, since the parent u has lower level
than v. The values ν which the data structures keeps track of will be the residual
capacities cf , from which the flow f can implicitly be calculated from.

Whenever an edge is marked admissible or inadmissible, we might need to
add/remove it from the tree, and perhaps replace the removed edge with another
admissible edge (this takes O(logn) time via the Link and Delete operations).
Whenever an edge is removed from T , we update the residual capacity of the
corresponding reverse edge (which might at this point be outdated; this is okay
since only one of −→e and ←−e can be admissible at the same point in time, and we
only need to maintain the residual capacity correctely for the admissible edge).

When no vertices can be relabeled, this means that each vertex except the
unsaturated sinks will have a parent in its tree, and the roots of the trees will thus
exactly be the unsaturated sinks t with absf (t) < ∇(t). When the algorithm wants
to trace a path P from s to some sink t, this path P can thus be the path from
s in its tree to the corresponding root. The value of caugment can be found using
the FindMin operation. Thereafter, the residual capacities on the path P can be
adjusted via the Add operation. We still need to find all the edges on P which now
has cf = 0, so that we can mark them as inadmissible. We do this with iteratively
calling the FindMin operation climbing the path P as long as the returned edge e
has cf = 0.

Except for marking the edges on P as inadmissible, we use O(logn) time per
augmenting path, and by Lemma A.4.7, there are only O(n+

∑
h

w(e) ) augmenting
paths in total over the run of the algorithm. Lemma A.4.7 also says that each edge
e appears as a saturated edge in at most O( h

w(e) ) augmenting paths, so the total
cost of marking edges on augmenting paths as inadmissible, over the whole run of
the algorithm, will be O(

∑
h

w(e) logn).



180 PAPER A. MAXFLOW BY AUGMENTING PATHS IN n2+o(1) TIME

Together with the analysis in Section A.4, we conclude that we can implement
Algorithm A.1 in Õ(m+n+

∑
e∈E

h
w(e) ) time, thus proving the stated running time

bound of Theorem A.4.1.

A.9 Capacity Scaling

In this section, we recall the folklore capacity scaling argument for maximum flow.
In particular we say that with an additional O(logU) overhead, we can reduce
capacities from {0, 1, 2, . . . , U} to {0, 1, 2, . . . , n2}.

Lemma A.9.1. Given an algorithm A that can solve any maximum flow in-
stance I = (G, c,∆,∇), for an n-vertex m-edge simple directed graph G, with
∥c∥∞, ∥∆∥∞, ∥∇∥∞ ≤ n2, in time TA(n,m); there is an algorithm A′ which can
solve maximum flow where ∥c∥∞, ∥∆∥∞, ∥∇∥∞ ≤ U in time O(TA(n,m) logU).

Proof. For an edge e, write c(e) in binary as c(e) =
∑k
i=0 2i · c(i)(e), similarly

for a vertex v write ∆(v) =
∑k
i=0 2i ·∆(i)(v). and ∇(v) =

∑k
i=0 2i ·∇(i)(v), for

k = O(logU). We will go from the most significant bit, and add one bit at a time
to c, ∆ and ∇. Let c(↑b) =

∑b
i=0 2i · c(k−b+i) be the capacity function, but we only

keep the b most significant bits and scale it down. Define ∆(↑b) and ∇(↑b) similarly.
If f is a maximum flow of I(↑b) = (G, c(↑b),∆(↑b),∇(↑b)), we can use f as a

starting point to compute the maximum flow after we added one extra bit, i.e.
for the instance I(↑b+1) = (G, c(↑b+1),∆(↑b+1),∇(↑b+1)). The crucial observation
is that 2f is a feasible flow for I(↑b+1), and the maximum flow f ′ in the residual
instance I(↑b+1)

2f has value at most |f ′| ≤ n2. This is since the flow instance I(↑b+1)
2f

is obtained from I(↑b)
f (which has no more augmenting paths) by (1) doubling all

the capacities, demand, and flow-values; and (2) adding up to m ≤ n2 unit-capacity
edges (and unit-source/unit-sink demand). This means that when solving I(↑b+1)

2f

(with algorithm A), we may cap all capacities above by n2, as this will not change
the maximum value of the flow. We update f ← 2f + f ′, which is now a maximum
flow of I(↑b+1), and proceed to the next bit.

A.10 Omitted Proofs

Lemma A.5.3. Given an expander hierarchy H, in O(mη) time we can compute
an H-respecting topological order τ .

Proof. Let (D,X1, . . . , Xη) = H, and recall that Xi is a separator of the graph
Gi = G \X>i. By design, the collection of strongly connected components of Gi
are a refinement of the strongly connected components of Gi+1, and G0 = (V,D) is
a DAG (see also Figure A.1).

To compute the H-respecting topological order τ , we start at the highest level η
and compute (in O(m) time) the strongly connected components {C1, C2, . . . , Cr}
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of Gη = G, together with a topological order of them [Tar72]. We reorder the Ci’s
with respect to this topological order so that for any DAG edges (u, v) ∈ D with
u ∈ Ci and v ∈ Cj we have i ≤ j.

We will assign {1, . . . , |C1|} to vertices in C1, {|C1|+1, . . . , |C1|+|C2|} to vertices
in C2 and so on, since this would guarantee that τ is contiguous for all level-η
expanders C1, . . . , Cr, and that the topological ordering τ respects all the DAG
edges between two different Ci’s.

If η = 0, we are done, since each Ci’s are singletons. Otherwise we may
simply recurse on each strongly connected component Ci, with the hierarchy Hi =
(D ∩E[Ci], X1 ∩E[Ci], . . . , Xη−1 ∩E[Ci]) of height η(Hi) = η− 1, to figure out the
internal ordering of the vertices inside Ci.

The total running time will be O(mη), since on each level from η down to 0 we
will need to find the strongly connected components of some graphs with a total of
m edges.

Lemma A.7.11. Given an n-vertex strongly connected graph G = (V,E), terminal
edge set F ⊆ E, parameters ϕ,R, and a ϕ′-expander hierarchy H of G \ F with
height O(logn), there is an algorithm CutOrEmbed(G, cG, F, ϕ,R′) that either
output

1. a set S ⊆ V such that min{cG(EG(S, S)), cG(EG(S, S))} < ϕ · volF,cG
(S) and

1
4tCMG

R ≤ volF,cG
(S) ≤ 1

2 volF,cG
(V ) or

2. a γ ∈ NV and an (R,ϕ, ψ̃)-witness (W, c, r,ΠW→G) of (G, cG, F ) where ψ̃ =
Ω
(

1
log3 n

)
with respect to γ.

The algorithm runs in time Õ
(

n2

ϕϕ′2

)
Proof. We run the cut-matching game of Theorem A.3.6 with input ν := degF,c.
Note that ν(v) is bounded by n2 due to capacity scaling. In each of the iteration
tCMG = O(log2 n) iterations, given (ν(i)

A ,ν
(i)
B ), we invoke Theorem A.6.1 on the

flow instance I = (G, cG,∆,∇) with κ := 2·cA.6.1
ϕ where ∆ := ν

(i)
A and ∇ := ν

(i)
B .

Let f∗ := 0. If the flow f from Theorem A.6.1 routes half of the demand, i.e.,
|f | ≥ 1

2∥∆∥1, then we update f∗ ← f∗ + f , ∆← exf , and ∇←∇− absf , and
re-run Theorem A.6.1 until ∥∆∥1 becomes less than R

2tCMG
(which will happen in

at most z runs of Theorem A.6.1, where recall that z := 20 logn). On the other
hand, if |f | < 1

2∥∆∥1, then exf (V ) > 1
2∥∆∥1 ≥ 1

4tCMG
R. By Theorem A.6.1,

in this case the cut S that it returns satisfies exf (S) = exf (V ) which implies
volF,cG

(S) ≥ exf (S) ≥ 1
4tCMG

R. Likewise, we have volF,cG
(S) ≥∇f (V ) ≥ ∥∇∥1 −

1
2∥∆∥1 ≥ 1

2∥∆∥1 ≥ 1
4tCMG

R. Therefore, the guarantee of Theorem A.6.1 implies
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that

cG(EG(S, S)) ≤ cA.6.1 · |f |+ min{volF,cG
(S), volF,cG

(S)}
κ

≤ 2cA.6.1 ·min{volF,cG
(S), volF,cG

(S)}
κ

.

Thus, depending on whether volF,cG
(S) ≤ volF,cG

(S) or not we can return either S
or S in Case 1.

Now, if none of the calls to Theorem A.6.1 routes less than half of the given
demand, then by adding capacitated fake edges with total capacities at most
R

2tCMG
we have found a (ν(i)

A ,ν
(i)
B )-perfect matching (Mi, ci) in which the non-fake

edges are embeddable into (G, cG) with congestion κz. By Theorem A.3.6, after
tCMG iterations, we have constructed a ψCMG-expander (W̃ , cW ) containing fake
edges whose total capacities sum to at most R/2 and in which non-fake edges are
embeddable into (G, cG) with congestion κztCMG. Let Efake ⊆ W̃ be the set of
fake edges. If we set r := degEfake,cW

and W := W̃ \ Efake, then we have ∥r∥1 ≤ R,
degF,cG

(v) ≤ degW,cW
(v) + r(v) ≤ tCMG · degF,cG

(v), and that (W, cW ) embeds
into (G, cG) with congestion kztCMG. Moreover, by the expansion guarantee of W̃ ,
we have

cW (EW (S, S)) + r(S) ≥ cW (E
W̃

(S, S)) ≥ ψCMG(volW,cW
(S) + r(S))

and

cW (EW (S, S)) + r(S) ≥ cW (E
W̃

(S, S)) ≥ ψCMG(volW,cW
(S) + r(S))

for every volW,cW
(S) + r(S) ≤ volW,cW

(S) + r(S). As such, (W, cW , r,ΠW→G) is
an (R,ϕ, ψ̃)-witness of (G, cG, F ) with respect to γ(S) := volW,cW

(S) + r(S) for
some ψ̃ = Ω

(
1

log2 n

)
. The running time of the algorithm is Õ

(
n2κ
ϕ′2

)
for κ = 2·cA.6.1

ϕ

which is Õ
(

n2

ϕϕ′2

)
. This proves the lemma.

Lemma A.7.19. Given a graph G = (V,E) and a sequence of cuts S1, . . . , Sk where
Si ⊆ Vi−1 with Vi := Vi−1 \ Si and V0 := V satisfies∑
i∈[k]

min
{

cG(EG[Vi−1](Si, Si)), cG(EG[Vi−1](Si, Si))
}
< ϕ ·

∑
i∈[k]

volF,cG
(Si) (A.18)

and ∑
i∈[k]

volF,cG
(Si) ≤ α · volF,cG

(V ),

there is a
(
min

{
α
2 , 1− α

}
volF,cG

(V )
)
-balanced

(
2ϕmin

{
1, α

1−α

})
-sparse cut in

(G, c) with respect to F .
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Proof of Lemma A.7.19. Let us call an Si out-sparse if cG
(
EG[Vi−1](Si, Si)

)
≤

cG
(
EG[Vi−1](Si, Si)

)
and in-sparse otherwise. Let Iout := {i : Si is out-sparse} and

Iin := {i : Si is in-sparse}. Let Sout :=
⋃
i∈Iout

Si and Sin :=
⋃
i∈Iin

Si. Suppose
without loss of generality that volF,cG

(Sout) ≥ volF,cG
(Sin). By Observation A.7.15

we have

EG(Sout, Sout) ⊆
⋃

i∈Iout

EG[Vi−1](Si, Si) ∪
⋃
i∈Iin

EG[Vi−1](Si, Si)

and therefore cG
(
EG(Sout, Sout)

)
< 2ϕ · volF,cG

(Sout). Since volF,cG
(Sout) ≥

α
2 volF,cG

(V ) and volF,cG
(Sout) ≥ (1− α)volF,cG

(V ), the lemma follows.

Lemma A.7.35. Conditioned on the algorithm being in a good state at the current
moment, with high probability, the algorithm will remain in borderline states until
termination.

Proof. Recall that K is the event that ∆(U,ℓ)(t1, t2) ≤ ψℓ

10 τ
ℓ/L
U and δ

(U,ℓ)
ext (t1, t2) ≤

ϕψ2
ℓ

40 τ
ℓ/L
U hold for all active tuples (U, ℓ, t1, t2) which happens with high probability

by Lemma A.7.27. Let tstart be the moment in the lemma statement when the
algorithm is in a good state. Note that the random choices that happened after
time tstart are completely independent of the condition that the algorithm is in
a good state at time tstart. Therefore, Lemma A.7.27 suggests that with high
probability ∆(U,ℓ)(t1, t2) ≤ ψℓ

10 τ
ℓ/L
U and δ

(U,ℓ)
ext (t1, t2) ≤ ϕψ2

ℓ

40 τ
ℓ/L
U hold for all active

tuples (U, ℓ, t1, t2) with t1 ≥ tstart.
Similar to Lemma A.7.28, we prove by induction on time starting from tstart.

Let t ≥ tstart be the current time. Fix a U ∈ U and ℓ ∈ {0, . . . , L} for which WU,ℓ is
not currently being rebuilt. Consider the last time t(U,ℓ)last that it was rebuilt, and let

t̃
(U,ℓ)
last := max{t(U,ℓ)last , tstart}. Let U0 and F0 be the set U and F at time t̃(U,ℓ)last . Note

that if t(U,ℓ)last ≥ tstart, then by Lemma A.7.21 the witness of U and ℓ at time t̃(U,ℓ)last
satisfies ∥rU0,ℓ∥1 ≤ ψℓ

10 τ
ℓ/L
U . On the other hand, if t(U,ℓ)last < tstart, then by the lemma

statement that the algorithm is in a good state (where recall the definition of good
in Definition A.7.34), we have ∥rU0,ℓ∥1 ≤ τ ℓ/LU (observe that WU,ℓ cannot be being
rebuilt at time tstart in this case, as that would imply by Observation A.7.24 that
either it is still currently being rebuilt or t(U,ℓ)last ≥ tstart). In either case, we have
∥rU0,ℓ∥1 ≤ τ ℓ/LU .

To likewise apply Lemma A.7.20, we note again that what happened from t̃
(U,ℓ)
last

to the current moment is modeled by Scenario A.7.13. Moreover, Condition A.7.18(i)
and (ii) hold by exactly the same arguments as in the proof of Lemma A.7.28. It
thus remains to verify Condition A.7.18(iii). Again, δℓ ≤ 1

16 is straightforward.
That R ≤ ψℓ

64 volF0(U0) is by R ≤ τ
ℓ/L
U ≤ ψ2

0
32zvolF0(U0) ≤ ψℓ

64 volF0(U0) by the
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inductive hypothesis at time t̃(U,L)
last . The bound on ∆ := ∆(U,ℓ)(t̃(U,ℓ)last , t) and δext :=

δ
(U,ℓ)
ext (t̃(U,ℓ)last , t) follow from our discussion in the beginning of this proof.

Since Condition A.7.18 holds, Lemma A.7.20 applied on WU,ℓ (with R := τ
ℓ/L
U ,

∆ := ∆(U,ℓ)(t̃(U,ℓ)last , t), and δext := δ
(U,ℓ)
ext (t̃(U,ℓ)last , t)) shows that ∥rU,ℓ∥1 ≤ 4(R+∆)

ψℓ
+

8
ψ2

ℓ
ϕ
δext ≤ 10

ψℓ
τ
ℓ/L
U .

For the bound on τU , we consider when ℓ = L. A similar argument as in the proof
of Lemma A.7.28 shows that the current volume of U is at least 64z

ψ0
τU − 10

ψ2
0
τU ≥

32z
ψ2

0
τU . Likewise, the volume increase by at most ∆(U,L)(t̃(U,L)

last , t), hence the lower

bound of τU ≥ ψ2
0

128zvolF (U).
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Abstract

The matroid intersection problem is a fundamental problem that has been
extensively studied for half a century. In the classic version of this problem,
we are given two matroids M1 = (V, I1) and M2 = (V, I2) on a comment
ground set V of n elements, and then we have to find the largest common
independent set S ∈ I1 ∩ I2 by making independence oracle queries of the
form “Is S ∈ I1?” or “Is S ∈ I2?” for S ⊆ V . The goal is to minimize the
number of queries.

Beating the existing Õ(n2) bound, known as the quadratic barrier, is an
open problem that captures the limits of techniques from two lines of work.
The first one is the classic Cunningham’s algorithm [SICOMP 1986], whose
Õ(n2)-query implementations were shown by CLS+ [FOCS 2019] and Nguy˜ên
[2019].1 The other one is the general cutting plane method of Lee, Sidford, and
Wong [FOCS 2015]. The only progress towards breaking the quadratic barrier
requires either approximation algorithms or a more powerful rank oracle query
[CLS+ FOCS 2019]. No exact algorithm with o(n2) independence queries was
known.

In this work, we break the quadratic barrier with a randomized algorithm
guaranteeing Õ(n9/5) independence queries with high probability, and a de-
terministic algorithm guaranteeing Õ(n11/6) independence queries. Our key
insight is simple and fast algorithms to solve a graph reachability problem that
arose in the standard augmenting path framework [Edmonds 1968]. Combining
this with previous exact and approximation algorithms leads to our results.

1More generally, these algorithms take Õ(nr) queries where r denotes the rank which can be
as big as n.
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B.1 Introduction

Matroid intersection. The matroid intersection problem is a fundamental com-
binatorial optimization problem that has been studied for over half a century. A
wide variety of prominent optimization problems, such as bipartite matching, find-
ing an arborescence, finding a rainbow spanning tree, and spanning tree packing,
can be modeled as matroid intersection problems [Sch03, Chapter 41]. Hence the
matroid intersection problem is a natural avenue to study all of these problems
simultaneously.

Formally, a matroid is defined by the the tuple M = (V, I) where V is a finite
set of size n, called the ground set, and I ⊆ 2V is a family of subsets of V , known as
the independent sets, that satisfy two properties: (i) I is downward closed, i.e., all
subsets of any set in I are also in I, and (ii) for any two sets A,B ∈ I with |A| < |B|,
there is an element v ∈ B \A such that A ∪ {v} ∈ I, i.e., A can be extended by an
element in B. Given two such matroids M1 = (V, I1) and M2 = (V, I2) defined
over the same ground set V , the matroid intersection problem asks to output the
largest common independent set S ∈ I1 ∩ I2. The size of such a set is called rank
and is denoted by r.

The classic version of this problem that has been studied since the 1960s assumes
independence query access to the matroids: Given a matroid M, an independence
oracle takes a set S ⊆ V as input and outputs a single boolean bit depending on
whether S ∈ I or not, i.e., it outputs 1 iff S ∈ I. The matroid intersection problem
assumes the existence of two such independence oracles, one for each matroid. The
goal is to design an efficient algorithm in order to minimize the number of such
oracle accesses, i.e., to minimize the independence query complexity of the matroid
intersection problem. This is the version of the problem that we study in this work.
Note that a more powerful query model called rank query has been recently studied
in [LSW15; CLSSW19]. We do not consider such model.

Previous work. Starting with the work of Edmonds in the 1960s, algorithms with
polynomial query complexity for matroid intersection have been studied [EDVJ68;
Edm70; AD71; Law75; Edm79; Cun86; LSW15; Ngu19; CLSSW19]. In 1986,
Cunningham [Cun86] designed an algorithm with query complexity O(nr1.5) based
on the “blocking flow” ideas similar to Hopcroft-Karp’s bipartite-matching algorithm
or Dinic’s maximum flow algorithm. This was the best query algorithm for the
matroid intersection problem for close to three decades until the recent works
of Nguyen [Ngu19] and Chakrabarty-Lee-Sidford-Singla-Wong [CLSSW19] who
independently showed that Cunningham’s algorithm can be implemented using only
Õ(nr) independence queries. In a separate line of work, Lee-Sidford-Wong [LSW15]
proposed a cutting plane algorithm using Õ(n2) independence queries. When r
is sublinear in n, the result of [CLSSW19; Ngu19] provides faster (subquadratic)
algorithm than that of [LSW15], but for linear r (i.e., r ≈ n), all of these results
are stuck at query complexity of Õ(n2). This is known as the quadratic barrier
[CLSSW19]. A natural question is whether this barrier can be broken [LSW15,
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Conjecture 13].
The only previous progress towards breaking this barrier is by [CLSSW19] and

falls under the following two categories. Either we need to assume the more powerful
rank oracle model where [CLSSW19] provides a Õ(n1.5)-time algorithm. Or, we
solve an approximate version of the matroid intersection problem, where [CLSSW19]
provides an algorithm with Õ(n1.5/ε1.5) complexity for (1−ε)-approximately solving
the matroid intersection problem in the independence oracle model. Breaking the
quadratic barrier with an exact algorithm in the independence query model remains
open.

Our results. We break the quadratic barrier with both deterministic and ran-
domized algorithms:

Theorem B.1.1 (Details in Theorems B.4.7 and B.4.8). Matroid Intersection can
be solved by

• a deterministic algorithm taking Õ(n11/6) independence queries, and
• a randomized (Las Vegas) algorithm taking Õ(n9/5) independence queries with

high probability.

By high probability, we mean probability of at least 1−1/nc for an arbitrarily large
constant c. While we only focus on the query complexity in this paper, we note that
the time complexities of our algorithms are dominated by the independence oracle
queries. That is, our deterministic and randomized algorithms have time complexity
Õ(n11/6Tind) and Õ(n9/5Tind) respectively, where Tind denotes the maximum time
taken by an oracle to answer an independence query.

Technical overview. Below we explain the key insights of our algorithms which
are fast algorithms to solve a graph problem called reachability and a simple way to
combine our algorithms with the existing exact and approximation algorithms to
break the quadratic barrier.

Reachability problem: In this problem, there is a directed bipartite graph G on n
vertices with bi-partition (S ∪ {s, t}, S̄). We want to determine whether a directed
(s, t)-path exists in G. We know the vertices of G, but not the edge set E of G. We
are allowed to ask the following two types of neighborhood queries:

1. Out-neighbor query: Given v ∈ S̄ and X ⊆ S ∪ {s, t}, does there exists an
edge from v to some vertex in X?

2. In-neighbor query: Given v ∈ S̄ and X ⊆ S ∪ {s, t}, does there exists an edge
from some vertex in X to v?

In other words, we can ask an oracle if a “right vertex” v ∈ S̄ has an edge to or
from a set X of “left vertices”. This problem arose as a subroutine of previous matroid
intersection algorithms that are based on finding augmenting paths [AD71; Law75;
Cun86; CLSSW19; Ngu19]. Naively, we can solve this problem with quadratic
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(O(n2)) queries: find all edges of G by making a query for all possible O(n2) pairs
of vertices. Cunningham [Cun86] used this algorithm in his framework to solve the
matroid intersection problem with O(nr1.5) queries. Recent results by [CLSSW19;
Ngu19] solved the reachability problem with Õ(nd) queries, where d is the distance
between s and t in G, essentially by simulating the breadth-first search process.
Plugging these algorithms into Cunningham’s framework leads to algorithms for
the matroid intersection with Õ(nr) queries. When d is large, the algorithms of
[CLSSW19; Ngu19] still need Θ̃(n2) queries to solve the reachability problem. It is
not clear how to solve this problem with a subquadratic number of queries. The key
component of our algorithms is subquadratic-query algorithms for the reachability
problem:

Theorem B.1.2 (Details in Theorems B.3.1 and B.3.2). The reachability problem
can be solved by

• a deterministic algorithm that takes Õ(n5/3) queries, and
• a randomized (Las Vegas) algorithm that takes Õ(n

√
n) queries with high

probability.

Plugging Theorem B.1.2 into standard frameworks such as Cunningham’s does
not directly lead us to a subquadratic-query algorithm for matroid intersection. Our
second insight is a simple way to combine algorithms for the reachability problem
with the exact and approximation algorithms of [CLSSW19] to achieve the following
theorem.

Theorem B.1.3 (Details in Lemma B.4.6). If there is an algorithm A that solves
the reachability problem with T queries, then there is an algorithm B that solves the
matroid intersection problem with Õ(n9/5 + n

√
T ) independence queries. If A is

deterministic, then B is also deterministic.

Theorems B.1.2 and B.1.3 immediately lead to Theorem B.1.1. We provide proof
ideas of Theorems B.1.2 and B.1.3 in the subsections below.

B.1.1 Proof idea for Theorem B.1.2: Algorithm for the
reachability problem

Before mentioning an overview of the algorithm for solving the reachability problem,
we briefly mention what makes this problem hard. Note that if we discover that
some v ∈ S̄ is reachable from s, we can find all out-neighbors of v in (S ∪ {s, t})
in O(logn) queries per such neighbor. We do this by using a binary search with
out-neighbor queries, halving the size of the set of potential out-neighbors of v
in each step. However, when we discover that some v ∈ S is reachable from s,
we cannot use the same binary-search trick to efficiently find the out-neighbors of
v due to the asymmetry of the allowed queries, where we can make queries only
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for vertices v ∈ S̄. Such asymmetry makes it hard to efficiently apply a standard
(s, t)-reachability algorithm (such as breadth-first search) on the graph.2

Both our randomized and deterministic algorithms for the reachability problem
follow the same framework below, where we partition vertices in S̄ into heavy and
light vertices and find vertices that can reach some heavy vertices. Our randomized
and deterministic algorithms differ in how they determine whether a vertex is heavy
or light.

Heavy/Light vertices. Our reachability algorithms run in phases and keep track
of a set of vertices that are reachable from the source vertex s, denoted by F (for
“found”). We can assume that F contains all out-neighbors of vertices in F ∩ S̄,
because we can find these out-neighbors very efficiently by doing binary-search that
makes Õ(1) queries per out-neighbor. In each phase, the algorithm either

(a) increases the size of F by an additive factor of at least h for some parameter
h (we use either h =

√
n or h = n1/3), or

(b) returns whether there is an (s, t) path.

Hence, in total, there are at most n
h many phases. To this end, for every v ∈ S̄, we

say that v is F -heavy if either

(h1) v has at least h out-neighbors to S \ F , or
(h2) there is an edge from v to t.

If v ∈ S̄ is not F -heavy, we say that it is F -light. We omit F when it is clear
from the context. We emphasize that the notion of heavy and light applies only to
vertices in S̄.Two tasks that remain are how to determine if a vertex is heavy or
light, and how to use this to achieve (a) or (b).

Heavy vertex reachability. First, we show how to achieve (a) or (b). We assume
for now that we know which vertices in S̄ are heavy or light. We can also assume
that we know all out-going edges of all light vertices (e.g. black edges in Figure B.1);
this requires Õ(nh) queries over all phases. Our main component is to determine
a set of vertices that can reach some heavy vertex. (Heavy vertices are always in
such set.) We can do this with Õ(n) queries essentially by simulating a breadth-first
search process reversely from heavy vertices. This process leaves us with subtrees
rooted at the heavy vertices with edges pointed to the roots; see Figure B.1 for an
example. The actual algorithm is quite simple and can be found in Section B.3.

Once all vertices that can reach some heavy vertices are found, we end up in
one of the following situations:

2In contrast, in the symmetric case where in- and out-neighbor queries can be made for every
vertex (and not just v ∈ S̄), we can solve the reachability problem with Õ(n) queries. This requires
a simple breadth-first search starting from s where we discover neighbors using binary search.
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v1

v2

⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆

Heavy vertices Light vertices Light vertices

Figure B.1: Example of the reverse BFS process to compute heavy vertex reachabil-
ity. The vertices from S and S̄ occur at alternate layers. The black edges (out-edges
of light nodes) are known a priori. The green edges are traversed in the reverse BFS
procedure whereas the red edges are not traversed in the reverse BFS. The green
vertices are discovered in the reverse BFS. The green vertices form a tree rooted at
v1. Vertex v1 is heavy because of its large out-degree. Vertex v2 is heavy because t is
its out-neighbor. The path from F to v1 and the out-neighbors of v1 are highlighted
in light-blue, which is added to F after the reverse BFS. Note that, even though v2 is
reachable from F , the path from F to v2 is not discovered, and hence the algorithm
moves to the next iteration.

• Some vertex in F can reach a heavy vertex v satisfying (h2). In this case, we
know immediately that s can reach t via v.

• Some vertex in F can reach a heavy vertex v satisfying (h1). In this case, we
query and add all out-neighbors of v in S \ F (taking Õ(n) queries). This
adds at least h vertices to F as desired.

• No vertices in F can reach any heavy vertex. In this case, we conclude that s
does not reach t: to be able to reach t, s must be able to reach some vertex
that points to t (and thus is heavy).

Heavy/light categorization. Again, this is where our randomized and deter-
ministic algorithms differ. With randomness, we can use random sampling to
approximate the out-degree of every vertex in S̄ and find all out-going edges of
vertices that are potentially light. This takes Õ(nh+ n2/h) queries over all phases.
For the deterministic algorithm, a naive idea is to maintain, for every v ∈ S̄, up to
h out-going neighbors of v in S \ F . The challenge is that when these neighbors are
included in F , we have to find new neighbors. By carefully picking these neighbors,
we can argue that in total only Õ(n

√
nh) queries are needed over all phases.

Summary. In total, in addition to the categorization of heavy/light vertices, we
use Õ(n) queries to solve the heavy vertex reachability problem in each of the Õ(n/h)
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phases. We also need Õ(nh) queries over all phases to find at most h out-neighbors
in S \F of light vertices. So, in total, our algorithm uses Õ(n2

h +nh) queries plus the
number of queries needed for the categorization, which is Õ(n2

h +nh) for randomized
and Õ(n

√
nh) for deterministic algorithms.

B.1.2 Proof idea of Theorem B.1.3: From reachability to
matroid intersection

The standard connection between the matroid intersection problem and the reacha-
bility problem that is exploited by most combinatorial algorithms [AD71; Law75;
Cun86; CLSSW19; Ngu19] is based on finding augmenting paths in what is called
the exchange graph. Given a common independent set S of the two matroids over
common ground set V , the exchange graph G(S) is a directed bipartite graph over
vertex set V ∪ {s, t} as in the reachability problem above with S̄ = V \ S. The
edges of the exchange graph are defined to ensure the following property: Finding
an (s, t)-path in the exchange graph amounts to augmenting S, i.e. finding a new
common independent with a bigger size. Conversely, if no (s, t)-path exists in the
exchange graph, it is known that S is of maximum cardinality and, hence, S can
be output as the answer to the matroid intersection problem. Thus the problem
of augmentation in the exchange graph can be reduced to the reachability problem
where the neighborhood queries in the reachability problem correspond to the queries
to the matroid oracles.3

Let us suppose that we can solve the reachability problem using T queries.
An immediate and straightforward way of using this subroutine to solve matroid
intersection is the following: Call this subroutine iteratively to find augmenting
paths to augment along in the exchange graph, thereby increasing the size of the
common independent set by one in each iteration. As the size of the largest common
independent set is r, we need to perform r augmentations in total. This leads to an
algorithm solving matroid intersection using O(rT ) independence queries.

To improve upon this, we avoid doing the majority of the augmentations by
starting with a good approximation of the largest common independent set. We use
the recent subquadratic (1− ε)-approximation algorithm of [CLSSW19, Section 6]
that uses Õ(n1.5/ε1.5) independence queries to obtain a common independent set
of size at least r − εr. Once we obtain a common independent set with such
approximation guarantee, we only need to perform an additional εr augmentations.
This is still not good enough to obtain a subquadratic matroid intersection algorithm
when combined with our efficient algorithms for the reachability problem from
Theorem B.1.2.

The final observation we make, is that for small ε = o(n−1/5), we can com-
bine the Õ(n1.5/ε1.5) approximation algorithm of [CLSSW19] with an efficient
implementation of Cunningham’s algorithm (as in [CLSSW19; Ngu19]) to obtain

3The independence queries are more powerful than the neighborhood queries, but we are only
interested in the neighborhood queries in our algorithm for the reachability problem.
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a (1 − ε)-approximation algorithm for matroid intersection using Õ(n9/5 + n/ε)
queries. This has a slightly better complexity than just running the approximation
algorithm of [CLSSW19]. The idea is to first run the the Õ(n1.5/ε′1.5) approximation
algorithm with ε′ ≈ n−1/5, and then run the Cunningham-style algorithm until the
distance between s and t in the exchange graph becomes at least Θ(1/ε).

Our final algorithm is then:

1. Run the Õ(n1.5/ε1.5)-query (1− ε)-approximation algorithm from [CLSSW19,
Section 6] with ε = n−1/5 to obtain a common independent set S of size at
least r − n4/5. This step takes Õ(n9/5) queries.

2. Starting with S, run the Cunningham-style algorithm as implemented by
[CLSSW19, Section 5] until the (s, t)-distance is at least

√
T to obtain a

common independent set of size at least r − O(n/
√
T ). This step takes

Õ(n(r − |S|) + n
√
T ) = Õ(n9/5 + n

√
T ) queries.

3. For the remaining O(n/
√
T ) augmentations, find augmenting paths one by

one by solving the reachability problem. This step takes Õ(n
√
T ) queries.

Hence we obtain a matroid intersection algorithm which uses Õ(n9/5 + n
√
T )

independence queries, as in Theorem B.1.3.

B.1.3 Organization

We start with the necessary preliminaries in Section B.2. In Section B.3, we
provide the subquadratic deterministic and randomized algorithms for augmentation.
Finally, in Section B.4, we combine these algorithms for augmentation with existing
algorithms to obtain subquadratic deterministic and randomized algorithms for
matroid intersection. In Section B.3, we skip the description of an important
subroutine called the heavy/light categorization. We devote Section B.5 for details
of this subroutine.

B.2 Preliminaries

Matroid. A matroid is a combinatorial object defined by the tuple M = (V, I),
where the ground set V is a finite set of elements and I ⊆ 2V is a non-empty family
of subsets (denoted as the independent sets) of the ground set V , such that the
following properties hold:

1. Downward closure: If S ∈ I, then any subset S′ ⊂ S (including the empty
set) is also in I,

2. Exchange property: For any two sets S1, S2 ∈ I with |S1| < |S2|, there is
an element v ∈ S2 \ S1 such that S1 ∪ {v} ∈ I.
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Matroid Intersection. Given two matroids M1 = (V, I1) and M2 = (V, I2)
defined on the same ground set V , the matroid intersection problem is finding
a maximum cardinality common independent set S ∈ I1 ∩ I2. When discussing
matroid intersection, we will denote by r the size of such a maximum cardinality
common independent set and by n the size of the ground set V .

Exchange graph. Consider two matroidsM1 = (V, I1) andM2 = (V, I2) defined
on the same ground set V . Let S ∈ I1 ∩ I2 be a common independent set. The
exchange graph G(S), w.r.t. to the common independent set S ∈ I1 ∩ I2, is defined
to be a directed bipartite graph where the two sides of the bipartition are S and
S̄ = V \ S. Moreover, there are two additional special vertices s and t (that are not
included in either S or S̄) which have directed edges incident on them only from S̄.
The directed edges (or arcs) are interpreted as follows:

1. Any edge of the form (s, v) for v ∈ S̄ implies that S ∪ {v} is an independent
set in M1.

2. Similarly, any edge of the form (v, t) for v ∈ S̄ implies that S ∪ {v} is an
independent set in M2.

3. Any edge of the form (u, v) ∈ S × S̄ implies that (S \ {u}) ∪ {v} is an
independent set in M1.

4. Similarly, any edge of the form (v, u) ∈ S̄ × S implies that (S \ {u}) ∪ {v} is
an independent set in M2.

We are interested in the notion of chordless (s, t)-paths in G(S) [Cun86, Section
2] which are defined next. For this definition, we consider a path as a sequence of
vertices that take part in the path. A subsequence of a path is an ordered subset of
the vertices (not necessarily contiguous) of the path where the ordering respects the
path ordering.

Definition B.2.1. An (s, t)-path p is chordless if there is no proper subsequence
of p which is also an (s, t)-path. A chordless path in the exchange graph G(S) is
sometimes called an augmenting path.

Claim B.2.2 (Augmenting path). Consider a chordless path p from s to t in G(S)
(if it exists), and let V (p) be the elements of the ground set (or, equivalently, vertices
in the exchange graph excluding s and t) that take part in the path p. Then S△V (p)
is a common independent set of M1 and M2.

If we examine the set S△V (p) obtained from Claim B.2.2, it is clear that the
number of elements added to the set S is one more than the number of elements
removed from S. This observation immediately gives the following corollary, and
shows the importance of the notion of exchange graphs.
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Corollary B.2.3. The size of the largest common independent set of M1 and M2
is at least |S|+ 1 if and only if t is reachable from s in G(S).

It is useful to note that the shortest (s, t)-path in G(S) is always chordless.
Many combinatorial matroid intersection algorithms thus focus on finding shortest
(s, t)-paths. The following claim relating the distance from s to t in G(S) and the
size of S is useful for approximation algorithms for matroid intersection.

Claim B.2.4 ([Cun86]). If the length of the shortest (s, t)-path in G(S) is at least
d, then |S| ≥ (1− O( 1

d ))r, where r is the size of the largest common independent
set.

Matroid query oracles. There are two primary models of query oracles associated
with the matroid theory: (i) the independence query oracle, and (ii) the rank query
oracle. The independence query oracle, given a set S ⊆ V of a matroid M, outputs
1 iff S is an independent set of M (i.e., iff S ∈ I). The rank query oracle, given a
set S ⊆ V , outputs the rank of S, rankM(S) def= maxT⊆S:T∈I |T |, i.e., the size of
the largest independent set contained in S. Clearly, if S itself is an independent
set, then rankM(S) = |S|. Hence, a rank query oracle is at least as powerful as
the independence query oracle. In this work, we are however interested primarily
in the independence query oracle model. Next, we state two claims regarding the
independence query oracle that we use in the paper.

Claim B.2.5 (Edge discovery). By issuing one independence query each, we can
find out

(i) given a vertex v ∈ S̄, whether v is an out-neighbor of s; or

(ii) given a vertex v ∈ S̄, whether v is an in-neighbor of t; or

(iii) given a vertex v ∈ S̄ and a subset X ⊆ S, whether there exists an edge from
some vertex in X to v; or

(iv) given a vertex v ∈ S̄ and a subset X ⊆ S, whether there exists an edge from v
to some vertex in X.

Claim B.2.5 follows from observing that we can make the following kinds of
independence queries: (i-ii) whether S∪{v} is an independent set inM1 respectively
M2, and (iii-iv) whether S ∪ {v} \X is an independent set in M1 respectively M2.
Note that these edge-discovery queries can simulate the neighborhood-queries in
the reachability problem.

With these kinds of queries, we can perform a binary search to find an in-/out-
neighbor of v ∈ S̄. The following lemma is proven in [CLSSW19, Lemma 11] and
also mentioned in [Ngu19]. We skip the proof in the paper.
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Claim B.2.6 (Binary search with independence/neighborhood queries, [Ngu19;
CLSSW19]). Consider a vertex v ∈ S̄ and a subset X ⊆ S ∪ {s, t}. By issuing
O(log r) independence queries to M1, we can find a vertex u ∈ X such that there is
an edge (u, v) (i.e., u is an in-neighbor of v), or otherwise determine that no such
edge exists. Similarly, by issuing O(log r) independence queries to M2, we can find
a vertex u′ ∈ X such that there is an edge (v, u′) (i.e., u′ is an out-neighbor of v).

We will assume InEdge(v,X) respectively OutEdge(v,X) are procedures
which implement Claim B.2.6.

B.3 Algorithms for augmentation

From Claim B.2.2, we know the following: Given a common independent set S,
either S is of maximum cardinality or there exists a (directed) (s, t)-path in the
exchange graph G(S). In this section, we consider the (s, t)-reachability problem in
G(S) using independence oracles. Our main results in this section are the following
two theorems. We denote the size of S as |S| = r in both of these theorems.4

Theorem B.3.1 (Randomized augmentation). There is a randomized algorithm
which with high probability uses O(n

√
r logn) independence queries and either de-

termines that S is of maximum cardinality or finds an augmenting path in G(S).

Theorem B.3.2 (Deterministic augmentation). There is a deterministic algorithm
which uses O(nr2/3 log r) independence queries and either determines that S is of
maximum cardinality or finds an augmenting path in G(S).

B.3.1 Overview of the algorithms
Section B.1.1 gives an informal overview of the augmentation algorithm already. In
this section, we provide more details so that the reader can be convinced about the
correctness of the algorithm.

The algorithm for augmentation, denoted as Augmentation algorithm for easy
reference, runs in phases and keeps track of a set F of vertices that are reachable
from the vertex s. Let FS and FS̄ denote the bipartition of F inside S and S̄, i.e.,
FS = F ∩ S and FS̄ = F ∩ S̄. In each phase, the algorithm will increase the size of
FS by an additive factor of at least h until the algorithm discovers an (s, t)-path
(or, otherwise, discover there is no such path). Hence, in total, there are at most |S|h
many phases. We now give an overview of how to implement each phase.

Note that, without loss of generality, we can assume that the set FS contains
all vertices that are out-neighbors of vertices in FS̄ . This is because whenever a
vertex v ∈ S̄ is added to FS̄ , we can quickly add all of v’s out-neighbors in S \ FS
into the set FS by using Claim B.2.6. This requires O(log r) independence queries

4Note that r usually denotes the size of the maximum common independent set which is an
upper bound on the size of the vertex set S. We abuse the notation and use r here to denote |S|.
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for each such out-neighbor. Hence, in total, this procedure uses at most O(n log r)
independence queries, since each u ∈ S \ FS is added in FS at most once.

Heavy and light vertices. Before explaining what the algorithm does in each
phase, we introduce the notion of heavy and light vertices: We divide the vertices
in S̄ \ FS̄ into two categories. We call a vertex v ∈ S̄ \ FS̄ heavy if it either has
an edge to t or has at least h out-neighbors in S \ FS . The vertices in S̄ \ FS̄ that
are not heavy are denoted as light (See Figure B.1 for reference; the heavy nodes
are highlighted in light-yellow). Note that both these notions are defined in terms
of out-degrees, i.e., a heavy vertex can have arbitrary in-degree and so can a light
vertex. Also, note that the notion of heavy and light vertices are defined w.r.t. to
the set FS . Because the set FS changes from one phase to the next, so does the set
of heavy vertices and light vertices.

Description of phase i. Let us assume, for the time being, that there is an
efficient procedure to categorize the vertices in S̄ \ FS̄ into the sets of heavy and
light vertices. We first apply this procedure at the beginning of phase i.

Now, for simplicity, consider an easy case: In phase i, there is a heavy vertex
that has an in-neighbor in FS . In this case, we can go over all vertices in S̄ \ FS̄
to find such a heavy vertex—this can be done with n many independence queries.
Once we find such a heavy vertex, we include it in FS and all of its out-neighbors in
FS̄ . Note that, in this case, either of the following two things can happen: either
we have increased the size of FS by at least h as the heavy vertex has at least h
out-neighbors in S \ FS ; or the heavy vertex we found has t as its out-neighbor in
which case we have found an (s, t)-path.

Unfortunately, this may not be the case in phase i. In this case, we do an
additional procedure called the reverse breadth-first search or, in short, reverse BFS.
The goal of the reverse BFS is to find a heavy vertex reachable from F . Before
describing this procedure, note the following two properties of the light vertices:

1. A light vertex will remain a light vertex even if we increase the size of FS .

2. We can assume that we know all out-neighbors of any light vertex.

Property 2 needs some explanation. This property is true because of two observations:
(i) All out-neighbors of a light vertex can be found out with O(h logn) independence
queries using Claim B.2.6, and (ii) because of Property 1, across all phases, we need
to find out the out-neighbors of a light vertex only once. So, even though we need
to make O(nh logn) queries in total, this cost amortizes across all phases.

The idea is, as before, to discover a heavy vertex which is reachable from F so
that we can include all of its out-neighbors in FS (for example, consider the heavy
vertex v1 in Figure B.1). So our goal is to find some path from F to a heavy vertex
(Consider the path starting from v1 highlighted in light-blue in Figure B.1). This
naturally implies the need for doing a reverse BFS from the heavy vertices. We also
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note that any path from F to t must pass through a heavy vertex (the vertex just
preceding t must by definition be heavy). Hence, if our reverse BFS fails to find a
path from F to some heavy vertex, the algorithm has determined that no (s, t)-path
exists.

What remains is to find out how to implement the reverse BFS procedure
efficiently. To this end, we exploit Property 2 of light vertices and assume that we
know all edges directed from S̄ to S that the reverse BFS procedure needs to visit.
This follows from the following crucial observation: No internal node of the reverse
BFS forest is a heavy node, i.e., in other words, the heavy vertices occur only as
root nodes of the reverse BFS trees. This is because if, along the traversal of a
reverse BFS procedure starting from a heavy node v, we reach another heavy node
v′, we can ignore v′ as the reverse BFS starting from node v′ has already taken
care of processing v′. This means that any edge in S̄ × S that takes part in the
reverse BFS procedure must originate from a light vertex and, hence, is known a
priori due to Property 2. All it remains for the reverse BFS procedure is to discover
in-neighbors of vertices in S̄ using edges from S × S̄. By Claim B.2.6, each such
in-neighbor can be found by making O(log r) independence queries. In total, the
reverse BFS procedure uses Õ(n) independence queries.

Post-processing. Note that, in order to use Claim B.2.2, the (s, t)-path needs
to be chordless. However, the (s, t)-path p that the algorithm outputs has no such
guarantee. So, as a post-processing step, the algorithm uses an additional Õ(r)
independence queries to convert this path into a chordless path: Consider any vertex
v ∈ V (p) ∩ S̄ and assume u as the parent of v, and w as the child of v in the path
p. The vertex v needs to check whether it has an in-neighbor other than u among
the ancestors of v in V (p) or an out-neighbor other than w among the descendants
of v in V (p). Since the length of the path obtained from the previous step is O(r)
(because of |S| = r and the path does not contain any cycle), this requires O(log r)
independence queries. If all vertices in V (p) ∩ S̄ have no such in or out-neighbors,
then it is easy to see that p is indeed a chordless path. If there is such a (say)
in-neighbor u′ of v, then we remove all vertices of V (p) between u′ and v, and the
resulting subsequence is still an (s, t)-path. A similar procedure is done when an
out-neighbor is discovered. In total, this takes O(r log r) independence queries, since
each vertex can be removed from the path at most once.

Cost analysis. The total number of queries needed to implement phase i is a
summation of two terms: (i) the number of queries needed to partition the vertices
into heavy and light categories, and (ii) the number of queries needed to run the
reverse BFS procedure. We have seen that (ii) can be implemented with Õ(n)
independence queries. For (i), we present two algorithms: a randomized sampling
algorithm, and a deterministic algorithm which is slightly less efficient than the
randomized one. This is the main technical difference between the algorithm of
Theorem B.3.1 and that of Theorem B.3.2. The cost analysis for (i) is also amortized
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and the total number of queries needed across all phases is Õ(max{nh, nr/h})
for randomized and Õ(n

√
rh) for deterministic implementation. Setting h =

√
r

for randomized and h = r1/3 for deterministic, we see that total randomized
query complexity of augmentation is Õ(n

√
r) and deterministic query complexity is

Õ(nr2/3).

B.3.2 Categorizing heavy and light vertices
We start with reminding the readers the definition of the heavy and light vertices in
S̄ \ FS̄ .

Definition B.3.3. We call a vertex v ∈ S̄ \ FS̄ heavy if either (v, t) is an edge of
G(S) or v has at least h out-neighbors in S \ FS . Otherwise we call v light.

To check whether v has an edge to t is easy and requires only a single independence
query: “Is S ∪{v} independent inM2?” The difficulty lies when this is not the case
and we need to determine if v has outdegree at least h to S \ FS . We present two
algorithms to solve this categorization problem: one randomized sampling algorithm;
and a less efficient deterministic algorithm. More concretely, we show the following
two lemmas.

Lemma B.3.4. There is a randomized categorization procedure which, with high
probability, categorizes heavy and light vertices in the set S̄ \ FS̄ correctly by issuing
O(n logn) independence queries per phase and an additional O(nh logn) indepen-
dence queries over the whole run of the Augmentation algorithm.

Lemma B.3.5. There exists a deterministic categorization procedure which uses
O(n
√
rh log r) queries over the whole run of the Augmentation algorithm.

The proofs of these two lemmas are deferred to Section B.5.

B.3.3 Heavy vertex reachability
In this section, we present the reverse BFS in Algorithm B.1 and analyze some
properties of it. Recall that the reverse BFS is run once in each phase of the
algorithm to find some vertex in F which can reach some heavy vertex. We also
remind the reader of the example in Figure B.1. In this section, we prove the
following.

Lemma B.3.6 (Heavy vertex reachability). There is an algorithm (Algorithm B.1:
ReverseBFS) which, given F such that there are no edges from FS̄ to S \ FS, a
categorization of S̄ \ FS̄ into heavy and light, and all out-edges of the light vertices
to S \ FS, uses O(n log r) queries and either finds a path from some vertex in F to
a heavy node, or otherwise determines that no such path exists.

We next provide the pseudo-code (Algorithm B.1).
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Algorithm B.1: ReverseBFS
Input: Categorization of S̄ \ FS̄ into heavy and light; and a set

LightEdges containing all out-edges of the light vertices
Output: A path from F to some heavy vertex, if one exists

1 Q← {v ∈ S̄ \ FS̄ which are heavy}
2 NotVisited← (S ∪ S̄ ∪ {s, t}) \Q
3 while Q ̸= ∅ do
4 Pop a vertex v from Q
5 if v ∈ F then
6 return the path from v to a heavy vertex in the BFS-forest
7 else if v ∈ S̄ \ FS̄ then
8 while u = InEdge(v,NotVisited) is not ∅ do
9 Push u to Q and remove it from NotVisited

10 else if v ∈ S \ FS then
11 foreach u ∈ NotVisited such that (u, v) ∈ LightEdges do
12 Push u to Q and remove it from NotVisited

13 return ”NO PATH EXISTS”

Correctness. We first argue that the algorithm is correct. When a vertex v ∈
S̄ \ FS̄ is processed by the algorithm, each unvisited in-neighbor will be added to
the queue Q in the while loop in line 8. When a vertex v ∈ S \ FS is processed by
the algorithm, any edge from NotVisited to v must originate from a light vertex,
since NotVisited contains no heavy vertices and we are guaranteed that no edge
from FS̄ to S \ FS exist. Hence Algorithm B.1 will eventually process every vertex
reachable, by traversing edges in reverse, from the heavy vertices.

Cost analysis. The only place Algorithm B.1 uses independence queries is in
line 8. Each vertex will be discovered at most once by the binary search in InEdge.
This means that we do at most n calls to InEdge, each using O(log r) queries by
Claim B.2.6. Hence the reverse BFS uses O(n log r) queries per phase.

B.3.4 Augmenting path algorithm.

We now present the main augmenting path algorithm, as explained in the overview
in Section B.3.1.

Note that we have not specified if we are using the randomized or deterministic
categorization of heavy and light vertices, from Sections B.5.1 and B.5.2. We will
for now assume this categorization procedure as a black box which is always correct.

We start by stating some invariants of Algorithm B.2.
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Algorithm B.2: Augmentation
Input: Two matroids M1 = (V, I1) and M2 = (V, I2), and a common

independent set S ⊆ I1 ∩ I2
Output: An augmenting (s, t)-path in G(S) if one exists

1 F ← {s}
2 LightEdges← ∅
3 while t ̸∈ F do

// Description of a phase
4 Categorize v ∈ S̄ \ FS̄ into heavy and light
5 foreach new light vertex v do
6 Use OutEdge to find all out-neighbors of v in S \ FS
7 Add edges (v, u) to LightEdges for each such out-neighbor u
8 p← ReverseBFS(S, F,LightEdges)
9 if p = “NO PATH EXISTS” then

10 return “NO PATH EXISTS”
11 else
12 Denote by V (p) the vertices on the path p
13 Add all v ∈ V (p) to F
14 foreach v ∈ V (p) ∩ S̄ do
15 while u = OutEdge(v, (S \ F ) ∪ {t}) is not ∅ do
16 Add u to F

// Post-processing
17 Post-process the (s, t)-path found to make it chordless
18 return the augmenting path

1. F contains only vertices reachable from s. In fact, for each vertex in F we
have found a path from s to this vertex.

2. LightEdges contains all out-edges from light vertices to S \ F .

3. In the beginning of each phase, there exists no v ∈ F , u ∈ (S ∪{s, t}) \F such
that (v, u) is an edge in G(S). This is because whenever v ∈ S̄ is added to F ,
all v’s neighbors are also added, see line 15.

Correctness. When the algorithm outputs an (s, t)-path, the path clearly exists,
by Invariant 1. So it suffices to argue that the algorithm does not return “NO PATH
EXISTS” incorrectly. Note that the algorithm only returns “NO PATH EXISTS”
when ReverseBFS does so, that is when there is no path from F to a heavy vertex
(by Lemma B.3.6). So suppose that this is that case, and also suppose, for the sake
of a contradiction, that an (s, t)-path p exists in G(S). Denote by v the vertex
preceding t in the path p. By Invariant 3 we know that v is not in F . But then v is
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heavy, since (v, t) is an edge of G(S). Hence a subpath of p will be a path from F
to the heavy vertex v, which is the desired contradiction.

Number of phases. We argue that there are at most r
h+1 phases of the algorithm.

After a phase, either the algorithm returns “NO PATH EXISTS” (in which case this
was the last phase), or some path p was found by the reverse BFS. Then V (p) must
include some heavy vertex v. Then all neighbors of v will be added to F in line 15.
Thus we know that either t was added to F (in which case this was the last phase),
or at least h vertices from S was added to F . Since |S| ≤ r in the beginning, this
can happen at most r

h times.

Number of queries. We analyse the number of independence queries used by
different parts of the algorithm:

• ReverseBFS (Algorithm B.1) is run once each phase, and uses O(n log r)
queries per call by Lemma B.3.6. This contributes a total of O(nr log r

h )
independence queries over all phases.

• Each u ∈ S is discovered at most once by the OutEdge call on line 15. So
this line contributes a total of O(n log r) independence queries.

• Each vertex becomes light at most once over the run of the algorithm. When
this happens, the algorithm finds all of its (up to h) out-neighbors on line 6,
using OutEdge calls. This contributes a total of O(nh log r) independence
queries.

• The post-processing can be performed using O(r log r) independence queries,
as explained in Section B.3.1.

• The heavy/light-categorization uses O(nh logn+ nr logn
h ) independence queries

when the randomized procedure is used, by Lemma B.3.4. When the deter-
ministic categorization procedure is used, we use O(n

√
rh log r) independence

queries instead, by Lemma B.3.5.

We see that in total, the algorithm uses:

• O(n
√
r logn) independence queries with the randomized categorization, setting

h = r1/3.

• O(nr2/3 log r) independence queries with the deterministic categorization,
setting h =

√
r.

The above analysis proves Theorems B.3.1 and B.3.2.
Remark B.3.7. When the randomized categorization procedure fails, Algorithm B.2
will still always return the correct answer, but it might use more independence queries.
So Algorithm B.2 is in fact a Las-Vegas algorithm with expected query-complexity
O(n
√
r logn).
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Remark B.3.8. We note that our algorithm can not be used to find which vertices
are reachable from s using subquadratic number of queries.

B.4 Algorithm for fast Matroid Intersection

There are two hurdles to getting a subquadratic algorithm for Matroid Intersection.
Firstly, standard augmenting path algorithms need to find the augmenting paths one
at a time. This is since after augmenting along a path, the edges in the exchange
graph change (some edges are added, some removed). This is unlike bipartite
matching, where a set of vertex-disjoint augmenting paths can be augmented along
in parallel. It is not clear how to find the augmenting paths faster than Θ(n) each,
so these standard augmenting path algorithms are stuck at Ω(nr) independence
queries.

To overcome this, Chakrabarty-Lee-Sidford-Singla-Wong [CLSSW19] introduce
the notion of augmenting sets, which allows multiple parallel augmentations. Using
the augmenting sets they present a subquadratic (1− ε)-approximation algorithm
using Õ(n1.5

ε1.5 ) independence queries:

Lemma B.4.1 (Approximation algorithm [CLSSW19]). There exists an (1 − ε)
approximation algorithm for matroid intersection using O(n

√
n log r
ε
√
ε

) independence
queries.

The second hurdle is that when the distance d between s and t is high, the
breadth-first algorithms of [CLSSW19; Ngu19] use Θ̃(dn) independence queries to
compute the distance layers, which is Ω(nr) when d ≈ r.5 Here our algorithm from
Section B.3 helps since it can find a single augmenting path using a subquadratic
number of independence queries, even when the distance d is large.

So our idea is as follows:

• Start by using the subquadratic approximation algorithm. This avoids having
to do the majority of augmentations one by one.

• Continue with the fast implementation [CLSSW19, Section 5] (or [Ngu19]) of
the Cunningham-style blocking flow algorithm.

• When the (s, t)-distance becomes too large, fall back to using the augmenting-
path algorithm from Section B.3 to find the (few) remaining augmenting
paths.

The choice of d will be different depending on whether we use the randomized
or deterministic version of Algorithm B.2. In order to run Algorithm B.3, we need
to know r so that we may choose ε (and d) appropriately. However, the size r

5Note that unlike in Section B.3, we now use the normal definition of r as the size of the
maximum-cardinality common independent set of the two matroids.
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Algorithm B.3: Subquadratic Matroid Intersection
22 Run the approximation algorithm (Lemma B.4.1) with

ε = n1/5r−2/5 log−1/5 r to obtain a common independent set S of size at
least (1− ε)r = r − n1/5r3/5 log−1/5 r

44 Starting with S, run Cunningham’s algorithm (as implemented by
[CLSSW19]), until the distance between s and t becomes larger than d

66 Keep running Augmentation (Algorithm B.2) from Section B.3 and
augmenting the current common independent set with the obtained
(s, t)-path (as in Claim B.2.2) until no (s, t)-path can be found in the
exchange graph

of the largest common independent set is unknown. We note that it suffices, for
the purpose of the asymptotic analysis, to use a 1

2 -approximation r̄ for r (that is
r̄ ≤ r ≤ 2r̄). It is well known that such an r̄ can be found in O(n) independence
queries by greedily finding a maximal common independent set in the two matroids.
Now we can bound the query complexity of Algorithm B.3.

Lemma B.4.2. Line 2 of Algorithm B.3 uses O(n6/5r3/5 log4/5 r) independence
queries.

Proof. The approximation algorithm uses O(n
1.5
√

log r
ε1.5 ) = O(n6/5r3/5 log4/5 r) inde-

pendence queries, when ε = n1/5r−2/5 log−1/5 r.

Lemma B.4.3. Line 4 of Algorithm B.3 uses O(n6/5r3/5 log4/5 r + nd log r) inde-
pendence queries.

Proof. There are two main parts of Cunningham’s blocking-flow algorithm.

• Computing the distances. The algorithm will run several BFS’s to compute the
distances. The total number of independence queries for all of these BFS’s can
be bounded by O(dn log r), since the distances are monotonic so each vertex
is tried at a specific distance at most once. For more details, see [CLSSW19,
Section 5.1].

• Finding the augmenting paths. Given the distance-layers, a single augmenting
path can be found in O(n log r) independence queries, by a simple depth-first-
search. Again, we refer to [CLSSW19, Section 5.2] for more details. Since we
start with a common independent set S of size (1−ε)r = r−n1/5r3/5 log−1/5 r,
we know that S can be augmented at most n1/5r3/5 log−1/5 r additional times.
Hence a total of O(n6/5r3/5 log4/5 r) independence queries suffices to find all
of these augmenting paths.
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Remark B.4.4. We note that if we skip Line 6 in Algorithm B.3, we thus get
a (1 − 1

d )-approximation algorithm (by Claim B.2.4), using Õ(n6/5r3/5 + nd) in-
dependence queries, which beats the Õ(n1.5/ε1.5) approximation algorithm when
ε = o(n1/5r−2/5).

Lemma B.4.5. Line 6 of Algorithm B.3 uses O( rdT ) independence queries, where
T is the number of independence queries used by one invocation of Augmentation
(Algorithm B.2).

Proof. After line 4, the algorithm has found a common independent set of size at
least (1−O( 1

d ))r = r−O( rd ), by Claim B.2.4. This means that only O( rd ) additional
augmentations need to be performed.

By Lemmas B.4.2, B.4.3 and B.4.5, we see that Algorithm B.3 uses a total of
O(n6/5r3/5 log4/5 r + nd log r + r

dT ) independence queries. If we pick d =
√

rT
n log r

we get the following lemma.

Lemma B.4.6. If the query complexity of Augmentation is T , then matroid
intersection can be solved using O(n6/5r3/5 log4/5 r +

√
nrT log r) independence

queries.

Combining with Theorems B.3.1 and B.3.2 we get our subquadratic results.

Theorem B.4.7 (Randomized Matroid Intersection). There is a randomized al-
gorithm which with high probability uses O(n6/5r3/5 log4/5 r) independence queries
and solves the matroid intersection problem. When r = Θ(n), this is Õ(n9/5).

Theorem B.4.8 (Deterministic Matroid Intersection). There is a deterministic
algorithm which uses O(nr5/6 log r + n6/5r3/5 log4/5 r) independence queries and
solves the matroid intersection problem. When r = Θ(n), this is Õ(n11/6).

Remark B.4.9. The limiting term for the the randomized algorithm is between line 2
and line 4. If a faster approximation algorithm is found, the same strategy as above
might give an Õ(nr3/4)-query algorithm.

B.5 Algorithm for heavy/light categorization

In this section, we finally provide the algorithm for the categorization of vertices in
S̄ \ FS̄ into heavy and light vertices as defined in Definition B.3.3.

B.5.1 Randomized categorization

In this section, we prove the following lemma (restated from Section B.3.2).
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Lemma B.3.4. There is a randomized categorization procedure which, with high
probability, categorizes heavy and light vertices in the set S̄ \ FS̄ correctly by issuing
O(n logn) independence queries per phase and an additional O(nh logn) indepen-
dence queries over the whole run of the Augmentation algorithm.

We will use X to denote S \F . Let the out-neighborhood of a vertex v ∈ S̄ \FS̄
inside X be denoted as NghX(v). Consider the family of sets {NghX(v)}v∈S̄\FS̄

residing inside the ambient universe X. We want to find out which of these sets are
of size at least h (i.e., correspond to the heavy vertices) and which of them are not
(i.e., corresponds to the light vertices). To this end, we devise the following random
experiment.

Experiment B.5.1. Sample a set R of k elements drawn uniformly and indepen-
dently from X (with replacement) and check whether R ∩ NghX(v) = ∅.

It is easy to check the following: For any v ∈ S̄ \ FS̄ , Experiment B.5.1 is
successful with probability:

Pr
R

[R ∩ NghX(v) = ∅] =
(

1− |NghX(v)|
|X|

)k
.

Note that, to perform this experiment for a vertex v, we need to make a single
independence query of the form whether (S \ R) ∪ {v} ∈ I2. Next, we make the
following claim.

Claim B.5.2. There is a non-negative integer k such that the following holds:

1. If |NghX(v)| < h, then Experiment B.5.1 succeeds with probability at least 3/4,
and

2. If |NghX(v)| > 10h, then Experiment B.5.1 succeeds with probability at most
1/4.

Before proving Claim B.5.2, we show the rest of the steps of this procedure. For
every vertex, we repeat Experiment B.5.1 s = O(logn) many times independently.
By standard concentration bound, we make the following observations:

1. If |NghX(v)| < h, strictly more than s/2 experiments succeed with very high
probability.6

2. If |NghX(v)| > 10h, strictly less than s/2 experiments succeed with very high
probability.

6Recall that by very high probability we mean with probability at least 1 − n−c for some
arbitrary large constant c.
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Hence, we declare any vertex for which strictly less than s/2 experiments succeed
as heavy. The probability that a light vertex can be classified as heavy by this
procedure is very small due to Property 1. On the other hand, a vertex with
|NghX(v)| > 10h will be correctly classified as heavy with a very high probability.
However, a heavy vertex with |NghX(v)| ≤ 10h may not be correctly classified. So,
for such vertices, we want to check in a brute-force manner. To this end, we discover
the set NghX(v) for any vertex v which is not declared heavy and make decisions
accordingly.

Bounding the error probability. We argue that we can bound the error
probabilities from Properties 1 and 2 over the whole run of the Augmentation
algorithm by a union bound. Say that the error probabilities of Properties 1 and 2
is bounded by n−c for some large constant c ≥ 10. In each phase we categorize
at most n vertices, and there is at most r

h < n phases. Hence, the probability
that — over the whole run of Augmentation (Algorithm B.2) — that any vertex
is misclassified as heavy, or that the procedure decides to discover a set NghX(v)
with NghX(v) > 10, is at most n−c+2. Similarly we note that in the algorithm for
Matroid Intersection (Algorithm B.3) we run Augmentation at most r times, so
the error probability is at most n−c+3.

Cost analysis. As mentioned before, each instance of Experiment B.5.1 can be
performed with a single query. As there are O(n logn) experiments in total in each
phase of the algorithm, the number of queries needed to perform all experiments
over the whole run of the Augmentation algorithm will be is O(nr logn

h ) (recall
that the number of phases is r/h). Now consider the part of the algorithm where we
need to discover the set NghX(v) for any vertex v which is not declared heavy after
the completion of all experiments in a phase. For each such vertex, this will take at
most O(|NghX(v)| logn) = O(h logn) queries (due to Claim B.2.6). Note that we
only need to make these kinds of queries from each vertex once over the whole run
of the algorithm (as in future queries we already know all v’s neighbors and can
answer directly). Hence, the total number of such queries is at most O(nh logn)
across all phases of the algorithm.

Proof of Claim B.5.2. First we note that if |X| ≤ 10h, case 2 is vacuously true, so
we may pick k = 0 such that Experiment B.5.1 always succeeds. So now assume
that |X| > 10h and let x = h

|X| ∈ (0, 1
10 ). We want to show that there exists some

positive integer k satisfying (1−x)k ≥ 3
4 and (1− 10x)k ≤ 1

4 . Pick k =
⌈

log 1
4

log(1−10x)

⌉
.

Then k ≥ log 1
4

log(1−10x) > 0, which means that (1 − 10x)k ≤ 1
4 . We also have that

k ≤ log 1
4

log(1−10x) +1 < log 3
4

log(1−x) (since x ∈ (0, 1
10 )), which means that (1−x)k ≥ 3

4 .
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B.5.2 Deterministic categorization
In this section we prove the following lemma (restated from Section B.3.2).

Lemma B.3.5. There exists a deterministic categorization procedure which uses
O(n
√
rh log r) queries over the whole run of the Augmentation algorithm.

The main idea of the determinsitic categorization is the following: For each
v ∈ S̄ \ FS̄ , our deterministic categorization keeps track of a set Nv ⊆ NghX(v) of h
out-neighbors to v (if that many out-neighbors exist). Then we can either use Nv as
a proof that v is heavy, or when we failed to find such a Nv we know that v is light.

In each phase, some of the vertices in Nv may be added to F (and thus removed
from X). This may decrease the size of Nv. In this case we would like to find
additional out-neighbors to add to Nv, until |Nv| = h, or determine that |NghX(v)| <
h. One possible and immediate strategy would be to use Claim B.2.6 to find a
new out-neighbor of v in O(logn) independence queries. However, adding arbitrary
neighbors from NghX(v) \Nv will be expensive: over the whole run of the algorithm
potentially every vertex in S will be added to Nv at some point which will require
Õ(nr) many independence queries in total for all Nv’s—this is far too expensive
than what we can allow. Instead, we want to be device a better strategy to pick
u ∈ NghX(v) \Nv.

Determinisitc strategy. For u ∈ X we will denote by the weight of u, or w(u),
the number of sets Nv which contain u. Note that these weights change over the run
of the algorithm. Also, note that the values w(u) can be inferred from the sets Nv’s
which are known to the querier. Hence, we can assume that the querier knows the
weights of elements in X. When u is moved from X to F , w(u) new out-neighbors
must be found, one for each v ∈ S̄ \ FS̄ for which the set Nv contained u.

This motivates the following strategy: Whenever we need to find a new out-
neighbors of v, we find u ∈ NghX(v) \ Nv that minimizes w(u). To perform this
strategy, we note that the binary-search idea from Claim B.2.6 can be imple-
mented to find a u which minimizes w(u). Indeed, if {u1, u2, . . . u|X|} ⊆ X with
w(u1) ≤ w(u2) ≤ . . . ≤ w(u|X|), the binary search can first ask if there is an
edge to {u1, . . . , u⌊|X|/2⌋} with a single query. If this was the case we recurse on
{u1, u2, . . . u⌊|X|/2⌋}, otherwise recurse on {u⌊|X|/2⌋+1, . . . , u|X|}. This will guaran-
tee that a the ui which minimizes w(ui) will be found.7

Cost Analysis. For each v ∈ S̄ we will at most once determine that Nv cannot
be extended, i.e. that |NghX(v)| < h. This will require O(n) independence queries
in total. The remaining cost we will amortize over the vertices in V = S ∪ S̄.
Consider that we find some out-neighbor u ∈ X to some vertex v ∈ S̄, using the
above strategy. This uses O(log r) independence queries. We will charge this cost

7We actually use the same strategy to initialize the sets Nv: We discover out-neighbors u in
the increasing order of w(u).
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to u if w(u) ≤ n
√
h√
r

, otherwise we will charge the cost to v. We make the following
observations:

1. For u ∈ S, the total cost we charge to it at most O(n
√
h√
r

log r).

2. For v ∈ S̄, the total cost we charge to it is at most O(
√
rh log r).

Property 1 is easy to see, since we charge the cost O(log r) to it at most O(n
√
h√
r

)
times. To argue that Property 2 holds, let u ∈ S be the first vertex which got
added to Nv which had weight w(u) strictly more than n

√
h√
r

(at the moment
it was added to Nv). At this point in time, we know that for all remaining
u′ ∈ NghX(v) \Nv, must have w(u′) ≥ w(u) > n

√
h√
r

. Note that we can bound the
total weight

∑
u∈X w(u) =

∑
v∈S̄\FS̄

|Nv| ≤ nh at any point in time. Because of
this upper bound, there can be at most nh

n
√
h/
√
r

=
√
rh such u′. Hence we can

charge vertex v at most
√
rh more times.

Since there are at most r vertices u ∈ S and n vertices v ∈ S̄, we conclude that
the total cost (over all phases) for the deterministic categorization is O(n

√
rh log r).

This proves Lemma B.3.5.

B.6 Open Problems

A major open problem is to close the big gap between upper and lower bounds for
the matroid intersection problem with independent and rank queries. A major step
towards this goal is to prove an n1+Ω(1) lower bound. It will already be extremely
interesting to prove such a bound for deterministic algorithms. It is also interesting
to prove a cn lower bound for randomized algorithms for some constant c > 1 (the
existing lower bound [Har08] holds only for deterministic algorithms).

Another major open problem is to understand whether the rank query is more
powerful than the independence query. Are the tight bounds the same under both
query-models? Two important intermediate steps towards answering this question
is to achieve an Õ(n

√
r)-query exact algorithm and an Õ(n/poly(ϵ))-query (1− ϵ)-

approximation algorithm under independence queries (such bounds have already
been achieved under rank queries [CLSSW19]). We conjecture that the tight bounds
are Õ(n

√
n) under both queries when r = Ω(n).

We believe that fully understanding the complexity of the reachability problem
will be another major step towards understanding the matroid intersection problem.
We conjecture that our Õ(n

√
n) bound is tight for r = Ω(n).

It is also very interesting to break the quadratic barrier for the weighted case.
This barrier can be broken by a (1 − ϵ)-approximation algorithm by combining
techniques from [CLSSW19; CQ16]8, but not the exact one.

8From a private communication with Kent Quanrud
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Related problems are those for minimizing submodular functions. Proving an
n1+Ω(1) lower bound or subquadratic upper bound for, e.g., finding the minimizer
of a submodular function or the non-trivial minimizer of a symmetric submodular
function. Many recent studies (e.g. [RSW18; GPRW20; LLSZ20; MN19]) have led to
some non-trivial bounds. However, it is still open whether an n1+Ω(1) lower bound
or an n2−Ω(1) upper bound exist even in the special cases of computing minimum
st-cut and hypergraph mincut in the cut query model.
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Abstract

We present algorithms that break the Õ(nr)-independence-query bound
for the Matroid Intersection problem for the full range of r; where n is the size
of the ground set and r ≤ n is the size of the largest common independent set.
The Õ(nr) bound was due to the efficient implementations [CLSSW FOCS’19;
Nguy˜ên 2019] of the classic algorithm of Cunningham [SICOMP’86]. It
was recently broken for large r (r = ω(

√
n)), first by the Õ(n1.5/ε1.5)-query

(1 − ε)-approximation algorithm of CLSSW [FOCS’19], and subsequently by
the Õ(n6/5r3/5)-query exact algorithm of BvdBMN [STOC’21]. No algorithm—
even an approximation one—was known to break the Õ(nr) bound for the full
range of r. We present an Õ(n

√
r/ε)-query (1 − ε)-approximation algorithm

and an Õ(nr3/4)-query exact algorithm. Our algorithms improve the Õ(nr)
bound and also the bounds by CLSSW and BvdBMN for the full range of r.
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C.1 Introduction

Matroid Intersection is a fundamental problem in combinatorial optimization that
has been studied for more than half a century. The classic version of this problem
is as follows: Given two matroids M1 = (V, I1) and M2 = (V, I2) over a common
ground set V of n elements, find the largest common independent set S∗ ∈ I1 ∩ I2
by making independence oracle queries1 of the form “Is S ∈ I1?” or “Is S ∈ I2?”
for S ⊆ V . The size of the largest common independent set is usually denoted by r.

Matroid intersection can be used to model many other combinatorial optimization
problems, such as bipartite matching, arborescences, spanning tree packing, etc.
As such, designing algorithms for matroid intersection is an interesting problem to
study.

In this paper, we consider the task of finding a (1− ε)-approximate solution to
the matroid intersection problem, that is finding some common independent set S
of size at least (1 − ε)r. We show an improvement of approximation algorithms
for matroid intersection, and as a consequence also obtain an improvement for the
exact matroid intersection problem.

Previous work. Polynomial algorithms for matroid intersection started with
the work of Edmond’s O(n2r)-query algorithms [EDVJ68; Edm70; Edm79] in
the 1960s. Since then, there has been a long line of research e.g. [AD71; Law75;
Cun86; LSW15; CQ16; CLSSW19; BBMN21]. Cunningham [Cun86] designed a
O(nr1.5)-query blocking-flow algorithm in 1986, similar to that of Hopcroft-Karp’s
bipartite-matching or Dinic’s maximum-flow algorithms. Chekuri and Quanrud
[CQ16] pointed out that Cunningham’s classic algorithm [Cun86] from 1986 is
already a O(nr/ε)-query (1− ϵ)-approximation algorithm. Recently, Chakrabarty-
Lee-Sidford-Singla-Wong [CLSSW19] and Nguy˜ên [Ngu19] independently showed
how to implement Cunningham’s classic algorithm using only Õ(nr) independence
queries. This is akin to spending Õ(n) queries to find each of the so-called augmenting
paths. A fundamental question is whether several augmenting paths can be found
simultaneously to break the Õ(nr) bound.

This question has been answered for large r (r = ω(
√
n)), first by the Õ(n1.5/ε1.5)-

query (1− ϵ)-approximation algorithm of Chakrabarty-Lee-Sidford-Singla-Wong2

[CLSSW19], and very recently by the randomized Õ(n6/5r3/5)-query exact algorithm
of Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai [BBMN21]. Whether we can break
the O(nr)-query bound for the full range of r remained open even for approximation
algorithms.

1There are also other oracle models considered in the literature (e.g. rank-oracles), but in this
paper we focus on the independence query model. Whenever we say query in this paper, we thus
mean independence query.

2In the same paper they also show a Õ(n2r−1ε−2 + r1.5ε−4.5)-query algorithm.
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Our results. We break the O(nr)-query bound for both approximation and exact
algorithms. We first state our results for approximate matroid intersection.3

Theorem C.1.1 (Approximation algorithm). There is a deterministic algorithm
which given two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground
set V , finds a common independent set S ∈ I1 ∩ I2 with |S| ≥ (1 − ε)r, using

O

(
n
√
r log r
ε

)
independence queries.

Plugging Theorem C.1.1 in the framework of [BBMN21], we get an improved
algorithm—more efficient than the previous state-of-the-art—for exact matroid
intersection which we state next.

Theorem C.1.2 (Exact algorithm). There is a randomized algorithm which given
two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a
common independent set S ∈ I1 ∩ I2 of maximum cardinality r, and w.h.p.4 uses
O(nr3/4 logn) independence queries. There is also a deterministic exact algorithm
using O(nr5/6 logn) queries.

Remark C.1.3. Although we only focus on the query-complexity in this paper, we
note that the time-complexity of the algorithms are dominated by query-oracle
calls. That is, our approximation algorithm runs in Õ(n

√
rTind/ε) time, and

the exact algorithms in Õ(nr3/4Tind) (randomized) respectively Õ(nr5/6Tind) time
(deterministic), where Tind denotes the time-complexity of the independence-oracle.

C.1.1 Technical Overview
Approximation algorithm. Our approximation algorithm (Theorem C.1.1) is
a modified version of Chakrabarty-Lee-Sidford-Singla-Wong’s Õ(n1.5/ε1.5)-query
approximation algorithm [CLSSW19, Section 6]. The algorithm is based on the ideas
of Cunningham’s classic blocking-flow algorithm [Cun86] and runs in O(1/ε) phases,
where in each phase the algorithm seeks to find a maximal set of augmentations in
the exchange graph. Given a common independent set S ∈ I1 ∩ I2, the exchange
graph G(S) is a directed bipartite graph (with bipartition (S+{s, t}, V \S)). Finding
a shortest (s, t)-path, called an augmenting path, in G(S) means one can increase
the size of the common independent set S by 1. Since the exchange graph changes
after each augmentation,5 and we do not know how to find a single augmenting path

3The Õ(n2r−1ε−2 + r1.5ε−4.5)-query algorithm of [CLSSW19] is the only previous algorithm
which is more efficient than our algorithm in some range of r and ε. Actually, since the Õ(n2r−1ε−2+
r1.5ε−4.5)-query algorithm use the Õ(n1.5/ε1.5) algorithm as a subroutine, we do get a slightly
improved version by using our Õ(n

√
r/ε) algorithm as the subroutine instead: Õ(n2r−1ε−2 +

r1.5ε−4).
4w.h.p. = with high probability meaning with probability 1 − n−c for some arbitrarily large

constant c.
5Unlike what happens in augmenting path algorithms for flow and bipartite matching, where

the underlying graphs remain the same.
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faster than Ω(n) queries, the need to find several augmentations in parallel arises.
[CLSSW19, Section 6] introduces the notion of augmenting sets: a generalization of
the classical augmenting paths but where one can perform many augmentations in
parallel.

So the revised goal of the algorithm is to, in each phase, efficiently find a maximal
augmenting set (akin to a blocking-flow in bipartite matching or flow algorithms).
Towards this goal, the algorithm maintains a relaxed version of augmenting set—
called a partial augmenting set—and keeps refining it to make it “better” (i.e. closer
to a maximal augmenting set). Here we give two independent improvements on top
of the algorithm of [CLSSW19]:

1. The algorithm of [CLSSW19] refines the partial augmenting set by a sequence
of operations on two adjacent distance layers in the exchange graph. In our
algorithm, we instead consider three consecutive layers for our basic refinement
procedures. This lets us focus our analysis on what happens in S—the “left”
side of the bipartite exchange graph—which contains at most r elements in
total (in contrast to [CLSSW19] where the performance analysis is dependent
on all n elements). The number of times we need to run the refinement
procedures thus depends on r, instead of n, which makes the algorithm faster
when r = o(n).

2. When the partial augmenting set is “close enough” to a maximal augmenting
set, [CLSSW19] falls back to finding the remaining augmenting paths one at
a time. In our algorithm, we also change to a different procedure when the
partial augmenting set is close enough to maximal. The difference is that,
instead of finding arbitrary augmenting paths, we find a special type of valid
paths with respect to the partial augmenting set, so that these paths can
be used to further improve (refine) the partial augmenting set. The number
of valid paths we need to find is less than the number of augmenting paths
[CLSSW19] needs to find. This decreases the dependency on ε in the final
algorithm.

The first improvement (Item 1) replaces the
√
n term with a

√
r term in the query

complexity of the algorithm. The second improvement (Item 2) shaves off a 1/
√
ε

term from the query complexity. Together they thus bring down the query complexity
from Õ(n

√
n

ε
√
ε

) in [CLSSW19] to Õ(n
√
r

ε ) as in our Theorem C.1.1. Note that these
two improvements are independent of each other, and can be applied individually.

Exact algorithm. To obtain the exact algorithm (Theorem C.1.2), we use the
framework of Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai’s Õ(n6/5r3/5)-query
exact algorithm [BBMN21]. The main idea of this algorithm is to combine ap-
proximation algorithms—which can efficiently find a common independent set only
εr away from the optimal—with a randomized Õ(n

√
r)-query subroutine to find

each of the remaining few, very long augmenting paths. The Õ(n6/5r3/5)-query
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exact algorithm [BBMN21] currently uses Chakrabarty-Lee-Sidford-Singla-Wong’s
Õ(n1.5/ε1.5) approximation algorithm [CLSSW19] as a subroutine. Simply replac-
ing it with our improved approximation algorithm (Theorem C.1.1) yields our
Õ(nr3/4)-query exact algorithm.

C.2 Preliminaries

We use the standard definitions of matroid M = (V, I); rank rank(X) for any
X ⊆ V ; exchange graph G(S) for a common independent set S ∈ I1 ∩ I2; and
augmenting paths in G(S) throughout this paper. For completeness, we define them
below. We also need the notions of augmenting sets introduced by [CLSSW19],
which we also define in later this section.

Matroids
Definition C.2.1 (Matroid). A matroid is a tuple M = (V, I) of a ground set V
of n elements, and non-empty family I ⊆ 2V of independent sets satisfying

Downward closure: if S ∈ I, then S′ ∈ I for all S′ ⊆ S.

Exchange property: if S, S′ ∈ I, |S| > |S′|, then there exists x ∈ S \ S′ such
that S′ ∪ {x} ∈ I.

Definition C.2.2 (Set notation). We will use A+ x and A− x to denote A ∪ {x}
respectively A \ {x}, as is usual in matroid intersection literature. We will also use
Ā := V \A, A+B := A ∪B, and A−B := A \B.

Definition C.2.3 (Matroid rank). The rank of A ⊆ V , denoted by rank(A), is
the size of the largest (or, equivalently, any maximal) independent set contained
in A. It is well-known that the rank-function is submodular, i.e. rank(A + x) −
rank(A) ≥ rank(B+x)− rank(B) whenever A ⊆ B ⊆ V and x ∈ V \B.6 Note that
rank(A) = |A| if and only if A ⊆ I.

Definition C.2.4 (Matroid Intersection). Given two matroids M1 = (V, I1) and
M2 = (V, I2) over the same ground set V , a common independent set S is a set
in I1 ∩ I2. The matroid intersection problem asks us to find the largest common
independent set—whose cardinality we denote by r. We use rank1 and rank2 to be
the rank functions of the corresponding matroids.

The Exchange Graph
Many matroid intersection algorithms, e.g. those in [Edm79; AD71; Law75; Cun86;
Ngu19; BBMN21], are based on iteratively finding augmenting paths in the exchange
graph.

6Usually denoted as the diminishing returns property of submodular functions.
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Definition C.2.5 (Exchange graph). Given two matroids M1 = (V, I1) and
M2 = (V, I2) over the same ground set, and a common independent set S ∈ I1 ∩I2,
the exchange graph G(S) is a directed bipartite graph on vertex set V ∪ {s, t} with
the following arcs (or directed edges):

1. (s, b) for b ∈ S̄ when S + b ∈ I1.

2. (b, t) for b ∈ S̄ when S + b ∈ I2.

3. (a, b) for b ∈ S̄, a ∈ S when S + b− a ∈ I1.

4. (b, a) for b ∈ S̄, a ∈ S when S + b− a ∈ I2.

We will denote the set of elements at distance k from s by the distance-layer Dk.

Definition C.2.6 (Shortest augmenting path). In G(S), a shortest (s, t)-path
p = (s, b1, a1, b2, a2, . . . , aℓ, bℓ+1, t) (with bi ∈ S̄ and ai ∈ S) is called a shortest
augmenting path. We can augment S along the path p to obtain S′ = S ⊕ p =
S+b1−a1 +b2−a2 . . .+bℓ+1, which is well-known to also be a common independent
set (with |S′| = |S|+1) [Cun86]. Conversely, there must exist a shortest augmenting
path whenever |S| < r.

The following lemma is very useful for (1− ε)-approximation algorithms since it
essentially says that one needs only to consider paths up to length O( 1

ε ).

Lemma C.2.7 (Cunningham [Cun86]). If the length of the shortest (s, t)-path in
G(S) is at least 2ℓ+ 2, then |S| ≥ (1−O(1/ℓ))r.

Lemma C.2.8 (Exchange discovery by binary search [CLSSW19; Ngu19]). Suppose
M = (V, I) is a matroid, Y ⊆ X ∈ I, and b ̸∈ X such that X + b /∈ I. Then, using
O(log |Y |) independence queries one can find some a ∈ Y such that X + b− a ∈ I
or determine that none exist.7

Augmenting Sets

A generalization of the classical augmenting paths—called augmenting sets—play a
key role in the approximation algorithm of [CLSSW19], and therefore also in the
modified version of this algorithm presented in this paper. In order to efficiently find
“good” augmenting sets, the algorithm works with a relaxed form of them instead:
partial augmenting sets. The following definitions and key properties of (partial)
augmenting sets are copied from [CLSSW19] where one can find the corresponding
proofs.

7When X = S, we can use this to find edges of type 3 and 4 in the exchange graph.
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Definition C.2.9 (Augmenting Sets, from [CLSSW19, Definition 24]). Let S ∈
I1 ∩ I2 and G(S) be the corresponding exchange graph with shortest (s, t)-path
of length 2(ℓ + 1) and distance layers D1, D2, . . . , D2ℓ+1. A collection of sets
Πℓ := (B1, A1, B2, A2, . . . , Aℓ, Bℓ+1) form an augmenting set (of width w) in G(S)
if the following conditions are satisfied:

(a) For 1 ≤ k ≤ ℓ+ 1, we have Ak ⊆ D2k and Bk ⊆ D2k−1.

(b) |B1| = |A1| = |B2| = · · · = |Bℓ+1| = w

(c) S +B1 ∈ I1

(d) S +Bℓ+1 ∈ I2

(e) For all 1 ≤ k ≤ ℓ, we have S −Ak +Bk+1 ∈ I1

(f) For all 1 ≤ k ≤ ℓ, we have S −Ak +Bk ∈ I2

Definition C.2.10 (Partial Augmenting Sets, from [CLSSW19, Definition 37]). We
say that Φℓ := (B1, A1, B2, A2, . . . , Aℓ, Bℓ+1) forms a partial augmenting set if it
satisfies the conditions (a), (c), (d), and (e) of an augmenting set, plus the following
two relaxed conditions:

(b) |B1| ≥ |A1| ≥ |B2| ≥ · · · ≥ |Bℓ+1|.

(f) For all 1 ≤ k ≤ ℓ, we have rank2(S −Ak +Bk) = rank2(S).

Theorem C.2.11 (from [CLSSW19, Theorem 25]). Let Πℓ := (B1, A1, B2, A2, . . . ,
Bℓ, Aℓ, Bℓ+1) be the an augmenting set in the exchange graph G(S). Then the set
S′ := S ⊕Πℓ := S +B1−A1 +B2− · · ·+Bℓ−Aℓ +Bℓ+1 is a common independent
set.8

We also need the notion of maximal augmenting sets, which naturally corre-
spond to a maximal ordered collection of shortest augmenting paths, where, after
augmentation, the (s, t)-distance must have increased. The following are due to
[CLSSW19].

Definition C.2.12 (Maximal Augmenting Sets, from [CLSSW19, Definition 35]).
Let Πℓ = (B1, A1, B2, · · · , Bℓ, Aℓ, Bℓ+1) and Π̃ℓ = (B̃1, Ã1, B̃2, · · · , B̃ℓ, Ãℓ, B̃ℓ+1) be
two augmenting sets in G(S). We say Π̃ℓ contains Πℓ if Bk ⊆ B̃k and Ak ⊆ Ãk, for
all k. An augmenting set Πℓ is called maximal if there exists no other augmenting
set Π̃ℓ containing Πℓ.

Theorem C.2.13 (from [CLSSW19, Theorem 36]). An augmenting set Πℓ is
maximal if and only if there is no augmenting path of length at most 2(ℓ + 1) in
G(S ⊕Πℓ).

8Note that |S′| = |S| + w, where w is the width of Πℓ. In particular, an augmenting set with
width w = 1 is exactly an augmenting path.
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C.3 Improved Approximation Algorithm

Our algorithm closely follows the algorithm of Chakrabarty-Lee-Sidford-Singla-Wong
[CLSSW19, Section 6]. The algorithm runs in phases, where in each phase the
algorithm finds a maximal set of augmentations to perform, so that the (s, t)-distance
in the exchange graph increases between phases. By Lemma C.2.7, only O(1/ε)
phases are necessary.

In the beginning of a phase, the algorithm runs a breadth-first-search to compute
the distance layers D1, D2, . . . D2ℓ+1 in the exchange graph G(S), where S is the
current common independent set. The total number of independence queries, across
all phases, for these BFS’s can be bounded by O(n log(r)/ε). We refer to [CLSSW19,
Algorithm 4, Lemma 19, and Proof of Theorem 21] for how to implement such a
BFS efficiently.

After the distance layers have been found, the search for a maximal augmenting
set begins. We start by summarizing on a high level how the algorithm of [CLSSW19]
does this in two stages:

1. The first stage keeps track of a partial augmenting set which it keeps refining
by a series of operations on adjacent distance layers in the exchange graph, to
make it closer to a maximal augmenting set.

2. When we are “close enough” to a maximum augmenting set, the second
stage handles the last few augmenting paths—for which the first stage slows
down—by finding the remaining augmenting paths individually one at a time.

Here we give two independent improvements over the algorithm of [CLSSW19], one
for each stage. The first improvement is to replace the refine operations in the first
stage by a new subroutine RefineABA (Line 4) working on three consecutive layers
instead of two. This allows us to measure progress in terms of r instead of n. The
second improvement is for the second stage where we, instead of finding arbitrary
augmenting paths, work directly on top of the output of the first stage and find a
specific type of valid paths with respect to the partial augmenting set, using a new
a subroutine RefinePath (Section C.3.2).

C.3.1 Implementing a Phase: Refining

The basic refining ideas and procedures in this section are the same as in [CLSSW19].
The goal is to keep track of a partial augmenting set Φℓ = (B1, A1, B2, . . . , Aℓ, Bℓ+1)
which is iteratively made “better” through some refine procedures. Eventually, the
partial augmenting set will become a maximal augmenting set, which concludes the
phase. Towards this goal, we maintain three types of elements in each layer:

Selected. Denoted by Ak or Bk. These form the partial augmenting set Φℓ =
(B1, A1, B2, . . . , Aℓ, Bℓ+1).
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Removed. Denoted by Rk. These elements are safe to disregard from further
computation (i.e. deemed useless) when refining Φℓ towards a maximal
augmenting set.

Fresh. Denoted by Fk. These are the elements that are neither selected nor removed.

D2k

R2k

F2k

Ak

⊆ S

D2k+1

R2k+1

F2k+1

Bk+1

⊆ S

D2k−1

R2k−1

F2k−1

Bk

⊆ S

M2 M1

· · ·· · ·

Figure C.1: An illustration of a few neighboring layers. Note that
(Bk, R2k−1, F2k−1) form a partition of odd layer D2k−1 ⊆ S̄, and (Ak, R2k, F2k)
form a partition of even layer D2k ⊆ S.

Elements can change their types from fresh → selected → removed, but never
in the other direction. Initially, we start with all elements being fresh.9 For
convenience, we also define “imaginary” layers D0 and D2ℓ+2 with A0 = R0 = F0 =
D0 = Aℓ+1 = R2ℓ+2 = F2ℓ+2 = D2ℓ+2 = ∅. The algorithm maintains the following
phase invariants (which are initially satisfied) during the refinement process:

Definition C.3.1 (Phase Invariants, from [CLSSW19, Section 6.3.2]). The phase
invariants are:

(a-b) Φℓ = (B1, A1, B2, . . . , Aℓ, Bℓ+1) forms a partial augmenting set.10

(c) For 1 ≤ k ≤ ℓ, for any X ⊆ Bk+1 +F2k+1 = D2k+1−R2k+1, if S− (Ak +R2k)+
X ∈ I1 then S −Ak +X ∈ I1. 11

(d) rank2(W +R2k−1) = rank2(W ) where W = S − (D2k −R2k) +Bk.

9This differs slightly from [CLSSW19], where the initially B1 is greedily picked to be maximal
so that S +B1 ∈ I1, while the rest of the elements are fresh.

10The naming of this invariant as (a-b) is to be consistent with [CLSSW19] where this condition
is split up into two separate items (a) and (b).

11An equivalent condition for (c) is: rank1(W − R2k) = rank1(W ) − |R2k|, where W =
S −Ak + (D2k+1 −R2k+1).
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Remark C.3.2. Invariant (c) essentially says that if R2k+1 is “useless”, then so is
R2k. Similarly, Invariant (d) says that if R2k is “useless”, then so is R2k−1. Together
they imply that we can safely ignore all the removed elements.

Lemma C.3.3. Suppose that (i) the phase invariants hold; (ii) |B1| = |A1| = · · · =
|Bℓ+1|; and (iii) B1 is a maximal subset of D1 \R1 satisfying S +B1 ∈ I1. Then
(B1, A1, . . . , Bℓ+1) is a maximal augmenting set.

Proof idea. (See [CLSSW19, Proof of Lemma 44] for a complete proof). If it was
not maximal, there exists an augmenting path (b1, a1, . . . , bℓ+1) in the exchange
graph after augmenting along (B1, A1, . . . , Bℓ+1). However, (iii) then says that b1
must have been removed since it cannot be fresh. But if b1 is removed, then so
was a1, then so was b2 etc., by invariants (c) and (d) (this requires a technical, but
straightforward, argument). However, bℓ+1 cannot have been removed (by invariant
(d)), which gives the desired contradiction.

Refining Two Adjacent Layers

We now present the basic refinement procedures from [CLSSW19], which are op-
erations on neighboring layers. There is some asymmetry in how (odd, even) and
(even, odd) layer-pairs are handled, arising from the inherent asymmetry of the
independence query between S and S̄, but the ideas are the same.

RefineAB(k) extends Bk+1 as much as possible while respecting invariant (a-b)
(Lines 1-2). Then a maximal collection of element in Ak which can be “matched”
to Bk+1 is found, and the others elements in Ak are removed (Lines 3-4).

RefineBA(k) finds a maximal subset Bk that can be “matched” to Ak + F2k, and
removes the other elements of Bk (Lines 1-2). Then Ak is extended with
elements from F2k which are the endpoints of the above “matching” (Lines
3-4).

Algorithm C.1: RefineAB(k) (called Refine1 in [CLSSW19,
Algorithm 9])
1 Find maximal B ⊆ F2k+1 s.t. S −Ak +Bk+1 +B ∈ I1
2 Bk+1 ←− Bk+1 +B,F2k+1 ←− F2k+1 −B
3 Find maximal A ⊆ Ak s.t. S −Ak +Bk+1 +A ∈ I1
4 Ak ←− Ak −A,R2k ←− R2k +A

The following properties of the RefineAB and RefineBA methods are proven in
[CLSSW19].

Lemma C.3.4 (from [CLSSW19, Lemmas 40-42]). Both RefineAB and RefineBA
preserve the invariants. Also: after RefineAB(k) is run, we have |Ak| = |Bk+1|
(unless k = 0). After RefineBA(k) is run, we have |Bk| = |Ak| (unless k = ℓ+ 1).
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Algorithm C.2: RefineBA(k) (called Refine2 in [CLSSW19,
Algorithm 10])
1 Find maximal B ⊆ Bk s.t. S − (D2k −R2k) +B ∈ I2
2 R2k−1 ←− R2k−1 +Bk\B,Bk ←− B
3 Find maximal A ⊆ F2k s.t. S − (D2k −R2k) +Bk +A ∈ I2
4 Ak ←− Ak + F2k\A,F2k ←− A

Lemma C.3.5 (from [CLSSW19, Lemma 45]). RefineAB can be implemented with
O(|D2k|+ |D2k+1|) queries. RefineBA can be implemented with O(|D2k−1|+ |D2k|)
queries.

Observation C.3.6. Lemma C.3.4 is particularly interesting. It says that at least
|Aoldk | − |Boldk+1| (respectively |Boldk | − |Aoldk |) elements change type when running
RefineAB (respectively RefineAB).

Remark C.3.7. Observation C.3.6 is used in [CLSSW19] to bound the number of
times one needs to refine the partial augmenting set. Indeed, every element can only
change its type a constant number of times. In a single refinement pass, procedures
RefineAB(k) and RefineBA(k) are called for all k, and we obtain a telescoping sum
guaranteeing us that |Bold1 | − |Boldℓ+1| elements have changed their types. Hence,
after O(

√
n) refinement passes we have |B1| − |Bℓ+1| ≤

√
n, and we are “close” to

having a maximal augmenting set—only around
√
n many augmenting paths away.

This is essentially what lets [CLSSW19] obtain their subquadratic Õ(n1.5/poly(ε))
algorithm.

Refining Three Adjacent Layers

We are now ready to present the new RefineABA method (Algorithm C.3), which
is not present in [CLSSW19]. This method works similarly to RefineAB and
RefineBA, but on three (instead of two) consecutive layers (D2k, D2k+1, D2k+2)
with the corresponding sets (Ak, Bk+1, Ak+1).

The motivation for this new procedure is that we can get a stronger version of
Observation C.3.6: after running RefineABA(k) we want that at least |Aoldk |−|Aoldk+1|
element in even layers have changed types. Note that there are at most |S| ≤ r
elements in the even layers (as opposed to n elements in total, which can be much
larger), so this means we need to refine the partial augmenting set fewer times
when using RefineABA compared to when just using RefineAB and RefineBA. In
particular, we will get that after O(

√
r) refinement passes, |B1| − |Bℓ+1| ≤

√
r.

Remark C.3.8. A natural question to ask is if it actually could be the case that
only elements in odd layers (i.e. those in S̄ which there are up to n many of)
change their type (while elements in even layers do not) during the refinement
passes in the algorithm of [CLSSW19] (which only uses the two-layer refinement
procedures)? That is, is the new three-layer refinement procedure necessary? The
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answer is yes. Consider for example the case with 5 layers B1 ⊆ D1;A1 ⊆ D2;B2 ⊆
D3;A2 ⊆ D4;B3 ⊆ D5 where q := |B1| = |A1| and |A2| = |B3| = 0. Refining the
consecutive pair (B1, A1) or (A2, B3) will not do anything. When refining (A1, B2)
it could be the case that only B2 increases (say any q-size subset in D3 can be
“matched” with A1). Similarly, when refining (B2, A2) it could be the case that only
B2 decreases (say there is only a single element in D3 which could be “matched”
with anything in the next layer D4, then it is unlikely that this specific element is
already selected in B2). In this case, we would need to run the two-layer refinement
procedures around |D3|/q ≈ n/q times before anything other than B2 changes. In
contrast, the new RefineABA method would, when run on (A1, B2, A2), terminate
with |A1| = |B2| = |A2| (that is it would have found the “special” element in D3
the first time it is run).

D2k

Ak

D2k−1

Bk

RefineBA

D2k+1

Bk+1

D2k

Ak

RefineAB

D2k+1

Ak+1

D2k

Ak

RefineABA

Bk+1

D2k+2

Figure C.2: An illustration how the different refine methods change the partial
augmenting sets. Newly selected elements are marked in green, while newly removed
elements are marked in red.

To explain how RefineABA works, let us start with a simple case, namely when
S = ∅, i.e. there is only one layer between s and t in the exchange graph. Here,
finding a maximal augmenting set is the same as finding some maximal set B which
is independent in both matroids. Running RefineAB would extend this B with
elements as long as it is independent in the first matroid (ignoring the second
matroid), while RefineBA would throw away elements from B until it is independent
in the second matroid (now ignoring the first matroid). If we just alternate running
RefineAB and RefineBA we would in the worst case need to do this up to n times
(which is too expensive). Instead, there is a very simple greedy algorithm that
efficiently finds a maximal set B independent in both of the matroids12: for each
element, include it in B if this does not break independence for either matroid. This
is akin to how our RefineABA method works: it looks at the constraints from both
matroids simultaneously (both neighboring layers) and greedily selects B.

In the general case, RefineABA can be seen as running RefineAB and RefineBA
simultaneously. The algorithm starts by asserting |Bk+1| = |Ak+1| (so that S +
Bk+1−Ak+1 ∈ I2) by running RefineBA. So now we have both S+Bk+1−Ak ∈ I1

12This algorithm on its own is a well-known 1
2 -approximation algorithm for matroid intersection.
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and S+Bk+1−Ak+1 ∈ I2, and the algorithm proceeds to greedily extend Bk+1 while
it is still consistent with both the previous layer Ak and the next layer Ak+1 +F2k+2.
Some care has to be taken here to also mark elements as removed to preserve
the phase invariants. Finally, the algorithm decreases the size of Ak, respectively
increases the size of Ak+1, to both match |Bk+1|.

Algorithm C.3: RefineABA(k)
1 RefineBA(k + 1)
2 for x ∈ F2k+1 do
3 if S −Ak +Bk+1 + x ∈ I1 then
4 if S −Ak+1 − F2k+2 +Bk+1 + x ∈ I2 then

// Select x
5 Bk+1 ← Bk+1 + x
6 F2k+1 ← F2k+1 − x
7 else

// Remove x
8 R2k+1 ← R2k+1 + x
9 F2k+1 ← F2k+1 − x

10 RefineBA(k + 1)
11 RefineAB(k)

We now state some properties of RefineABA. These properties are relatively
straightforward—although technical and notation-heavy—to prove.

Lemma C.3.9. RefineABA(k) preserves the phase invariants.

Lemma C.3.10. After RefineABA(k) is run, we have |Ak| = |Bk+1| = |Ak+1|
(unless k = 0 or k = ℓ, where the sets A0 = Aℓ+1 = ∅ are “imaginiary”).

Lemma C.3.11. RefineABA(k) uses O(|D2k|+ |D2k+1|+ |D2k+2|) independence
queries.

Proof of Lemma C.3.9. Intuitively, the only tricky part is showing that invariant
(c) is preserved when some x is removed in line 7. We can pretend that we add x
to Bk+1 temporarily, and then run RefineBA(k + 1) in a way which would remove
this x immediately (and thus removing x did indeed preserve the invariants). We
present a formal proof below.

We already know that RefineAB and RefineBA preserve the invariants by
Lemma C.3.4, so it suffices to check that the for-loop starting in line 2 preserves the
invariants. We verify that this is the case after processing each x ∈ F2k+1 in the
for-loop:
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Invariant (a-b) holds by design: when x is added to Bk+1 we know both that
S −Ak +Bk+1 + x ∈ I1 and rank2(S −Ak+1 +Bk+1) cannot decrease. Note
also that rank2(S − Ak+1 + Bk+1) ≤ rank2(S) when k + 1 ≤ ℓ too (so it
cannot increase either), since otherwise there must exist some b ∈ Bk+1 so
that S + b ∈ I2 (by the matroid exchange property) which is impossible since
we are not in the last layer (the layer preceding t in G(S)).

Invariant (c) trivially holds, since the set Bk+1 + F2k+1 will only decrease, which
only restricts the choice of X ⊆ Bk+1 + F2k+1.

Invariant (d) will also be preserved. We need to argue that this is the case when
x is removed in line 7. Let W := S −Ak+1 − F2k+2 +Bk+1 = S − (D2k+2 −
R2k+2) +Bk+1, and Rold2k+1 be the set R2k+1 before x was added to it. First
note that W ∈ I2, since this holds after the RefineBA call in line 1, (since
|Ak+1| = |Bk+1| after this call) and Bk+1 is only extended with elements which
preserve this property. This means that rank2(W + x) = rank2(W ) = |W |,
since W + x = S −Ak+1 − F2k+2 +Bk+1 + x /∈ I2. Since the invariant held
before, we also know that rank2(W +Rold2k+1) = rank2(W ) = |W |. Hence W
is a maximal independent (in M2) subset of W +Rold2k+1 + x, as neither x nor
elements from Rold2k+1 can be used to extend it. Hence rank2(W +Rold2k+1 +x) =
|W | = rank2(W ); that is invariant (d) is preserved.

Proof of Lemma C.3.10. We focus our attention on the RefineBA and RefineAB
calls in lines 8-9, and argue that they do not change Bk+1. This would prove the
lemma, since by Lemma C.3.4 we would then have |Ak| = |Bk+1| and |Bk+1| =
|Ak+1|.

Indeed, RefineBA(k + 1) finds a maximal B ⊆ Bk+1 such that S − (D2k+2 −
R2k+2) + B ⊆ I2, and remove all elements not in B from Bk+1. Here, B = Bk+1
will be found, since S − (D2k+2 −R2k+2) +Bk+1 ∈ I2 after the for-loop in line 2 of
RefineABA.

Similarly, we see that RefineAB(k) finds a maximal B ⊆ F2k+1 such that
S − Ak + Bk+1 + B ∈ I1, and extend Bk+1 with this B. However, only B = ∅
works, since each x ∈ F2k+1 for which S −Ak +Bk+1 + x ∈ I1 was either selected
or removed in lines 5 or 7.

Proof of Lemma C.3.11. It is easy to see that RefineAB(k) uses O(|D2k|+ |D2k+1|)
queries, and RefineBA(k + 1) uses O(|D2k+1|+ |D2k+2|) queries. The for-loop in
line 2 will use O(|D2k+1|) queries.

Refinement Pass

We can now present the full Refine method (Algorithm C.4), which simply scans over
the layers and calls RefineABA on them. Our Refine is a modified version of Refine
from [CLSSW19, Algorithm 11] using our new RefineABA method instead of just
RefineAB and RefineBA. Just replacing the Refine method in the final algorithm
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of [CLSSW19] with our modified Refine below leads to an Õ(n
√
r/ε1.5)-query

algorithm (compared to their Õ(n1.5/ε1.5)), and concludes our first improvement
(as discussed in Item 1 in Section C.1.1).

Algorithm C.4: Refine(k)
1 for k = ℓ, ℓ− 1, ℓ− 2, . . . , 1, 0 do
2 RefineABA(k)

The following Lemma C.3.12 will be useful to bound the number of Refine calls
needed in our final algorithm, and closely corresponds to [CLSSW19, Corollary 43].
Our Refine implementation has the advantage that it only counts the elements in
the even layers, of which there are at most r.

Lemma C.3.12. Let (Bold1 , Aold1 , . . .) and (Bnew1 , Anew1 , . . .) be the sets before and
after Refine is run. Then at least |Bnew1 | − |Bnewℓ+1 | elements in even layers have
changed types.

Proof. Note that whenever Ak changes, it is because some elements changed it types
in D2k. In particular, if the size of Ak increases (respectively decreases) by z, at
least z elements will change types from fresh to selected (respectively from selected
to removed) in D2k.

After the first iteration |Aℓ| = |Bnewℓ+1 |, so at least |Aoldℓ | − |Bnewℓ+1 | elements in
D2ℓ changed types. Similarly, after the iteration when k = i (for 1 ≤ i ≤ ℓ − 1),
|Ai| = |Ai+1|, and hence at least |Aoldi | − |Ai| elements in D2i changed types plus
at least |Ai+1| − |Aoldi+1| elements in D2i+2 changed types.13 Finally, after the last
iteration |A1| = |Bnew1 |, and hence at least |Bnew1 | − |Aold1 | elements in D2 changed
types.

The above terms telescope, and we conclude that at least |Bnew1 | − |Bnewℓ+1 |
elements in the even layers changed its types when Refine was run.

Lemma C.3.13. Refine uses O(n) independence queries.

Proof. This follows directly by Lemma C.3.11.

C.3.2 Refining Along a Path
If we just run Refine until we get a maximal augment set (i.e. until |B1| = |Bℓ+1|)
we need to potentially run Refine as many as Θ(r) times, which needs too many
independence queries. Lemma C.3.12 tells us that Refine makes the most “progress”
while |B1| − |Bℓ+1| is large: in fact, only O(r/p) calls to Refine is needed until
|B1|−|Bℓ+1| ≤ p. The idea in [CLSSW19] is thus to stop refining when |B1|−|Bℓ+1|

13|Ai+1| ≤ |Aold
i+1| just before the RefineABA(i) call, since earlier iterations can only have

decreased the size of |Ai+1|.
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is small enough and fall back to finding augmenting paths one at a time (they prove
that one needs to find at most O((|B1| − |Bℓ+1|)ℓ) many). We use a similar idea
in that we swap to a different procedure when |B1| − |Bℓ+1| is small enough, the
difference being that we still work with the partial augmenting set. This will let us
show that only O(|B1| − |Bℓ+1|) many “paths” need to be found, saving a factor
ℓ ≈ 1

ε compared to [CLSSW19].
This section thus describes the second improvement (as discussed in Item 2 in

Section C.1.1). Note that this improvement is independent of the first improvement
(i.e. the three-layer refine). We aim to prove the following lemma.

Lemma C.3.14. There exists a procedure (RefinePath, Algorithm C.5), which
uses O(n log r) independence queries, preserves the invariants, and either:

i. Increases the size of Bℓ+1 by at least 1.

ii. Terminates with (B1, A1, . . . , Bℓ+1) being a maximal augmenting set.

RefinePath attempts to find what we call a valid path. What we want is a
sequence of elements which we can add to the partial augmenting set without
violating the invariants and the properties of the partial augmenting set. It turns
out (not very surprisingly) that such sequences of elements can be characterized
by a notion of paths in something which resembles the exchange graph with respect
to our partial augmenting set. This is what motivates the definition of valid paths
below.
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· · ·
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Figure C.3: A valid path (bk, . . . , aℓ, bℓ+1, t) “starting” from the partial augmenting
set at Ak−1, so that we can use Lemma C.3.17 and augment along it.

Definition C.3.15 (Valid path). A sequence of elements (bi, ai, bi+1, . . . , bℓ+1, t) (or
(ai, bi+1, . . . , bℓ+1, t)) is called a valid path (with respect to the partial augmenting
set) if for all k ≥ i:

(a) ak ∈ F2k and bk ∈ F2k−1.

(b) S +Bℓ+1 + bℓ+1 ∈ I2.
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(c) S −Ak +Bk − ak + bk ∈ I2.

(d) S −Ak +Bk+1 − ak + bk+1 ∈ I1.

Remark C.3.16. Compare the properties of valid paths with the edges in the exchange
graph from Definition C.2.5. A valid path is essentially a path in the exchange graph
after we have already augmented S by our partial augmenting set (even though this
exchange graph is not exactly defined, since it is not guaranteed that S remains a
common independent set when augmented by a partial augmenting set).

Lemma C.3.17. If p = (bi, ai, bi+1, . . . , bℓ+1, t) is a valid path starting at bi, such
that S−Ai−1+Bi+bi ∈ I1, then (B1, A1, . . . , Bi−1, Ai−1, Bi+bi, Ai+ai, . . . , Bℓ+1+
bℓ) is a partial augmenting set satisfying the invariants.

Proof. That it forms a partial augmenting set is true by the definition of valid
paths, and the fact that S −Ai−1 +Bi + bi ∈ I1. Indeed, it cannot be the case that
|Ai−1| < |Bi+bi| when i > 1, since then rank1(S−Ai−1 +Bi+bi) > |S| = rank1(S)
implies that some element x ∈ (Bi + bi) satisfies S + x ∈ I1 (i.e. it is in the first
layer D1) by the exchange property of matroids. Invariants (c) and (d) are trivially
true since the sets Ak and Bk are only extended.

The goal of RefinePath (Algorithm C.5) is thus to find a valid path satisfying
the conditions in Lemma C.3.17. Towards this goal, RefinePath will start from
the last layer D2ℓ+1 and “scan left” in a breadth-first-search manner while keeping
track of valid paths starting at each fresh vertex x (the next element on such a path
will be stored as next[x]). If at some point one valid path can “enter” the partial
augmenting set in a layer, we are done and can use Lemma C.3.17. We also show
that it is safe (i.e. preserves the invariants) to remove all the fresh elements x for
which we cannot find a valid path starting at x.

To efficiently find the “edges” during our breadth-first-search using only inde-
pendence queries, we use the binary-search trick from Lemma C.2.8. However,
this relies on the partial augmenting set being locally “flat” in the layers we are
currently exploring, i.e. |Bk| = |Ak| respectively |Bk| = |Ak+1|. We can ensure this
by running RefineAB respectively RefineBA while performing the scan.

Now we are ready to present the pseudo-code of the RefinePath method (Al-
gorithm C.5). Due to the asymmetry between even/odd layers and independence
queries, we need to handle moving from layer B to A and from A to B a bit
differently, but the ideas are similar.

Lemma C.3.18. RefinePath preserves the invariants.

Proof. The proof is relatively straightforward, but technical. The only non-trivial
part is showing that invariants (c) and (d) are preserved after we remove something
in line 8 or line 23. Intuitively, if we remove b in line 8, we can instead think of
temporarily adding b to Bk and running RefineBA(k) in such a way so that b is
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Algorithm C.5: RefinePath

1 for k = ℓ+ 1, ℓ, . . . , 2, 1 do
// Process (Bk, Ak)

2 RefineBA(k)
3 if some element a was added to Ak in the above refine-call then
4 Add the valid path starting at next[a] to the partial augmenting set
5 return
6 for each element b ∈ F2k−1 do
7 if S −Ak − F2k +Bk + b /∈ I2 then
8 Remove b, that is: F2k−1 ← F2k−1 − b, R2k−1 ← R2k−1 + b

9 else
10 Find an a ∈ F2k such that S −Ak +Bk + b− a ∈ I2
11 Let next[b] = a
12 if k = ℓ+ 1 then
13 Let next[b] = t

// Process (Ak−1, Bk)
14 if some element b ∈ F2k−1 satisfies S −Ak−1 +Bk + b ∈ I1 then
15 Add the valid path starting at b to the partial augmenting set
16 return
17 RefineAB(k − 1)
18 Q← F2k−2
19 for each element b ∈ F2k−1 do
20 while can find a ∈ Q such that S −Ak−1 +Bk + b− a ∈ I1 do
21 Q← Q− a
22 Let next[a] = b

23 Remove all elements in Q, that is:
F2k−2 ← F2k−2 −Q, R2k−2 ← R2k−2 +Q

// Now (B1, A1, . . . , Bℓ+1) is a maximal augmenting set.

immediately removed. A similar intuitive argument works for line 23. We next
present a formal proof.

We know that RefineAB and RefineBA preserve the invariants, by Lemma C.3.4.
We also know by Lemma C.3.17 that adding a valid path to the partial augmenting
set also preserves the invariants. So what remains is to show that the invariants are
preserved after:

Line 8. We only need to check invariant (d), the other ones trivially hold. Let
W = S − Ak − F2k + Bk = S − (D2k − R2k) + Bk and Rold2k−1 be R2k−1
before b was added to it. Note that b is such that W + b /∈ I2, and we know
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that W ⊆ S − Ak + Bk ∈ I2 and hence rank2(W + Rold2k−1) = rank2(W ) =
|W | and rank2(W + b) = rank2(W ) = |W |. We thus need to show that
rank2(W + Rold2k−1 + b) = |W | too, which is clear since W is a maximal
independent subset of W +Rold2k−1 +b (it can neither be extended with elements
from Rold2k−1 nor with b).

Line 23. We only need to check invariant (c), the other ones trivially hold. We
imagine we add the a ∈ Q to R2k−2 one-by-one, and show that the invariant
(c) is preserved after each such addition. So consider some a ∈ Q which will be
removed, and let Rold2k−2 be the set R2k−2 just before we added a to it. First note
that rank1(S−Ak−1 +Bk+F2k−1−a) = rank1(S−Ak−1 +Bk+F2k−1)−1 =
|S − Ak−1 + Bk| − 1, as otherwise there must exist some b ∈ F2k−1 such
that S − Ak−1 + Bk + b − a ∈ I1 (by the matroid exchange property), and
a would have been discovered in line 21 and therefore been removed from
Q. So the “return” of adding a to S − Ak−1 + Bk + F2k−1 − a is increasing
the rank by 1. Now consider some arbitrary X ⊆ Bk + F2k−1 such that
S −Ak−1 +X −Rold2k−2 − a ∈ I1. We need to show that S −Ak−1 +X ∈ I1.
Note that S−Ak−1 +X−Rold2k−2−a ⊆ S−Ak−1 +Bk +F2k−1−a. Hence, by
the diminishing returns (of adding a) we know rank1(S−Ak−1 +X−Rold2k−2) ≥
rank1(S−Ak−1 +X−Rold2k−2−a)+1 = |S−Ak−1 +X−Rold2k−2|, or equivalently
that S−Ak−1 +X −Rold2k−2 ∈ I1. Since the invariant held before, we conclude
that S −Ak−1 +X ∈ I1 too, which finishes the proof.

Valid paths. The algorithm keeps track of a valid path starting at each fresh
vertex it has processed. That is, after processing layer Dk, all elements in Fk
must be the beginning of a valid path, else they were removed. In particular, the
algorithm remembers the valid path starting at x as (x, next[x], next[next[x]], . . .).
It is easy to verify that this sequence does indeed satisfy the conditions of valid
paths by inspecting lines 10 and 21.

We also discuss what happens when the algorithm chooses to add a valid path
to the partial augmenting set (i.e. in line 4 or 15). If we are in Line 15, we can
directly apply Lemma C.3.17. Say we instead are in Line 4, and some a which was
previously fresh has been added to Ak. The RefineBA call can only have increased
Ak (that is Ak ⊇ Aoldk + a), so S − Ak + Bk+1 + b ∈ I1 will holds for b = next[a]
and we can apply Lemma C.3.17 here too.

When no path is found. In the case when no valid path to add to the partial
augmenting set is found, RefinePath must terminate with |B1| = |A1| = · · · =
|Bℓ+1|. This is because the RefineAB and RefineBA will never select any new
elements. That is RefineBA will not change Ak (as otherwise we enter the if-
statement at line 4), and RefineAB will not change Bk (since if b ∈ F2k−1 with
S −Ak−1 +Bk + b ∈ I1 existed we would have entered the if-statement at line 15).
We also remark that RefinePath ends with B1 being a maximal subset of D1 \R1,
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as otherwise some b would have been found in line 14. Hence Lemma C.3.3 implies
that (B1, A1, . . . , Bℓ+1) now forms a maximal augmenting set.

Query complexity. The RefineAB and RefineBA calls will in total use O(n)
queries. The independence checks at Lines 7 and 14 happens at most once for each
element, and thus use O(n) queries in total. Lines 10 and 21 can be implemented
using the binary-search-exchange-discovery Lemma C.2.8. Hence Line 10 will use,
in total, O(n log r) queries and Line 21 will use, in total, O(n log r) queries (since
each a ∈ Q will be discovered at most once). So we conclude that Algorithm C.5
uses O(n log r) independence queries.

C.3.3 Hybrid Algorithm
Now we are finally ready to present the full algorithm of a phase, which is parame-
terized by a variable p. The following algorithm is similar to that of [CLSSW19,
Algorithm 12] but uses our improved Refine method and finds individual paths
using the RefinePath method.

Algorithm C.6: Phase ℓ
1 Calculate the distance layers by a BFS.
2 Run Refine (Algorithm C.4) until |B1| − |Bℓ+1| ≤ p, but at least once.
3 Run RefinePath (Algorithm C.5) until (B1, A1, . . . Bℓ+1) is maximal and

augment along it.

Lemma C.3.19. Except for line 1, Algorithm C.6 uses O(nr/p+np log r) queries.14

Proof. Lemma C.3.12 tells us that Refine changes types of at least p elements
in even layers (i.e. elements in S) every time it is run, except maybe the last
time. Thus we only run Refine O(|S|/p+ 1) times. Each call takes O(n) queries
(Lemma C.3.13), for a total of O(nr/p) queries in line 2 of the algorithm.

Now we argue that B1 can never become larger than what it was just after
line 2 was run. This is because Refine will run at least once, and ends with a
RefineABA(0) call which in turn ends with a RefineAB(0) call—which extends B1
to be a maximal set in D1 \R1 for which S +B1 ⊆ I1 holds.15

Lemma C.3.14 tells us that each (except the last) time RefinePath is run, Bℓ+1
increases by 1. This can happen at most p times, so line 3 uses a total of O(np log r)
queries.

14Compare this to O(n2/p + npℓ log r) in [CLSSW19]. The improvement from n2/p to nr/p
comes from the use of the new three-layer RefineABA method, and the (independent) improvement
from npℓ log r to np log r comes from the use of the new RefinePath method.

15Indeed, since M1 is a matroid, all such maximal sets have the same size, so we can never
obtain something larger later.
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Now it is easy to prove Theorem C.1.1, which we restate below.

Theorem C.1.1 (Approximation algorithm). There is a deterministic algorithm
which given two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground
set V , finds a common independent set S ∈ I1 ∩ I2 with |S| ≥ (1 − ε)r, using

O

(
n
√
r log r
ε

)
independence queries.

Proof. Pick p =
√
r/ log r.16 Then each phase will use O(n

√
r log r) independence

queries (by Lemma C.3.19), plus a total of O( 1
εn log r) to run the BFS’s across all

phases (see [CLSSW19] for details on the BFS implementation). Since we need only
run O( 1

ε ) phases (by Lemma C.2.7 and Theorem C.2.13), in total the algorithm will
use O( 1

εn
√
r log r) queries.

C.4 Exact Matroid Intersection

In this section, we prove Theorem C.1.2 (restated below) by showing how our
improved approximation algorithm leads to an improved exact algorithm when
combined with the algorithms of [BBMN21].

Theorem C.1.2 (Exact algorithm). There is a randomized algorithm which given
two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a
common independent set S ∈ I1 ∩ I2 of maximum cardinality r, and w.h.p.17 uses
O(nr3/4 logn) independence queries. There is also a deterministic exact algorithm
using O(nr5/6 logn) queries.

Approximation algorithms are great at finding the many, very short augmenting
paths efficiently. Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai [BBMN21, Algo-
rithm 2] very recently showed how to efficiently find the remaining few, very long
augmenting paths, with a randomized algorithm using Õ(n

√
r) queries per aug-

mentation (or, with a slightly less efficient deterministic algorithm using Õ(nr2/3)
queries). In the randomized Õ(n6/5r3/5)-query exact algorithm of [BBMN21, Algo-
rithm 3], the current bottleneck is the approximation algorithm used. Replacing
the use of the Õ(n1.5/ε1.5)-query approximation algorithm from [CLSSW19] with
our improved version we obtain the more efficient randomized18 Õ(nr3/4)-query
Algorithm C.7.

16Compare this to p =
√
nε/ log r in [CLSSW19].

17w.h.p. = with high probability meaning with probability 1 − n−c for some arbitrarily large
constant c.

18The deterministic algorithm of Theorem C.1.2 is obtained in the same fashion but by using
the deterministic version of the augmenting path finding algorithm [BBMN21, Algorithm 2].
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Algorithm C.7: Exact Matroid Intersection (Modified version of
[BBMN21, Algorithm 3])

1 Run the approximation algorithm (Theorem C.1.1) with ε = r−1/4 to obtain
a common independent set S of size at least (1− ε)r = r − r3/4.

2 Starting with S, run Cunningham’s algorithm (as implemented by
[CLSSW19]), until the distance between s and t becomes larger than r3/4.

3 Keep finding augmenting paths—one at a time—to augment along, using the
randomized O(n

√
r logn)-query algorithm of [BBMN21, Algorithm 2].

When no (s, t)-path can be found in the exchange graph, S is a largest
common independent set.

Query complexity. We analyse the individual lines of Algorithm C.7.

Line 1. We see that the approximation algorithm uses O(nr3/4 logn) queries in
line 1.

Line 2. One need to (i) compute distances up to d = r3/4, and (ii) perform at most
O(r3/4) augmentations. [CLSSW19; BBMN21; Ngu19] show how to do (i) in
O(nd logn) = O(nr3/4 logn) queries in total over all phases of Cunningham’s
algorithm, and how to do (ii) using O(n logn) queries per augmentation (for
a total of O(nr3/4 logn) queries).

Line 3. By Lemma C.2.7, line 3 runs O(r1/4) times—each using O(n
√
r logn)

queries—for a total of O(nr3/4 logn) queries.

Remark C.4.1. In Algorithm C.7, the bottleneck between line 1-2 and line 2-3 now
matches (which was not the case in [BBMN21]). This means that if one wants to
improve the algorithm by replacing the subroutines in line 1 and 3, one need to
both improve the approximation algorithm (line 1) and the method to find a single
augmenting-path (line 3).
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Abstract

Despite a lot of recent progress in obtaining faster sequential matroid in-
tersection algorithms, the fastest parallel poly(n)-query algorithm was still the
straightforward O(n)-round parallel implementation of Edmonds’ augmenting
paths algorithm from the 1960s.

Very recently, Chakrabarty-Chen-Khanna [FOCS’21] showed the lower
bound that any, possibly randomized, parallel matroid intersection algorithm
making poly(n) rank-queries requires Ω̃(n1/3) rounds of adaptivity. They ask,
as an open question, if the lower bound can be improved to Ω̃(n), or if there
can be sublinear-round, poly(n)-query algorithms for matroid intersection.

We resolve this open problem by presenting the first sublinear-round
parallel matroid intersection algorithms. Perhaps surprisingly, we do not
only break the Õ(n)-barrier in the rank-oracle model, but also in the weaker
independence-oracle model. Our rank-query algorithm guarantees O(n3/4)
rounds of adaptivity, while the independence-query algorithm uses O(n7/8)
rounds of adaptivity, both making a total of poly(n) queries.
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D.1 Introduction

Matroid intersection. Given two matroids1 M1 = (V, I1) and M2 = (V, I2)
over the same n-element ground set V (but with different notions of independence
I1, I2), the matroid intersection problem is to find the largest common independent
set S∗ ⊆ I1 ∩ I2. This is a fundamental discrete optimization problem that has
been studied for over half a century. Matroid intersection can be used to model
many important combinatorial optimization problems, such as bipartite matching,
finding arborescences, spanning tree packing, etc. As such, matroid intersection is a
natural avenue to study all these problems simultaneously.

Oracle access. There are two standard ways to access the matroids—independence
oracles and rank oracles—and we study both in this work. In an independence-query
we may ask if S ⊆ V is independent in one of the matroids, i.e. a query of the form
“Is S ∈ I1?” or “Is S ∈ I2?” In a rank-query we instead ask for the rank of S ⊆ V in
one of the matroids. The rank rank1(S) with respect to the matroid M1 (similarly
rank2 for M2) is the size of the largest (or, equivalently, any maximal) independent
set, w.r.t. I1, contained in S. Note that the rank oracle is strictly more powerful
than the independence oracle, since S ∈ I1 if and only if rank1(S) = |S|.

Parallel matroid intersection. A parallel matroid intersection algorithm ac-
cesses the oracle in rounds. In each round, a number of queries—that may only
depend on the answers to queries made in previous rounds—can be issued in paral-
lel. There is certainly a trade-off between (1) adaptivity, usually measured by the
number of rounds, and (2) the total number of queries. When constructing parallel
algorithms the goal is often to have as few rounds of adaptivity as possible while
making only polynomially many queries in total.

Previous work. Edmonds [EDVJ68] showed the first polynomial algorithm for
matroid intersection in the 1960s, using O(n3) independence-queries, and there
has been a long line of research since then e.g. [EDVJ68; Edm70; Edm79; AD71;
Law75; Cun86; LSW15; Ngu19; CLSSW19; BBMN21; Bli21]. Many of these
are based on Edmonds’ framework of finding augmenting paths in the exchange
graph. In the sequential setting, only recently was the quadratic O(n2)-query-barrier
broken, first for rank-queries by Chakrabarty-Lee-Sidford-Singla-Wong in FOCS 2019
[CLSSW19] and subsequently also for independence-queries by Blikstad-v.d.Brand-
Mukhopadhyay-Nanongkai in STOC 2021 [BBMN21]. The current state-of-the-art
in the sequential setting are the2 Õ(n

√
n) rank-query algorithm by [CLSSW19] and

the Õ(n7/4) independence-query algorithm by [Bli21].

1Matroids are a well-studied combinatorial structure which can be though of as a generalization
of the notion of linear independence in vector spaces. For a formally definition, see Definition D.2.2.

2We use the usual convention of hiding polylog(n)-factors with Õ and Ω̃ throughout the paper.
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When it comes to the parallel setting, there is a straightforward O(n)-round,
poly(n) independence-query implementation of Edmonds’ algorithm: find the (up
to O(n) many) augmenting paths one-by-one. Each augmenting path can be found
in a single round by querying all the potential edges in the exchange graph. In some
special cases of matroid intersection we can do much better: a sequence of work has
shown that both bipartite matching [Lov79; KUW86; FGT21] and subsequently
linear matroid intersection [Lov79; GT20] are in RNC3 and quasi-NC.4

Another line of relevant work is showing that, in the parallel setting, the search-
problem (finding a largest common independent set S) and the decision-problem
(just finding the size of the answer) are “equivalent” (with only O(polylog(n))
overhead). This is not at all obvious in the parallel setting, however, a recent work
from SODA 2022 by Ghosh-Gurjar-Ray [GGR22] shows that this is indeed the case
for weighted matroid intersection, with rank-oracle access.

In FOCS 1985, Karp-Upfal-Wigderson [KUW85] showed that any independence-
query algorithm, possibly randomized, that finds a maximum independent set (basis)
in a single matroid must use Ω̃(n1/3) rounds of adaptivity if it makes poly(n) queries.
They also show algorithms to find a basis of a (single) matroid in O(

√
n) rounds of

independence-queries or a single round of the more powerful rank-queries. Arguably,
this polynomial gap between the independence-query (Ω̃(n1/3) rounds) and rank-
query (O(1) rounds) for the seemingly easy problem to find a basis of a matroid
illustrates that the independence-query is much weaker than the rank-query when
used in parallel algorithms.

Nevertheless, a recent result from FOCS 2021 by Chakrabarty-Chen-Khanna
[CCK21] shows that even rank-query algorithms require a polynomial number of
rounds to solve matroid intersection. In particular, they show a lower bound of
Ω̃(n1/3) rounds of adaptivity for any, possibly randomized, poly(n) rank-query
matroid intersection algorithm.

Despite efficient algorithms for some special cases of matroid intersection, the
trivial O(n)-round algorithm has remained unbeaten in the general case. The major
open question (asked, for example, by [CCK21]) is then whether it is possible to
beat the O(n)-round barrier, or if matroid intersection is inherently very sequential
and requires Ω̃(n) rounds of adaptivity.

Our results. We answer the above question by showing the first sublinear-round
parallel matroid intersection algorithms, both in the rank-oracle and independence-
oracle models. In particular, we obtain the following theorem.

Theorem D.1.1 (Sublinear-round Matroid Intersection). There is a deterministic
parallel algorithm which given two matroids M1 = (V, I1) and M2 = (V, I2) on the
same ground set V , finds a largest common independent set S ∈ I1 ∩I2 using either

• O(n3/4) rounds of polynomially many rank-queries, or
3Randomized polylog(n) rounds of adaptivity with poly(n) total work.
4Deterministic polylog(n) rounds of adaptivity with nO(log n) total work.
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• O(n7/8) rounds of polynomially many independence-queries.

Our results, together with the lower bounds of [KUW85; CCK21], imply that
the true adaptivity of matroid intersection is somewhere between n1/3 and n3/4 (or
n7/8 for independence queries).
Remark D.1.2. Although we focus on the query-complexity in this paper, we note
that the rounds and work in our algorithms are dominated, up to log-factors, by
the oracle queries.

D.1.1 Technical Overview
The exchange graph and augmenting paths. Like many matroid intersection
algorithms, we work in Edmonds’ framework of finding augmenting paths in the
exchange graph. The exchange graph G(S) with respect to a common independent set
S ∈ I1 ∩I2 is a directed bipartite graph, where finding a shortest (s, t)-path—called
an augmenting path—means that we can increase the size of S by one. In a single
round of O(n2) independence (or rank) queries, we can learn the entire exchange
graph, and can thus find an augmenting path if one exists. This immediately gives
a straightforward O(n)-round algorithm: find the (up to O(n) many) augmenting
paths one-by-one.

The exchange graph depends on the current common independent set S, and
changes after each augmentation. In fact, if we have two disjoint augmenting
paths p1 and p2 in G(S), it is not necessarily the case that we can augment along
both of these: augmenting along p1 might destroy the path p2 even if they were
disjoint.5 This forms the main difficulty in trying to beat the O(n)-round barrier,
and illustrates the need in finding several “compatible” augmenting paths which
can all be augmented along simultaneously.

Blocking flow. Cunningham [Cun86] was the first to introduce blocking flow
algorithms to matroid intersection, similar to Hopcroft-Karp’s [HK73] bipartite
matching or Dinitz’s [Din70] max-flow algorithms. The idea is to run in phases,
where after each phase the length of a shortest augmenting path in the exchange
graph has increased. This is done by finding a maximal collection of compatible
shortest augmenting paths. Both of the current state-of-the-art sequential O(n

√
n)-

rank-query [CLSSW19] and O(n7/4)-independence-query [Bli21] algorithms are
based on versions of these blocking flow ideas. The O(n

√
n)-rank-query algorithm

still finds the augmenting paths in a sequential way, so it does unfortunately not
seem to parallelize well.

The O(n7/4)-independence-query algorithm, on the other hand, is based on a re-
cent notion of augmenting sets introduced by Chakrabarty-Lee-Sidford-Singla-Wong
[CLSSW19]. This notion of augmenting sets precisely captures what a collection of

5This is unlike the case of augmenting path algorithms for bipartite matching or maximum
flow, where one can indeed augment along disjoint paths simultaneously.
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“compatible” shortest augmenting paths looks like. The authors of [CLSSW19] also
present an algorithm to find such augmenting sets, using independence-queries.

Our contribution is to show that a modified version of the augmenting sets
algorithm of [CLSSW19, Section 6] (which was later improved by [Bli21]) can be
implemented in parallel when combined with the parallel matroid-basis finding
algorithms of Karp-Upfal-Wigderson [KUW85]. Previous to this work, augmenting
sets algorithms have before only been used in the sequential setting, and only in the
independence-oracle model. Nevertheless, augmenting sets are what allows us to
break the O(n)-round barrier also with rank-queries.

D.2 Preliminaries

We use the standard definitions of matroid M = (V, I); rank rank(X) for any
X ⊆ V ; exchange graph G(S) for a common independent set S ∈ I1 ∩ I2; and
augmenting paths in G(S) throughout this paper. For completeness, we define them
below. We also need the notions of augmenting sets introduced by [CLSSW19],
which we also define in later this section.

Definition D.2.1 (Set notation). We will use A+ x and A− x to denote A ∪ {x}
respectively A \ {x}, as is usual in matroid intersection literature. We will also use
A+B := A ∪B, and A−B := A \B.

Matroids

Definition D.2.2 (Matroid). A matroid is a tuple M = (V, I) of a ground set V
of n elements, and non-empty family I ⊆ 2V of independent sets satisfying:

Downward closure: if S ∈ I, then S′ ∈ I for all S′ ⊆ S.

Exchange property: if S, S′ ∈ I, |S| > |S′|, then there exists x ∈ S \ S′ such
that S′ + x ∈ I.

Definition D.2.3 (Matroid rank). The rank of A ⊆ V , denoted by rank(A), is the
size of the largest (or, equivalently, any maximal) independent set contained in A.
It is well-known that the rank-function is submodular, i.e. rank(A+ x)− rank(A) ≥
rank(B+x)−rank(B) whenever A ⊆ B ⊆ V and x ∈ V \B. Note that rank(A) = |A|
if and only if A ⊆ I.

Definition D.2.4 (Matroid Intersection). Given two matroids M1 = (V, I1) and
M2 = (V, I2) over the same ground set V , a common independent set S is a set
in I1 ∩ I2. The matroid intersection problem asks us to find the largest common
independent set. We use rank1 and rank2 to denote the rank functions of the
corresponding matroids, and n = |V | to be the size of the ground set.
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The Exchange Graph

Definition D.2.5 (Exchange graph). Given two matroids M1 = (V, I1) and
M2 = (V, I2) over the same ground set, and a common independent set S ∈ I1 ∩I2,
the exchange graph G(S) is a directed bipartite graph on vertex set V ∪ {s, t} with
the following arcs (or directed edges):

1. (s, b) for b ∈ V \ S when S + b ∈ I1.

2. (b, t) for b ∈ V \ S when S + b ∈ I2.

3. (a, b) for b ∈ V \ S, a ∈ S when S − a+ b ∈ I1.

4. (b, a) for b ∈ V \ S, a ∈ S when S − a+ b ∈ I2.

We will denote the set of elements at distance k from s by the distance-layer Dk.
Note that Dk ⊆ V \ S when k is odd and Dk ⊆ S when k is even.

Definition D.2.6 (Shortest augmenting path). In G(S), a shortest (s, t)-path
p = (s, b1, a2, b3, a4, . . . , aℓ−1, bℓ, t) (with bi ∈ V \ S and ai ∈ S) is called a shortest
augmenting path. We can augment S along the path p to obtain S′ = S + b1 − a2 +
b3 − a4 . . . + bℓ, which is well-known to also be a common independent set (with
|S′| = |S|+ 1). Conversely, there must exist a shortest augmenting path whenever
S is not a largest common independent set.

Augmenting Sets Augmenting Sets is a notion capturing a “blocking flow” in
the exchange graph, and was introduced by [CLSSW19], and also subsequently
used in the algorithms of [BBMN21; Bli21]. In order to efficiently find “good”
augmenting sets, the algorithm works with a relaxed form of them instead, called
partial augmenting sets. The following definitions and key properties of (partial)
augmenting sets are copied from [CLSSW19] where one can find the corresponding
proofs.

Definition D.2.7 (Augmenting Sets, from [CLSSW19, Definition 24]). Let S ∈
I1 ∩ I2 and G(S) be the corresponding exchange graph with shortest (s, t)-path
of length ℓ + 1 (ℓ must be odd) and distance layers D1, D2, . . . , Dℓ. A collection
of sets Πℓ := (B1, A2, B3, A4, . . . , Aℓ−1, Bℓ)6 form an augmenting set in G(S) if the
following conditions are satisfied:

(a) Ak ⊆ Dk for even k, and Bk ⊆ Dk for odd k.

(b) |B1| = |A2| = |B3| = · · · = |Bℓ|

(c) S +B1 ∈ I1

(d) S +Bℓ ∈ I2

6Our indexing of the sets differ a bit from [CLSSW19; Bli21].
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(e) For all even 1 ≤ k ≤ ℓ, we have S −Ak +Bk+1 ∈ I1

(f) For all odd 1 ≤ k ≤ ℓ, we have S −Ak+1 +Bk ∈ I2

Definition D.2.8 (Partial Augmenting Sets, from [CLSSW19, Definition 37]). We
say that Φℓ := (B1, A2, B3, A4, . . . , Aℓ−1, Bℓ) forms a partial augmenting set if it
satisfies the conditions (a), (c),7 and (e) of an augmenting set, plus the following
two relaxed conditions :

(b) |B1| ≥ |A2| ≥ |B3| ≥ · · · ≥ |Bℓ|.

(f) For all odd 1 ≤ k ≤ ℓ, we have rank2(S −Ak+1 +Bk) = rank2(S).

Theorem D.2.9 (from [CLSSW19, Theorem 25]). Let Πℓ := (B1, A2, B3, A4, . . . ,
Aℓ−1, Bℓ) be the an augmenting set in the exchange graph G(S). Then the set
S′ := S ⊕Πℓ := S +B1−A2 +B3− · · · −Aℓ−1 +Bℓ is a common independent set.8

We also need the notion of maximal augmenting sets, which naturally corre-
spond to a maximal ordered collection of shortest augmenting paths, where, after
augmentation, the (s, t)-distance must have increased. Together with a lemma
from [Cun86] (Lemma D.2.12), we can see, on a high-level, how to obtain (1− ε)-
approximation algorithms: find “blocking flows” (i.e. maximal augmenting sets)
until the (s, t)-distance is Ω(1/ε).

Definition D.2.10 (Maximal Augmenting Sets, from [CLSSW19, Definition 35]).
Let Πℓ = (B1, A2, B3, · · · , Aℓ−1, Bℓ) and Π̃ℓ = (B̃1, Ã2, B̃3, · · · , Ãℓ−1, B̃ℓ) be two
augmenting sets in G(S). We say Π̃ℓ contains Πℓ if Bk ⊆ B̃k and Ak ⊆ Ãk, for all
k. An augmenting set Πℓ is called maximal if there exists no other augmenting set
Π̃ℓ containing Πℓ.

Lemma D.2.11 (from [CLSSW19, Theorem 36]). An augmenting set Πℓ is maximal
if and only if there is no augmenting path of length at most ℓ+ 1 in G(S ⊕Πℓ).

Lemma D.2.12 (Cunningham [Cun86]). If the length of the shortest (s, t)-path in
G(S) is at least 2ℓ+ 1, then |S| ≥ (1−O(1/ℓ))r, where r is the size of the largest
common independent set.

D.3 Warm-up: Finding a Maximal Common Independent
Set

Consider first the easier problem of finding a maximal (instead of maximum) common
independent set: that is we want to find a set S ∈ I1 ∩ I2 such that there is no

7Note that we intentionally skip item (d), unlike [CLSSW19] which includes it in the definition,
however they do not always maintain this property in their algorithms.

8Note that |S′| = |S| + |B1|. In particular, an augmenting set with |B1| = 1 is exactly an
augmenting path. [CLSSW19] shows that augmenting sets correspond exactly to a sequence of
consecutive shortest augmenting paths.
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x ∈ V \ S for which S + x ∈ I1 ∩ I2. It is well-known that a maximal common
independent set is also a 1

2 -approximation for the matroid intersection problem,
and indeed our algorithm for a general (1− ε)-approximation (Section D.4) will use
similar ideas as our algorithm to find a maximal common independent set in this
section.

In the sequential setting there is a very easy O(n)-query greedy algorithm: Start
with S = ∅ and go through all elements x ∈ V and add them to S if S + x is
independent in both matroids. However, this greedy algorithm is inherently very
sequential and does not seem to adapt well to the parallel setting. Instead, we must
somehow try to find several xs “in parallel” which we can all add to S simultaneously
without breaking independence.

D.3.1 One Matroid
Let us start even simpler, and consider how to find a maximal independent set9 S
in a single matroid M = (V, I). It turns out that in our final matroid intersection
algorithm we will many times, as a subroutinue, need to do exactly this.

Karp-Upfal-Wigderson [KUW85] provides some simple parallel algorithms (both
for rank- and independence-oracle access), whose results we present in Lemma D.3.1.
We briefly sketch their algorithms below, more details and full proofs can be found
in [KUW85; KUW88].

Rank Oracle. The rank-query algorithm only needs a single round. Let V =
{v1, v2, . . . , vn} be the elements of the ground set, and let Vi = {v1, v2, . . . , vi−1, vi}
(so that V0 = ∅ and Vn = V ). Now query rank(Vi) for all i, and return S = {vi :
rank(Vi) > rank(Vi−1)}. Intuitively, we can imagine that we go through all elements
vi one-by-one and add them to S if and only if the rank goes up.

Independence Oracle. The independence-query algorithm will need O(
√
n)

rounds of O(n) queries per round. Partition the elements of V into
√
n different

groups of (almost) equal size F1, F2, . . . F√n. If any group is independent (say
Fi), then we select it, and consider the contracted matroid M/Fi. Note that this
can only happen

√
n times. On the other hand, if all Fi are dependent, then

we will find one element per group (that is
√
n in total) which we can safely

discard: If {v1, v2, . . . , vk} = Fi are the elements of Fi, we query all prefixes, i.e. “Is
{v1, v2, . . . , vj} ∈ I?” for all j, and discard the first element vj for which the answer
is “No”.

Lemma D.3.1 (Parallel basis algorithm, [KUW85]). There is a deterministic
parallel algorithm which given a matroids M = (V, I) finds a maximal independent
set S ∈ I using either

9Such a set S is usually called a basis of the matroid, and due to the exchange-property all the
maximal independent sets must have the same size.
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• O(1) round of O(n) many rank-queries, or

• O(
√
n) rounds of O(n) many independence-queries.10

Remark D.3.2. Note that if we have a set X ∈ I and Y ⊆ V \ X, we can with
the same algorithms as above find a maximal Y ′ ⊆ Y such that X + Y ′ ∈ I, even
though the above algorithms are only stated as if X = ∅ and Y = V . This is since
we can consider the contracted and restricted matroidM′ = (M /X) \ (V \Y ); and
an independence/rank-query on M′ can be simulated with the corresponding query
on M.

D.3.2 Two Matroids
Now we return to our problem of finding a maximal common independent set S
of two matroids M1 = (V, I1) and M2 = (V, I2). Suppose we already have some
common independent set S ∈ I1 ∩ I2. We will try to add more elements to S until
it becomes maximal.

Firstly, let us concentrate on the first matroid and pick a maximal set B ⊆ V
such that S + B ∈ I1 using Lemma D.3.1. However, S + B is not necessarily
independent in the second matroid, so we would need to fix this: let B′ ⊆ B be a
maximal subset such that S +B′ ∈ I2, which we again can find using Lemma D.3.1.
Now we know S +B′ ∈ I1 ∩I2 is a common independent set, so we set S ← S +B′,
and we have made some progress (unless B′ = ∅ of course).

At this point we can make a crucial observation: we can safely discard the
elements x ∈ B \B′, since now S + x /∈ I2. Hence, for each element in B we have
either (i) added it to our common independent set or (ii) discarded it. As long as
|B| is relatively large (say ≈

√
n), we have made significant progress.

On the other hand, if |B| is small, we may resort to a different strategy. By the
exchange property of matroids, we know that any A ⊆ V such that S +A ∈ I1 has
size |A| ≤ |B|. So we can add at most |B| more elements to our common independent
set S before it becomes maximal. We can thus simply find these remaining (up to
|B| many) elements one-by-one, using one round each.

We present this two-stage strategy below in Algorithm D.1, which is parametrized
by the cut-off threshold p for when to consider |B| small. The optimal choice of p
differs depending on the oracle access (independence or rank) we have.

Adaptivity. The first stage of Algorithm D.1 runs in O(n/p · Tbasis) rounds if
Tbasis is the number of rounds needed to find a maximal independent set for a single
matroid (Lemma D.3.1 gives T rank

basis = O(1) and T indep
basis = O(

√
n)). This is since

the size of F will decrease by |B| ≥ p each time the while-loop is run, which can
happen at most n/p times. The second stage of Algorithm D.1 runs in O(p) rounds,

10KUW [KUW85] also provides a lower bound of Ω̃(n1/3) rounds for any independence-query
algorithm which uses only polynomial number of queries per round, even if randomization is
allowed. It remains an open problem to close this gap between Ω̃(n1/3) and O(

√
n).
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Algorithm D.1: Maximal Common Independent Set
Input: V : Set of elements, I1: Independent set structure 1, I2:

Independent set structure 2
Output: S: Maximal common independent set
Data: S = ∅, F = V

1 while true do
// Stage 1

2 Find a maximal B ⊆ F such that S +B ∈ I1
3 if |B| ≤ p then
4 break
5 Find a maximal B′ ⊆ B such that S +B′ ∈ I2
6 Update S ← S +B′

7 Update F ← F −B
8 while true do

// Stage 2
9 Query “Is S + x ∈ I1” and “Is S + x ∈ I2?” for all x ∈ F in parallel

10 Pick an arbitrary x ∈ F such that S + x ∈ I1 and S + x ∈ I2
11 if no such x exists then
12 break
13 Update S ← S + x
14 Update F ← F − x

both for independence and rank-oracle. Picking p optimally gives: O(
√
n) rounds

of rank-queries (with p =
√
n); or O(n3/4) rounds of independence-queries (with

p = n3/4). This proves Theorem D.3.3, stated below.

Theorem D.3.3. There is a deterministic parallel algorithm which given two
matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a
maximal common independent set S ∈ I1 ∩ I2 using either

• O(
√
n) rounds of polynomially many rank-queries, or

• O(n3/4) rounds of polynomially many independence-queries.

D.4 Finding a Maximum Common Independent Set

In this section we present our sublinear-round matroid intersection algorithm.
The algorithm consists of two steps: first it finds an (1− ε)-approximation, and

then it finds the remaining εn (which is sublinear if 1/ε is polynomially large in
n) augmenting paths one-by-one. Each such remaining augmenting path can be
found in a single round of n2 independence (or rank) queries: in parallel query each
possible edge of the exchange graph, and then see if there was an augmenting path.
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Indeed, when we know all the edges of the exchange graph, we do not need any
more (rounds of) queries to figure out if there was an path.11 If we skipped the
(1− ε)-approximation step and just found all the augmenting paths one-by-one we
obtain the straightforward O(n)-round algorithm.

The difficult part of the algorithm is how to find the (1− ε)-approximation in
sublinear number of rounds (even when 1/ε is polynomially large). To do this, we
would need to find many augmenting paths simultaneously, and indeed this is our
strategy. Our main result of this section is this approximation algorithm which we
summarize in Theorem D.4.1 below.

Theorem D.4.1 (Sublinear-round (1− ε)-approximation). There is a deterministic
parallel algorithm which given two matroids M1 = (V, I1) and M2 = (V, I2) on the
same ground set V , finds a common independent set S ∈ I1∩I2 of size |S| ≥ (1−ε)r,
where r is the size of the largest common independent set, using either

• O(
√
n/ε) rounds of polynomially many rank-queries, or

• O(n3/4/ε) rounds of polynomially many independence-queries.

Exact algorithm. By an appropriate choice of ε (ε = n−1/4 for rank-oracle and
ε = n−1/8 for independence-oracle), together with our discussion above, the main
result (Theorem D.1.1, restated below) of the paper—the sublinear-round exact
algorithm—follows immediately from Theorem D.4.1. The remainder of this paper
will go towards proving Theorem D.4.1, i.e. the (1− ε)-approximation algorithm.

Theorem D.1.1 (Sublinear-round Matroid Intersection). There is a deterministic
parallel algorithm which given two matroids M1 = (V, I1) and M2 = (V, I2) on the
same ground set V , finds a largest common independent set S ∈ I1 ∩I2 using either

• O(n3/4) rounds of polynomially many rank-queries, or

• O(n7/8) rounds of polynomially many independence-queries.

D.4.1 Blocking Flow
The approximation algorithm maintains a common independent set S and runs
in O(1/ε) phases, where in the i’th phase it eliminates all augmenting paths of
length 2i by finding a blocking flow, similar to the Hopcroft-Karp’s [HK73] bipartite
matching algorithm and Dinitz’s [Din70] max-flow algorithm. By blocking flow
we mean a set of compatible shortest augmenting paths after which augmenting
along them the (s, t)-distance in the exchange graph has increased. At the end,
by Lemma D.2.12, we will have found a common independent set S which is a
(1− ε)-approximation, since the shortest augmenting path will have length O(1/ε).

11Note that if we also care about the number of rounds of work of the algorithm (and not just
the rounds of queries), we can find the augmenting path in the exchange graph in just poly(n)
rounds, as s, t-reachability is well-known to be in NC.
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This idea of applying blocking flow algorithms to matroid intersection originates
from the algorithm of Cunningham [Cun86], but has since been improved by
Chakrabarty-Lee-Sidford-Singla-Wong [CLSSW19] and subsequently Blikstad [Bli21],
and it is the framework of these two later algorithms which we will follow.

Remark D.4.2. In the first phase we will eliminate all augmenting paths of length 2.
This corresponds exactly to finding a maximal common independent set, like we did
in Section D.3. In general, we will show that we can implement any phase in the
same round-complexity as the first phase, using similar ideas.

Beginning of a phase. In each phase, we consider a layered graph, where we let
the distance-layer Di denotes all the elements of distance i from the source node s
in the exchange graph G(S). At the beginning of a phase, the algorithm will use
a single round (of O(n2) queries) to find these distance layers: simply query all
potential edges of the exchange graph.

Unfortunately, knowing all the edges in the exchange graph is not sufficient to
find a blocking flow, since a set of disjoint augmenting paths might not be compatible
with each other. The exchange graph G(S) does not capture the full structure
of the matroid intersection problem, and this is where the difficulty in obtaining
sublinear-round matroid intersection algorithms comes from. There is a need to be
able to find many compatible augmenting paths “in parallel”.

Augmenting sets. The notion of a collection of compatible12 augmenting paths
is captured by augmenting sets, as defined in Definition D.2.7. So our goal in a
phase is to find a maximal augmenting set (see Definition D.2.10), which is what we
formally mean by “blocking flow”. After augmenting along a maximal augmenting
set, Lemma D.2.11 implies that the (s, t)-distance has increased, and we can move
on to the next phase.

Our algorithm will follow the framework of [CLSSW19] and [Bli21], which are
the state-of-the-art sequential independence-query approximation algorithms. The
overall idea can be seen as a generalization of the warm-up maximal common
independent set algorithm from Section D.3. Instead of working with just a single
distance layer in the exchange graph we now have up to O(1/ε) many layers.
Fortunately, layers far apart from each other can be handled relatively well in
parallel, and we will see that the final adaptivity of our algorithm to find a blocking
flow in a phase will not depend on the number of layers.

We start by, on a high level, summarizing how the algorithm of [CLSSW19;
Bli21] implements a phase in two stages. Our main result is how we can implement
this algorithm efficiently in a parallel.

12That is they can all be augmented along simultaneously without breaking independence in
either matroid.
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1. The first stage keeps track of a partial augmenting set (Definition D.2.8) which
it keeps refining by a series of operations on adjacent distance layers in the
exchange graph, to make it closer to a maximal augmenting set.

2. When we are “close enough” to a maximal augmenting set, the progress we
make in the first stage slows down. Then we fall back to the second stage in
which we find the relatively few remaining augmenting paths individually one
at a time.

D.4.2 First Stage: Refining
The basic refining ideas and procedures in this section are the same as in [CLSSW19;
Bli21]; our contribution is to show how they can be implemented in a parallel
fashion.

Say we are in the phase where the (s, t)-distance is ℓ + 1, that is we have ℓ
layers in our exchange graph. The algorithm keeps track of a partial augmenting
set Φℓ = (B1, A2, B3, . . . , Aℓ−1, Bℓ) (see Definition D.2.8), which it makes local
improvements to, called refining. Essentially Φℓ looks like a stair-case: Bk+1 is a set
which can be “matched” to some subset of the previous layer Ak; and similarly Ai+1
can be “matched” to a subset of Bi. As long as Φℓ is “far” from being a maximal
augmenting set, the refinement procedures make significant progress. When Φℓ

becomes “close” to being a maximal augmenting set we move on to the second stage.
We maintain three types of elements in each layer Dk in the exchange graph.

Selected. Sets Ak and Bk form the partial augmenting set Φℓ.

Removed. Sets Rk contain the discarded elements which we have deemed useless.

Fresh. Sets Fk contain the elements which are neither selected nor removed.

All elements are initially fresh, and for convenience we also define “imaginary”
empty boundary layers D0 = Dℓ+1 = ∅, with corresponding sets A0, R0, F0, Aℓ+1,
Rℓ+1, Fℓ+1. Note that (Ak, Rk, Fk) forms a partition of Dk ⊆ S when k is even, and
that (Bk, Rk, Fk) partitions Dk ⊆ V \ S when k is odd.

The idea of the refinement procedures is to make some local improvements to
adjacent distance-layers. While doing this, we make sure that elements only change
their types from fresh → selected → removed, but never in the other direction. In
order to formalize that the removed elements are actually useless, we maintain the
following phase invariants.

Definition D.4.3 (Phase Invariants, from [CLSSW19, Section 6.3.2]). The phase
invariants are:

(a-b) Φℓ = (B1, A2, B3, . . . , Aℓ−1, Bℓ) forms a partial augmenting set.13

13The naming of this invariant as (a-b) is to be consistent with [CLSSW19] where this condition
is split up into two separate items (a) and (b).
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(c) For all even k, rank1(W −Rk) = rank1(W )−|Rk| where W = S−Ak+(Dk+1−
Rk+1).14

(d) For all odd k, rank2(W +Rk) = rank2(W ) where W = S−(Dk+1−Rk+1)+Bk.

Remark D.4.4. Invariant (c) and (d) essentially says that if Rk+1 is useless, then so
is Rk, for both even and odd layers, and thus, by induction, all removed elements
are indeed useless. For example, (d) says that any element x ∈ Rk does not increase
the rank, even if we take away all non-useless elements (Dk+1 −Rk+1) in the next
layer. Hence such an x cannot be “matched” to any non-useless element in the next
layer, so it is safe to discard it, since we will never be able to add it to Bk while
maintaining that (. . . , Bk, Ak+1, . . .) form an partial augmenting set.

Refining Locally

We now present the basic refinement procedures from [CLSSW19], which are opera-
tions on two neighboring layers. We note that [Bli21] improves upon the algorithm of
[CLSSW19] (in the sequential setting) by considering refinement operations on three
consecutive layers instead. Unfortunately, the three-layer refinement procedures of
[Bli21] does not seem to work efficiently in the parallel setting.

Intuitively, for an even k, RefineAB(k) tries to extend Bk+1 as much as possible
while it still can be “matched” from Ak in the previous layer (i.e. while S −Ak +
Bk+1 ∈ I1). After this, if |Ak| > |Bk+1|, we can remove elements from Ak and
argue that they are useless (if they were useful, then it should have been possible
to “match” them to something more in the next layer, but this is not the case since
Bk+1 could not be extended more). So RefineAB(k) extends Bk+1 and shrinks Ak
so that they are the same size. Doing so, |Aoldk | − |Boldk+1| elements have changed
types, and this crucial observation is what allows us to measure progress. For an
odd k, RefineBA(k) works very similarly, but now between the consecutive layers
(Bk, Ak+1).

Algorithm D.2: RefineAB(k) for even k (called Refine1 in [CLSSW19,
Algorithm 9])

Data: Ak, Bk+1, Fk+1, S
Result: Updated Ak, Bk+1, Fk+1, and Rk

1 Find a maximal B ⊆ Fk+1 such that S −Ak +Bk+1 +B ∈ I1
2 Bk+1 ← Bk+1 +B
3 Fk+1 ← Fk+1 −B
4 Find a maximal A ⊆ Ak such that S −Ak +Bk+1 +A ∈ I1
5 Ak ← Ak −A
6 Rk ← Rk +A

14This invariant differs from [CLSSW19], where it was written in the following equivalent form:
For 1 ≤ k ≤ ℓ/2, for any X ⊆ B2k+1 + F2k+1 = D2k+1 − R2k+1, if S − (A2k + R2k) + X ∈ I1
then S −A2k +X ∈ I1.
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Algorithm D.3: RefineBA(k) for odd k (called Refine2 in [CLSSW19,
Algorithm 10])

Data: Bk, Ak+1, Fk+1, S,Dk+1, Rk+1
Result: Updated Bk, Ak+1, Fk, and Rk

1 Find a maximal B ⊆ Bk such that S − (Dk+1 −Rk+1) +B ∈ I2
2 Rk ← Rk +Bk −B
3 Bk ← B
4 Find a maximal A ⊆ Fk+1 such that S − (Dk+1 −Rk+1) +Bk +A ∈ I2
5 Ak+1 ← Ak+1 + Fk −A
6 Fk ← A

Remark D.4.5. When we are in the first phase, that is when there is only a
single layer between s and t in the graph, running RefineAB(0) and RefineBA(1)
corresponds to our warm-up algorithm to find a maximal common independent
set from Section D.3. In particular RefineAB(0) finds a maximal B1 such that
S +B1 ∈ I1, and RefineAB(1) shrinks B1 such that S +B1 ∈ I2 too.

Lemma D.4.6. RefineAB and RefineBA can each be implemented in either:

• O(1) rounds of polynomially many rank-queries, or

• O(
√
n) rounds of polynomially many independence-queries.

Proof. The refine procedures only need to find a maximal independent set (for a
single matroid) twice, so we can apply Lemma D.3.1.

The following properties are proven in [CLSSW19].

Lemma D.4.7 (from [CLSSW19, Lemmas 40-42]). Both RefineAB and RefineBA
preserve the phase invariants. Also: after RefineAB(k) is run, we have |Ak| = |Bk+1|
(unless k = 0). After RefineBA(k) is run, we have |Bk| = |Ak+1| (unless k = ℓ).

Observation D.4.8. Lemma D.4.7 can be used to messure progress. In particular,
after running RefineAB(k), |Ak| = |Bk+1|, so a total of |Aoldk | − |Boldk+1| elements
must have changed types (x ∈ Aoldk might have been removed, while a x ∈ F oldk+1 might
have been selected). Similarly RefineBA(k) will change types of |Boldk | − |Aoldk+1|
elements. Note that each element can only change type at most twice (from fresh to
selected to removed), so this observation can be used to measure progress.

Refining Globally

In the sequential algorithms of [CLSSW19; Bli21], a refinement pass consists of
running RefineAB(k) and RefineAB(k) for all k in sequence. However, in the parallel
setting we can do better. Since RefineAB and RefineBA only change things locally
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in two adjacent layers, we observe that we can perform several of these refinement
operations in parallel.

Algorithm D.4: Refine()
1 In parallel, run RefineAB(k) for all even 0 ≤ k ≤ ℓ.
2 In parallel, run RefineBA(k) for all odd 0 ≤ k ≤ ℓ.

Lemma D.4.9. Refine can be implemented in either:

• O(1) rounds of polynomially many rank-queries, or

• O(
√
n) rounds of polynomially many independence-queries.

The following Lemma D.4.10 will be useful to bound the number of Refine calls
needed in our final algorithm, and is similar to [CLSSW19, Corollary 43].

Lemma D.4.10. Suppose that |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ − 1 and that
S +Bℓ ∈ I2, before Refine is run. After Refine is run we have:

(i) |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ− 1, still.

(ii) S +Bℓ ∈ I2, still.

(iii) |B′1| − |Bℓ| elements have changed their type, where B′1 is any maximal subset
of (D1 −R1) such that S +B′1 ∈ I1.

Proof. Property (i) is true, since it is true just after we run RefineBA(k), by
Lemma D.4.10, and this is what is done in the last step of Refine. Similarly
property (ii) is true, since RefineBA(ℓ) ensures this when “shrinking” Bℓ (see how
B is picked in Algorithm D.3 line 1).

What remains is to prove property (iii). Let (Bold1 , Aold2 , . . .) be the sets before
Refine is run. In the first line of Algorithm D.4, we run RefineAB(2), RefineAB(4),
RefineAB(6), . . . , which according to Lemma D.4.7 and Observation D.4.8, has
incurred a total of

∑
|Aoldk | − |Boldk+1| = |Bold1 | − |Boldℓ | type-changes (the sum

telescopes since we assume |Boldk−1| = |Aoldk |).
Also note that we run RefineAB(0), which extends B1 until it is a maximal subset

of D1 \ R1 such that S + B1 ∈ I1 (line 1 of Algorithm D.2). This means that an
additional |B′1|−|Bold1 | elements have changed their type—from fresh to selected—in
the first layer, where B′1 is the value of B1 we get after running RefineAB(0). Note
that this B′1 is a maximal subset of (D1 −R1) such that S +B′1 ∈ I1 (see line 1 of
Algorithm D.2).

Hence, in the first line of Algorithm D.4, |B′1| − |Bℓ| types have changed. We
might additionally change types of more elements when running the second line of
Algorithm D.4.
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Remark D.4.11. We measure progress in terms of Lemma D.4.10. Since each element
can only change types twice (from fresh 7→ selected 7→ removed), there will be in
total O(n) type-changes. If we just run Refine, we might need to do so O(n) times
(in the case when |B′1| − |Bℓ| is constant), so this is not good enough to obtain
a sublinear round parallel algorithm. Like we did in the easier case of maximal
common independent set, we must swap to a different strategy when the progress of
refining stagnates, i.e. when |B′1| − |Bℓ| is relatively small.

D.4.3 Second Stage: Finding the Remaining Augmenting Paths
When |B′1| − |Bℓ+1| is relatively small, we fall back to finding a special kind of
augmenting paths one-by-one. We will show that we only need to find |B′1| − |Bℓ+1|
many such paths before we get stuck and have found our maximal augmenting set
(i.e. the desired blocking flow). These special kind of augmenting paths we consider
are essentially augmenting paths in the exchange graph with respect to our partial
augmenting set. They were first introduced by [Bli21], and are called valid paths.

Definition D.4.12 (Valid path, from [Bli21, Definition 31]). A sequence of ele-
ments (bi, ai+1, bi+2, . . . , aℓ−1, bℓ, t) is a valid path (w.r.t. our partial augmenting
set) starting at bi if for all k ≥ i:

(a) ak ∈ Fk for even k and bk ∈ Fk for odd k.

(b) S −Ai−1 +Bi + bi ∈ I1.

(c) S +Bℓ + bℓ ∈ I2.

(d) S −Ak+1 +Bk − ak+1 + bk ∈ I2 for odd k.

(e) S −Ak +Bk+1 − ak + bk+1 ∈ I1 for even k.

s

B1 A2

B3 A4

B5

t

b3 a4

b5

M1

M2 M2M1
M2M1

Figure D.1: An example of a valid path (b3, a4, b5, t) starting at b3.

Remark D.4.13. Compare the definition of valid paths to the edges in the exchange
graph from Definition D.2.5. Essentially, items (b-e) corresponds to edges of the
exchange graph G(S+B1−A2 +B3−A4 + · · ·+Bℓ) of S after augmenting along our
partial augmenting set. Note also that item (b) can only hold when |Ai−1| > |Bi|
(or, when i = 1 and A0 = ∅ is an “imaginary” boundary set).
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Lemma D.4.14 (Augmenting along a valid path [Bli21, Lemma 33]). Suppose
that |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ − 1 and that S + Bℓ ∈ I2.15 If
(bi, ai+1, bi+2, . . . , bℓ, t) is a valid path starting at bi, then

(B1, A2, . . . , Bi−2, Ai−1, Bi + bi, Ai+1 + ai+1, . . . , Bℓ + bℓ)

is a partial augmenting set satisfying the phase invariants and with S+Bℓ + bℓ ∈ I2.

Proof sketch. It is easy to verify that all the properties in the definition of a
partial augmenting set are still satisfied after the augmentation. Moreover, the
phase invariants are also true, since the sets Bk and Ak are only extended by the
augmentation (so an element deemed useless before remains useless).

Lemma D.4.15. We can find a valid path, if one exists, in a single round of O(n2)
queries.

Proof. Finding a valid path in a single round of queries is not very different from
finding a normal augmenting path. In a single round we query all potential “directed
edges”, that is all potential (ak, bk+1) or (bk, ak+1) pairs satisfying the items of
Definition D.4.12 (valid paths). Then we can combine these edges to form a valid
path, or else determine that no valid path exist.

Remark D.4.16. After augmenting along a valid path, |Bℓ| increases by one. Let B′1
be any any maximal subset of (D1−R1) such that S+B′1 ∈ I1. Note that we always
know that |B′1| ≥ |B1| ≥ |Bℓ|. Hence, we need to only find at most |B′1|− |Bℓ| many
valid paths to augment along after we finished the first stage.

We also need the following lemma saying that if, for an element x ∈ Fk, there is
no “partial” valid path (x, . . . , aℓ−1, bℓ, t) (satisfying all items of a valid path, except
maybe item (b) of Definition D.4.12), then it is safe to delete x. We prove this by
showing that if x has no “out-edges” (of the form of items (c-e) in Definition D.4.12),
then it can be removed.

Lemma D.4.17. Suppose that |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ − 1 and that
S +Bℓ ∈ I2. Then:

• If bℓ ∈ Fk is such that S +Bℓ + bℓ ̸∈ I2, we can safely remove it.

• For a given bk ∈ Fk, if there exist no ak+1 ∈ Fk+1 such that S −Ak+1 +Bk −
ak+1 + bk ∈ I2, then it is safe to remove bk.

• For a given ak ∈ Fk, if there exist no bk+1 ∈ Fk+1 such that S −Ak +Bk+1 −
ak + bk+1 ∈ I1, then it is safe to remove ak.

15These conditions are actually redundant, since they are covered by items (d) and (c) in the
definition of the valid paths. However, they make the intuition slightly easier, and our algorithm
maintains them.
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Proof sketch. We must argue that the phase invariants are preserved when the
elements are removed. It is straightforward to verify that phase invariants (c) and
(d) hold in all these three cases. As a black-box intuition, we can imagine temporarily
selecting the element x we want to remove, and then running either RefineAB or
RefineBA and note that this procedure can immediately remove x again (and the
refine-procedures preserves the invariants).

D.4.4 Combining the Stages

Now we present the full algorithm of a phase, whose goal is to find a maximal
augmenting set, that is a “blocking flow”. Pseudo-code can be found in Algorithm D.5,
which is parametrized by a cut-off threshold p (which will be different for rank- and
independence-query) for when to move from the first to second stage.

Remark D.4.18. After the two stages, we will have some partial augmenting set
(B1, A2, . . . , Bℓ) such that there are no more valid paths. However, it is not yet an
actual augmenting set, for instance it can be the case that |Ak| > |Bk+1| for some
k. Still, we can argue that (B1, A2, . . . , Bℓ) contains some maximal augmenting
set (B̃1, Ã2, . . . , B̃ℓ) with B̃ℓ = Bℓ. So we will need a short extra clean-up step to
reduce our partial augmenting set to such a maximal augmenting set.

Note that it is possible to show that we actually can directly augment along
our partial augmenting set (B1, A2, . . . , Bℓ) which the algorithm finds (this relies
on the extra properties that |Bk| = |Ak+1| and S + Bℓ ∈ I2). That is S′ =
S +B1 −A2 +B2 − · · ·+Bℓ ∈ I1 ∩ I2 is a common independent set. Additionally
|S′| = |S|+ |Bℓ|, so we have increased the size of S as much as we would have if we
found the the maximal augmenting set (B̃1, Ã2, . . . , B̃ℓ) instead. However, there is
a critical problem with this approach: there can be short augmenting paths in G(S′).
This means that such an approach will have failed to eliminate all (s, t)-paths of
length ≤ ℓ. Hence the clean-up step is actually necessary.

Correctness. In the beginning of Algorithm D.5 the following hold: (i) the phase
invariants (Definition D.4.3); (ii) |Bk| = |Ak+1| for all odd 1 ≤ k ≤ ℓ− 1; and (iii)
S +Bℓ ∈ I2.

In the first stage, whenever we call Refine, the above properties (i-iii) are all
preserved according to Lemma D.4.10. Similarly, in the second stage, whenever
we augment along a valid path, the above properties (i-iii) are also preserved, by
Lemma D.4.14.

What remains to be shown is that after the clean-up phase, Φ = (B1, A2, . . . , Bℓ)
is a maximal augmenting set. We prove this by showing that these refine calls
cannot select any new elements, that is they do not add any elements to the sets
Bk or Ak. If we show this, then we know that |Bℓ| = |Aℓ−1| = . . . = |B1| after all
these refine calls, as RefineAB(ℓ− 1) reduced |Aℓ−1| to match |Bℓ|; RefineBA(ℓ− 2)
reduces |Bℓ−2| to match |Aℓ−1|; etc.
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Algorithm D.5: Implementation of phase (ℓ+ 1)/2.
Data: S, ℓ
Result: Updated set S after phase (ℓ+ 1)/2

1 In parallel query all potential edges of the exchange graph G(S) (see
Definition D.2.5)

2 Find the distance layers D1, D2, . . . Dℓ

3 Initialize Bk = ∅, Ak = ∅, Rk = ∅ and Fk = Dk for all k
4 while true do

// Stage 1
5 Find a maximal B′ ⊆ D1 −R1 such that S +B′ ∈ I1 (using

Lemma D.3.1)
6 if |B′| − |Bℓ| ≤ p then
7 break
8 Call Refine() (Algorithm D.4)
9 while true do

// Stage 2
10 In a single round, find a valid path if one exists (Lemma D.4.15)
11 if no valid path exists then
12 break
13 Augment the partial augmenting set along the found valid path

(Lemma D.4.14)
// Clean-up

14 Remove all elements which do not have any partial valid path from them
(see Lemma D.4.17)

15 Sequentially, call
RefineBA(ℓ), RefineAB(ℓ− 1), RefineBA(ℓ− 2), . . . RefineAB(0)

16 Augment along the maximal augmenting set Φ = (B1, A2, . . . , Bℓ): update
S ← S +B1 −A2 +B3 + · · ·+Bℓ

To argue that RefineAB(k) does not select any new elements, we note that if
it added bk to Bk, it meant that S −Ak+1 +Bk + bk ∈ I1. However, since bk was
not removed in line 12 of the algorithm, there must have been a valid path starting
from bk, which is a contradiction. The argument for RefineBA(k) is the same. Note
that since we only remove elements, no new valid paths can occur.

Now, after |B1| = |A2| = . . . = |Bℓ|, (B1, A2, . . . , Bℓ) forms a maximal augment-
ing set. If it did not, there must have been some path (b1, a2, . . . , bℓ) which we
can add to it, but this is impossible, since this path would have been a valid path
(starting at b1).
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Rounds of adaptivity. The first stage of Algorithm D.5 runs in O(n/p · TRefine)
rounds if TRefine is the number of rounds needed to run Refine() once (Lemma D.4.9
gives T rank

Refine = O(1) and T indep
Refine = O(

√
n)). This is since each time we run refine

we will have at least p type-changes (Lemma D.4.10), and in total each of the n
elements can change types at most twice.

The second stage of Algorithm D.5 runs in O(p) rounds, both for independence
and rank-oracle, by Lemma D.4.15. Picking p optimally gives: O(

√
n) rounds

of rank-queries (with p =
√
n) or O(n3/4) rounds of independence-queries (with

p = n3/4) for the first and second stages combined.
Finally the clean-up stage runs, sequentially, with O(ℓ) refinement operations.

This takes O(ℓ) rounds of rank-queries or O(ℓ
√
n) rounds of independence queries,

so this depends on the number of layers. However, we argue that we can ignore this
term for the interesting range of ℓ. This is because when ℓ is too large (>

√
n for

rank-queries and > n1/4 for independence-queries), we know by Lemma D.2.12 that
there are only O(1/ℓ) many augmenting paths left in total, and we can instead find
them one-by-one in at most O(

√
n) rounds for rank-queries or O(n3/4) rounds for

independence queries.
Concluding, we have argued that we can implement a blocking-flow phase in

O(
√
n) rounds of rank-queries or O(n3/4) rounds of independence-queries.

Approximation algorithm. Running Algorithm D.5 for O(1/ε) phases elim-
inates all paths in the exchange graph of length O(1/ε) (Lemma D.2.11), so by
Lemma D.2.12 we know that the common independent set S we end up with is
a (1− ε)-approximation. The adaptivity is thus O(

√
n/ε) rounds of rank-queries

or O(n3/4/ε) rounds of independence-queries. Hence we have shown a (1 − ε)-
approximation algorithm using O(

√
n/ε) rounds of (polynomially many) rank-queries

or O(n3/4/ε) rounds of (polynomially many) independence-queries, which proves
Theorem D.4.1.
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Abstract

We initiate the study of matroid problems in a new oracle model called
dynamic oracle. Our algorithms in this model lead to new bounds for some
classic problems, and a “unified” algorithm whose performance matches previ-
ous results developed in various papers for various problems. We also show
a lower bound that answers some open problems from a few decades ago.
Concretely, our results are as follows.

Improved algorithms for matroid union and disjoint spanning
trees. We show an algorithm with Õk(n+ r

√
r) dynamic-rank-query and

time complexities for the matroid union problem over k matroids, where n is the
input size, r is the output size, and Õk hides poly(k, log(n)). This implies the
following consequences. (i) An improvement over the Õk(n

√
r) bound implied

by [Chakrabarty-Lee-Sidford-Singla-Wong FOCS’19] for matroid union in the
traditional rank-query model. (ii) An Õk

(
|E| + |V |

√
|V |
)

-time algorithm for
the k-disjoint spanning tree problem. This is nearly linear for moderately dense
input graphs and improves the Õk

(
|V |
√

|E|
)

bounds of Gabow-Westermann
[STOC’88] and Gabow [STOC’91]. Consequently, this gives improved bounds
for, e.g., Shannon Switching Game and Graph Irreducibility.

Matroid intersection. We show a matroid intersection algorithm with
Õ(n

√
r) dynamic-rank-query and time complexities. This implies new bounds

for some problems (e.g. maximum forest with deadlines) and bounds that
match the classic ones obtained in various papers for various problems, e.g.
colorful spanning tree [Gabow-Stallmann ICALP’85], graphic matroid inter-
section [Gabow-Xu FOCS’89], simple job scheduling matroid intersection
[Xu-Gabow ISAAC’94], and Hopcroft-Karp combinatorial bipartite matching.
More importantly, this is done via a “unified” algorithm in the sense that an
improvement over our dynamic-rank-query algorithm would imply improved
bounds for all the above problems simultaneously.

Lower bounds. We show simple super-linear (Ω(n logn)) query lower
bounds for matroid intersection and union problems in our dynamic-rank-
oracle and the traditional independence-query models; the latter improves the
previous log2(3)n− o(n) bound by Harvey [SODA’08] and answers an open
problem raised by, e.g., Welsh [1976] and CLSSW [FOCS’19].
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E.1 Introduction

Via reductions to the max-flow and min-cost flow problems, exciting progress has
been recently made for many graph problems such as maximum matching, vertex con-
nectivity, directed cut, and Gomory-Hu trees [Mad13; LS14; Mad16; BLNPSSSW20;
KLS20; LP20; AKT21b; BLLSSSW21; LNPSY21; AKT21a; AMV21; CLNPSQ21;
LPS21; GLP21; AKT22; CLP22; BGJLLPS22; AKLPST22; CKLPGS22; CHLP23].
However, many basic problems still witness no progress since a few decades ago.
These problems include k-disjoint spanning trees [GW88; Gab91], colorful spanning
tree [GS85], arboricity [Gab95], spanning tree packing [GW88], graphic matroid
intersection [GS85; GX89], and simple job scheduling matroid intersection [XG94].
For example, in the k-disjoint spanning trees problem [Sch03, Chapter 51], we want
to find k edge-disjoint spanning trees in a given input graph G = (V,E). When
k = 1, this is the spanning tree problem and can be solved in linear time. For higher
values of k, the best runtime remains Õ(k3/2|V |

√
|E|)-time algorithm from around

1990 [GW88]1, which is also the best runtime for its applications such as Shannon
Switching Game [Gar61] and Graph k-Irreducibility [Whi88; GSS93]. No better
runtime was known even for the special case of k = 2.

Can we improve the bounds of k-disjoint spanning trees and other problems?
More importantly, since it is very unclear if these problems can be reduced to max-
flow or min-cost flow2, is there an alternative approach to designing fast algorithms
for many problems simultaneously? Fortunately, many of the above problems can
be modeled as matroid problems, giving hope that solving matroid problems would
solve many of these problems in one shot. Unfortunately, this is not true in the
traditional model for matroid problems—even the most efficient algorithm possible
for a matroid problem does not necessarily give a faster algorithm for any of its
special cases. We discuss this more below.

Matroid Problems. A matroid M is a pair (U, I) where U is a finite set (called
the ground set) and I is a family of subsets of U (called the independent sets)
satisfying some constraints (see Definition E.3.1; these constraints are not important
in the following discussion). Since I can be very large, problems on matroid M are
usually modeled with oracles that answer queries. Given a set S ⊆ U , independence
queries ask if S ∈ I and rank queries ask for the value of maxI∈I,I⊆S |I|. Two

1The stated bound was due to Gabow and Westermann [GW88], which was usually referred
to as the state of the art (e.g. in [Sch03; BF20; Qua23; HSV21]). Note that Gabow [Gab91]
announced an improved bound of O(k|V |

√
|E| + k|V | log(|V |)) but this bound was later removed

from the journal version of the paper. After our paper was accepted to STOC’23, we are aware
of the paper by Karger [Kar98] that also studies this problem. The paper claims the runtime of
Õ(|E| + k5/2|V |3) (via matroid union), but it seems that the technique in the paper may imply
Õ(|E| + poly(k)|V |3/2) runtime when combined with [GW88]. We discuss a relevant concurrent
result [Qua23] later in this section.

2For example, the best-known number of max-flow calls to decide whether there are k disjoint
spanning trees and to find the k spanning trees are O(n) and O(n2) respectively.
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textbook examples of matroid problems are matroid intersection and union3 (e.g.,
[Sch03, Chapters 41-42]). We will also consider the special case of matroid union
called k-fold matroid union.

Definition E.1.1 (Matroid intersection and (k-fold) matroid union). (I) In matroid
intersection, we are given two matroids (U, I1) and (U, I2) and want to find a
set of maximum size in I1 ∩ I2. (II) In matroid union, we are given k matroids
(U1, I1), (U2, I2), . . . , (Uk, Ik), and want to find the set S1 ∪ S2 ∪ · · · ∪ Sk, where
Si ∈ Ii for every i, of maximum size. (III) Matroid union in the special case where
U1 = U2 = · · · = Uk and I1 = I2 = · · · = Ik is called k-fold matroid union.

Notations: Throughout, for problems over matroids {(Ui, Ii)}ki=1, we define
n := maxi |Ui| and r := maxi maxS∈Ii |S|.

Matroid problems are powerful abstractions that can model many fundamental
problems. For example, the 2-disjoint spanning tree problem can be modeled as a
2-fold matroid union problem:

Given a graph G = (V,E), let M = (U, I) be the corresponding graphic
matroids, i.e. U = E and S ⊆ E is in I if it is a forest in G. (It is a standard
fact that such an M is a matroid.) The 2-fold matroid union problem with
input M is a problem of finding two forests F1 ⊆ E and F2 ⊆ E in G that
maximizes |F1 ∪ F2|. This is known as the 2-forest problem which clearly
generalizes 2-disjoint spanning tree (a 2-forest algorithm will return two
disjoint spanning trees in G if they exist).

Observe that this argument can be generalized to modeling the k-disjoint span-
ning trees problem by k-fold matroid union. Other problems that can be modeled as
matroid union (respectively, matroid intersection) include arboricity, spanning tree
packing, k-pseudoforest, and mixed k-forest-pseudoforest (respectively, bipartite
matching and colorful spanning tree).

The above fact makes matroid problems a unified approach for showing that
many problems, including those mentioned above, can be solved in polynomial time.
This is because (i) the matroid union, intersection, and other problems can be solved
in polynomial time and rank/independence queries, and (ii) for most problems
queries can be answered in polynomial time. For example, when we model k-disjoint
spanning trees as k-fold graphic matroid union like above, the corresponding rank
query is: given a set S of edges, find the size of a spanning forest of S. This can be
solved in O(|S|) time.

When it comes to more fine-grained time complexities, such as nearly linear and
sub-quadratic time, matroid algorithms in the above model are not very helpful.
This is because simulating a matroid algorithm in this model causes too much
runtime blow-up. For example, even if we can solve k-fold matroid union over (U, I)
in linear (O(|U |)) rank query complexity, it does not necessarily imply that we can

3Matroid union is also sometimes called matroid sum.
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solve its special case of 2-disjoint spanning tree any faster. This is because each
query about a set S of edges needs at least O(|S|) time even to specify S, which
can be as large as the number of edges in the input graph. In other words, even
a matroid union algorithm with linear complexities may only imply O(|E|2) time
for solving 2-disjoint spanning trees on graphs G = (V,E). This is also the case for
other problems that can be modeled as matroid union and intersection. Because
of this, previous works obtained improved bounds by simulating an algorithm for
matroid problems and coming up with clever ideas to speed up the simulation for
each of these problems one by one (e.g., [GT79; RT85; GS85; GW88; FS89; GX89;
Gab91; XG94]). It cannot be guaranteed that recent and future improved algorithms
for matroid problems (e.g., [CLSSW19; BBMN21; Bli21]) would imply improved
bounds for any of these problems.

Dynamic Oracle. The main conceptual contribution of this paper is an introduc-
tion of a new matroid model called dynamic oracle and an observation that, using
dynamic algorithms, solving a matroid problem efficiently in our model immediately
implies efficient algorithms for many problems it can model. In contrast to tradi-
tional matroids where a query can be made with an arbitrary set S, our model only
allows queries made by slightly modifying the previous queries.4 More precisely, the
dynamic-rank-oracle model, which is the focus of this work, is defined as follows.5

Definition E.1.2 (Dynamic-rank-oracle model). For a matroidM = (U, I), starting
from S0 = ∅ and k = 0, the algorithm can access the oracle via the following three
operations.

• Insert(v, i): Create a new set Sk+1 := Si ∪ {v} and increment k by one.
• Delete(v, i): Create a new set Sk+1 := Si \ {v} and increment k by one.
• Query(i): Return the rank of Si, i.e., the size of the largest independent

subset of Si.

We say that a matroid algorithm takes t time and dynamic-rank-query complexities
if its time complexity and required number of operations are both at most t.

We emphasize that a query can be obtained from any previous query, not just
the last one.

Observation E.1.3 (Details in Sections E.7.3 and E.11). Algorithms for the k-fold
matroid union, matroid union, and matroid intersection problems imply algorithms
for a number of problems with time complexities shown in Section E.1.

Proof Idea. As an example, we sketch the proof that if k-fold matroid union can
be solved in T (n, r, k) then k-disjoint spanning trees can be found in T (|E|, |V |, k) ·

4The “cost” of a query in our dynamic model is the distance (size of the symmetric difference)
from some (not necessarily the last) previous query.

5One can also define the dynamic-independence-oracle model where Query(i) returns only the
independence of Si.
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Table E.1: Examples of implications of dynamic-rank-oracle matroid algorithms.
The complexities in the first column are in terms of time and dynamic-rank-query
complexities. Notations n, r, and k are as in Definition E.1.1. In the second column,
the polylogn factors are hidden in T̃ and subpolynomial factors are hidden in T̂ .
Details are in Sections E.7.3 and E.11.

matroid problems special cases

k-fold matroid union in T (n, r, k)

k-forest in T̃ (|E|, |V |, k))
k-pseudoforest in T̃ (|E|, |V |, k))
k-disjoint spanning tree in T̃ (|E|, |V |, k) (randomized)

T̂ (|E|, |V |, k) (deterministic)
arboricity in T̃ (|E|, |V |,

√
|E|))

tree packing in T̃ (|E|, |V |, |E|/|V |))
Shannon Switching Game in T̃ (|E|, |V |, 2))
graph k-irreducibility in T̃ (|E|, |V |, k))

matroid union in T (n, r, k) (f, p)-mixed forest-pseudoforest in T̃ (|E|, |V |, f + p))

matroid intersection in T (n, r)

bipartite matching in T̃ (|E|, |V |)
colorful spanning tree in T̃ (|E|, |V |)
graphic matroid intersection in T̃ (|E|, |V |)
simple job scheduling matroid intersection in T̃ (n, r)
convex transversal matroid intersection in T̃ (|V |, µ)

polylog(|V |) time. Recall that in the traditional rank-oracle model, the algorithm can
ask an oracle for the size of a spanning forest in an arbitrary set of edges S, causing
O(|S|) time to simulate. In our dynamic-rank-oracle model, an algorithm needs to
modify some set Si to the desired set S using the Insert and Delete operations
before asking for the size of a spanning forest in S. We can use a spanning forest
data structure to keep track of the size of the spanning forest under edge insertions
and deletions. This takes polylog(|V |) time per operation [KKM13; GKKT15].6 So,
if k-fold matroid union can be solved in T (n, r, k) time and dynamic rank queries,
then k-disjoint spanning trees can be solved in Õ(T (n, r, k)) = Õ(T (|E|, |V |, k))
time, where the equality is because the ground set size is the number of edges
(|U | = |E|) and the rank r is equal to the size of a spanning forest (thus at most
|V |).7

Observe that designing efficient algorithms in our dynamic-oracle model is not
6The dynamic spanning forest algorithms of [KKM13; GKKT15] are randomized and assume

the so-called oblivious adversary (as opposed to, e.g., [NS17; Wul17] which work against adaptive
adversaries). This is not a problem because we only need to report the size of the spanning forest
and not an actual forest. We can also use a deterministic algorithm from [CGLNPS20; NSW17]
which requires |V |o(1) time per operation.

7Note that we also need a fully-persistent data structure [DSST86; Die89] to maintain the
whole change history in our argument.
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easier than in the traditional model: a dynamic-oracle matroid algorithm can be
simulated in the traditional model within the same time and query complexities.
Naturally, the first challenge of the new model is this question: Can we get matroid
algorithms in the new model whose performances match the state-of-the-art algorithms
in the traditional model? Moreover, for the new model to provide a unified approach
to solve many problems simultaneously, one can further ask: Would these new
matroid algorithms imply state-of-the-art bounds for many problems?

Algorithms. In this paper, we provide algorithms in the new model whose
complexities not only match those in the traditional model but sometimes even
improve them. These lead to new bounds for some problems and, for other problems,
a unified algorithm whose performance matches previous results developed in various
papers for various problems.

More precisely, the best time and rank-query complexities for matroid intersection
on input (U, I1) and (U, I2) were Õ(n

√
r) by Chakrabarty, Lee, Sidford, Singla, and

Wong [CLSSW19] (improving the previous Õ(nr) bound based on Cunningham’s
classic algorithm [Cun86; LSW15; Ngu19]). Due to a known reduction, this implies
Õ(k2

√
kn
√
r) bound for k-fold matroid union and matroid union. In this paper,

we present algorithms in the dynamic-oracle model that imply improved bounds in
the traditional model for k-fold matroid union and matroid union and match the
bounds for matroid intersection.

Here, we only state our dynamic-rank-query complexities as they are the main
focus of this paper, and for all the applications we have, answering (and maintaining
dynamically) independence queries does not seem to be significantly easier. Note
that we also obtain dynamic-independence-query algorithms that match the state-
of-the-art traditional ones [Bli21] which we defer to Section E.12.

Theorem E.1.4. (I) k-fold matroid union over input (U, I) can be solved in Õ(n+
kr
√

min(n, kr) + kmin(n, kr)) time and dynamic rank queries. (II) Matroid union
over input (U1, I1), (U2, I2), . . . , (Uk, Ik) can be solved in Õ ((n+ r

√
r) · poly(k))

time and dynamic rank queries. (III) Matroid intersection over input (U, I1) and
(U, I2) can be solved in Õ(n

√
r) time and dynamic rank queries.

Combined with Observation E.1.3, the above theorem immediately implies fast
algorithms for many problems. Table E.2 shows some of these problems. One of
our highlights is the improved bounds for k-forest and k-disjoint spanning trees.
Even for k = 2, there was no runtime better than the decades-old Õ(k3/2|V |

√
|E|)

runtime [GW88; Gab91]. Our result improves this to Õ(|E|+ (k|V |)3/2). This is
nearly linear for dense input graphs and small k. This also implies a faster runtime

8For k-forest and its related graph problems in the table, we can assume that k ≤ |V |, and
thus the k2r (where r = Θ(|V |)) term in Theorem E.1.4 is dominated by the (kr)3/2 term.

9Here we use the bound that α ≤
√
E [Gab95].

10Our bound is with respect to the current value of ω < 2.37286 [AW21]. If ω = 2, then our
bound becomes Õ(n2.5√

r).
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Table E.2: Implications of our matroid algorithms stated in Theorem E.1.4 in
comparison with previous results. Results marked with a ✓ improve over the previous
ones. Results marked with a ✗ are worse than the best time bounds. Other results
match the currently best-known algorithms up to poly-logarithmic factors. Details
can be found in Section E.11.

problems our bounds state-of-the-art results
(Via k-fold matroid union)

k-forest8 Õ(|E| + (k|V |)3/2) ✓ Õ(k3/2|V |
√

|E|) [GW88]
k-pseudoforest Õ(|E| + (k|V |)3/2) ✗ |E|1+o(1) [CKLPGS22]

k-disjoint spanning trees Õ(|E| + (k|V |)3/2) ✓ Õ(k3/2|V |
√

|E|) [GW88]
arboricity9 Õ(|E||V |) ✗ Õ(|E|3/2) [Gab95]

tree packing Õ(|E|3/2) Õ(|E|3/2) [GW88]
Shannon Switching Game Õ(|E| + |V |3/2) ✓ Õ(|V |

√
|E|) [GW88]

graph k-irreducibility Õ(|E| + (k|V |)3/2 + k2|V |) ✓ Õ(k3/2|V |
√

|E|) [GW88]

(Via matroid union)

(f, p)-mixed forest-pseudoforest Õf,p(|E| + |V |
√

|V |) ✓ Õ((f + p)|V |
√
f |E|) [GW88]

(Via matroid intersection)

bipartite matching (combinatorial) Õ(|E|
√

|V |) O(|E|
√

|V |) [HK73]
bipartite matching (continuous) Õ(|E|

√
|V |) ✗ |E|1+o(1) [CKLPGS22]

graphic matroid intersection Õ(|E|
√

|V |) Õ(|E|
√

|V |) [GX89]
simple job scheduling matroid intersection Õ(n

√
r) Õ(n

√
r) [XG94]

convex transversal matroid [EF65] intersection Õ(|V |√µ) Õ(|V |√µ) [XG94]
linear matroid intersection10 Õ(n2.529√

r) ✗ Õ(nrω−1) [Har09]
colorful spanning tree Õ(|E|

√
|V |) Õ(|E|

√
|V |) [GS85]

maximum forest with deadlines Õ(|E|
√

|V |) ✓ (no prior work)

for, e.g., Shannon Switching Game (see [Sha55; GW88]) which is a special case of
2-disjoint spanning trees.

Our matroid intersection algorithm gives a unified approach to achieving time
complexities that were previously obtained by various techniques in many papers.
Thus, improving this algorithm would imply breakthrough runtimes for many of
these problems simultaneously. Moreover, in contrast to the previous approach
where matroid algorithms have to be considered for each new problem one by one,
our approach has the advantage that it can be easier to derive new bounds. For
example, say we are given a graph G = (V,E), where the edge e will stop functioning
after day d(e). Every day we can “repair” one functioning edge. Our goal is to make
the graph connected in the long run (an edge will work forever once it has been
repaired). This is the maximum forest with deadlines problem. Formally speaking,
the goal is to construct a spanning tree or a forest of the maximum size at the end,
by selecting an edge e with d(e) ≥ t in the tth round.11 Our result implies a runtime
of Õ(|E|

√
|V |) for this problem. The runtime holds even for the harder case where

each edge is also associated with an arrival time (edges cannot be selected before
they arrive).

11It is tempting to believe that we can use a greedy algorithm where we always select an edge
e with the smallest d(e) to the solution. The following example shows why this does not work:
There are three vertices V = {a, b, c, d}. Edges e1 and e2 between a and b have d(e1) = 1 and
d(e2) = 3. Edges e3 = (b, c) and e4 = (c, d) have d(e3) = d(e4) = 2.
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We also list some problems where our bounds cannot match the best bounds
in Table E.2. Improving our matroid algorithms to match these bounds is a very
interesting open problem. A particularly interesting case is the maximum bipartite
matching problem. Our dynamic-oracle matroid intersection algorithm implies a
runtime that matches the runtime from the best combinatorial algorithm of Hopcroft
and Karp [HK73] which has been recently improved via continuous optimization
techniques (e.g., [Mad13; Mad16; CMSV17; AMV20; BLNPSSSW20; BLLSSSW21;
CKLPGS22]).12 There are barriers to using continuous optimization even to solve
some special cases of matroid intersection (e.g. colorful spanning tree’s linear
program requires exponentially many constraints). Thus, improving our matroid
intersection algorithm requires either a new way to use continuous optimization
techniques or a breakthrough idea in designing combinatorial algorithms that would
improve the Hopcroft-Karp algorithm.

Lower Bounds. Another advantage of our dynamic-oracle matroid model is that
it can be easier to prove lower bounds than the traditional model. As a showcase,
we show a simple super-linear rank-query lower bound in our new model. In fact,
our argument also implies the first super-linear independence-query lower bound in
the traditional model. The latter result might be of independent interest.

Theorem E.1.5. (I) Any deterministic algorithms require Ω(n logn) dynamic rank
queries to solve the matroid union and matroid intersection problems. (II) Any
deterministic algorithms require Ω(n logn) (traditional) independence queries to
solve the matroid union and matroid intersection problems.

Our first lower bound suggests that the dynamic-oracle model might at best
give nearly linear (and not linear) time algorithms. Prior to this paper, only a
log2(3)n− o(n) independence-query lower bound for deterministic algorithms was
known for (traditional) independence queries, due to Harvey [Har08].13 Our lower
bound in the traditional model improves this decade-old bound. Moreover, showing
super-linear independence-query lower bounds in the traditional model for matroid
intersection is a long-standing open problem considered since 1976 (e.g. [Wel76;
CLSSW19]).14 Our lower bound in the traditional model answers this open problem
for deterministic algorithms. The case of randomized algorithms would be resolved
too if an ω(|V |) lower bound was proved for the communication complexity for
computing connectivity of an input graph G = (V,E). (It was conjectured to be
Ω(n logn) in [AEGLMN22].)

12The term “combinatorial” is vague and varies in different contexts. Here, an algorithm is
“combinatorial” if it does not use any of the continuous optimization techniques such as interior-point
methods (IPMs).

13To the best of our knowledge, this lower bound does not hold for rank queries.
14As noted by Harvey, Welsh asked about the number of queries needed to solve the matroid

partition problem, which is equivalent to matroid union and intersection.



276 PAPER E. FAST ALGORITHMS VIA DYNAMIC-ORACLE MATROIDS

Independent Work. Concurrently and independently to our work, [Qua23] also
studied the k-fold matroid union and related problems and obtained a similar
running time of Õ(min(n, kr)3/2) to ours in the traditional independence-oracle
model. By specializing the algorithm to graphic matroids, Quanrud also obtained an
Õ(min(|E|, k|V |)3/2) algorithm for k-disjoint spanning tree. The techniques used
in these two works are different, however, and our main contribution remains the
introduction of dynamic oracles and efficient matroid algorithms in this model.

E.1.1 Techniques

In this section we briefly discuss our technical contributions. For a more in-depth
overview of our algorithms, see the technical overview (Section E.2).

Exchange Graph & Blocking Flow. Our algorithms and lower bounds are
based on the notion of finding augmenting paths in the exchange graph, due to
[Edm70; Law75; AD71]. Given a common independent set S ∈ I1 ∩ I2, the
exchange graph G(S) is a directed graph where finding an (s, t)-path corresponds
to increasing the size of S by one. Starting with the work of Cunningham [Cun86],
modern matroid intersection algorithms (including the state-of-the-art [CLSSW19;
Bli21]) are based on a “Blocking Flow” idea inspired by the Hopcroft-Karp’s [HK73]
bipartite matching and Dinic’s [Din70] max-flow algorithms.

Matroid Intersection with Dynamic Oracle. Our matroid intersection algo-
rithms are implementations of the state-of-the-art Õ(n

√
r) rank-query algorithm

of [CLSSW19] and the Õ(nr3/4) independence-query algorithm of [Bli21]. Our
contribution here is to show that versions of them can be implemented also in the
dynamic-oracle model.

These algorithms explore the exchange graph efficiently in the classic non-
dynamic models by performing binary searches with the oracle queries to find useful
edges. However, such a binary search is very expensive in the dynamic-oracle model
(as the queries differ by a lot): a single such binary search might cost up to O(n) in
the dynamic-oracle model instead of just O(logn).

Our contribution is to design a binary-tree data structure that supports finding
these useful edges efficiently also in the dynamic-oracle model. Note that after
each augmentation the underlying exchange graph changes, so the data structure
must also support these dynamic updates efficiently. Some updates can just be
propagated up the tree, while others we handle by batching them and rebuilding
the tree periodically. We also rely on a structural result “Augmenting Sets” by
[CLSSW19] which states that the updates to the exchange graph are local, which
helps us reduce the number of updates we need to make to our data structure, and
achieve the final time bound.
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Matroid Union with Dynamic Oracle. Our Õ(n + r
√
r) matroid union al-

gorithm with dynamic rank oracle is based on our Õ(n
√
r) matroid intersection

algorithm (indeed, matroid union is a special case of matroid intersection). We
are able to obtain a more efficient algorithm by taking advantage of the additional
structure of the exchange graph in the case of matroid union. The main idea is to
run the blocking flow algorithm only on a dynamically-changing subgraph of size
Θ(r), instead of on the full exchange graph of size Θ(n).

A crucial observation is that all but O(r) elements will be directly connected to
the source vertex s. To “sparsify” this first layer in the breadth-first-search tree,
we argue that one only needs to consider a basis of it (this basis will have size at
most r as opposed to n). After an augmentation, this first layer changes, so we
design a dynamic algorithm to maintain a basis of a matroid15, with Õ(

√
r) update

time and O(n) pre-computation. Our algorithm to maintain this basis dynamically
is inspired by the dynamic minimum spanning tree algorithm of [Fre85] (O(

√
|E|)

update time), in combination with the sparsification trick of [EGIN97] (Õ(
√
|V |)

update time). We believe that our dynamic algorithm to maintain a (min-weight)
basis of a matroid might also be of independent interest.

Lower Bounds. Our super-linear Ω(n logn) query lower bound comes from
studying the communication complexity of matroid intersection. The matroids
M1 and M2 are given to two parties Alice and Bob respectively and they are
asked to solve the matroid intersection problem using as few bits of communication
between them. We show that even if Alice and Bob know some common independent
set S ∈ I1 ∩ I2, they need to communicate Ω(n logn) bits to see if S is optimal.
Essentially, they need to determine if there is an augmenting path in the exchange
graph. Using a class of matroids called gammoids (see e.g. [Per68; Mas72]), we show
a reduction from the (s, t)-connectivity problem which has a deterministic Ω(n logn)
communication lower bound [HMT88].

E.1.2 Organization

The rest of the paper is organized as follows. We first give a high-level overview
of how we obtain our algorithms in Section E.2. In Section E.3, we provide the
necessary preliminaries. We then construct the binary search tree data structure
in Section E.4, followed in Section E.5 by how to use it to implement our Õ(n

√
r)

matroid intersection algorithm in the new dynamic-rank-oracle model (the dynamic-
independence-oracle algorithm is in Section E.12). In Section E.6 we describe our
data structure to maintain a basis of a matroid dynamically, and then we use this
in our Õk(n + r

√
r) matroid union algorithm in Section E.7 (the special case of

k-fold matroid union is in Section E.10). We show our super-linear lower bound in
Section E.8. We end our paper with a discussion of open problems in Section E.9.

15For example, maintaining a spanning forest in a dynamically changing graph.
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In Section E.11 we mention how to implement different matroids oracles in the
dynamic-oracle model, and discuss some problems we can solve with our algorithms.

E.2 Technical Overview of Algorithms

E.2.1 The Blocking-Flow Framework
In this section, we give a high-level overview of our algorithms. We will focus on
the dynamic-rank-oracle model (Definition E.1.2), and sketch how to efficiently
implement the “blocking flow”16 matroid intersection algorithms of [GS85; Cun86;
CLSSW19; Ngu19] in this model. As such, we briefly recap how the Õ(n

√
r) rank-

query (in the traditional oracle model) algorithm of [CLSSW19] works first, and
then explain how to implement their framework in the new dynamic oracle model
with the same cost.

Their algorithm, like most of the matroid intersection algorithms, is based on
repeatedly finding augmenting paths in exchange graphs (see Section E.3 for a
definition). Say we have already found some common independent set S ∈ I1 ∩ I2
(we start with S = ∅). Then the exchange graph G(S) is a directed bipartite graph
in which finding an (s, t)-path exactly corresponds to increasing the size of S by
one. According to Cunningham’s blocking-flow argument [Cun86], if we always
augment along the shortest augmenting path, the lengths of such augmenting paths
are non-decreasing. Moreover, if the length of the shortest augmenting path in G(S)
is at least 1/ϵ, then the size of the current common independent set S must be at
least (1−O(ϵ)) r (i.e. it is only O(ϵr) away from optimal). Thus, the “blocking
flow”-style algorithms consists of two stages:

1. In the first stage, they obtain a (1 − ϵ)-approximate solution by finding
augmenting paths until their lengths become more than O(1/ϵ). This is done
by running in phases, where in phase i they eliminate all augmenting paths of
length 2i by finding a so-called “blocking flow”—a maximal (not necessarily
maximum) collection of compatible augmenting paths. Each such phase can
be implemented using only Õ(n) rank queries, as shown in [CLSSW19]. This
means that the first stage needs a total of Õ(n/ϵ) rank queries (in the classic
non-dynamic model).

2. In the second stage, they find the remaining O(ϵr) augmenting paths one at a
time. Each such augmentation can be found in Õ(n) rank queries, for a total
of Õ(ϵnr) queries for this stage.

Using ϵ = 1/
√
r, [CLSSW19] obtains their Õ(n

√
r) rank-query exact matroid

intersection algorithm. The crux of how to implement the stages efficiently is a
binary search trick to explore useful edges of the exchange graph quickly (for e.g. to

16Similar to the Hopcroft-Karp’s [HK73] bipartite matching and Dinic’s [Din70] maximum flow
algorithms.
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implement a breadth-first-search on the graph). The exchange graph can have up to
Θ(nr) edges in total, but it is not necessary to find all of them. We will argue that
this binary search trick (which issues queries far away from each other) can still be
implemented in the dynamic-oracle model, with the use of some data structures.

E.2.2 Matroid Intersection
Binary Search Tree. The crux of why a breadth-first-search (BFS) and aug-
menting path searching can be implemented efficiently (in terms of the number of
traditional queries) in [CLSSW19] is that they show how to, for S ∈ I, u ∈ S, and
X ⊆ S̄, discover an element x ∈ X with (S \{u})∪{x} ∈ I in O(logn) rank queries
using binary search (such a pair (u, x) is called an exchange pair, and corresponds
to an edge in the exchange graph). The idea is that such an x exists in X if and
only if rank((S \ {u}) ∪ X) ≥ |S|. Thus, we can do a binary search over X: we
split X into two equally-sized subsets X1 and X2, and check if such an x exists in
X1 via the above equation. If it does, then we recurse on X1 to find x. Otherwise,
such an x must exist in X2 (as it does in X), and so we recurse on X2. To make
this process efficient in our new model, we pre-build a binary search tree over the
elements of X, where the internal nodes contain all the query-sets we need. That is,
in the root node we have the query-set for S ∪X, and in its two children for S ∪X1
respectively S ∪X2.

Using this binary tree, one can simulate the binary search process as described
above. Since what we need to do in a BFS is to (i) find a replacement element x
and (ii) mark x as visited (thus effectively “deactivate” x in X), each time we see x,
we just need to remove x from the O(logn) nodes on a root-to-leaf path, and thus
the whole BFS algorithm runs in near-linear time as well.

Batching, Periodic Rebuilding, and Augmenting Sets. The above binary
search tree is efficient when the common independent set S is static. However, once
we find an augmenting path, we need to update S. This means that every node
in the binary search tree needs to be updated. If done naively, this would need at
least Ω(nr) time, as there are up to r augmentations, and rebuilding the tree takes
O(n) time. Therefore, we employ a batching approach here. That is, we do not
walk through every node and update them immediately when we see an update to
S. Instead, we batch k updates (for k to be decided later) and pay an additional
O(k)-factor every time we want to do a query in our tree. In other words, at some
point, we might want to search for exchanges for a common independent set S′
(by doing queries like (S′ \ {u}) ∪X to find edges incident to u). Our binary tree
might only have an outdated version S (i.e. store sets like S ∪X). Then the cost of
converting S ∪X to (S′ \ {u}) ∪X is |S ⊕ S′|+ 1, which we assert is less than k.
When this number exceeds k, we rebuild the binary search tree completely using
the up-to-date S′ instead, in Õ(n) time.

Over the whole run of the algorithm, there are only O(r log r) updates to our
common independent set S (see, e.g., [Cun86; Ngu19]). Hence, the total running
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time becomes

Õ(nkϵ−1)︸ ︷︷ ︸
Blocking-flow iterations

+ Õ(ϵrn)︸ ︷︷ ︸
Remaining augmenting paths

+ Õ(nrk−1)︸ ︷︷ ︸
Rebuilding binary search trees

,

which is Õ(nr2/3) for k = r1/3 and ϵ = r−1/3.
To achieve the Õ(n

√
r) bound in our dynamic-rank-oracle model, there is one

additional observation we need. By the “Augmenting Sets” argument [CLSSW19],
for each element v that we want to query our tree, it suffices to consider changes to
S that are in the same distance layer as v is (in a single blocking-flow phase). Since
changes to S are uniformly distributed among layers, when the (s, t)-distance in G(S)
is d, we only need to spend an additional O(kd )-factor (instead of an O(k)-factor)
when querying the binary search tree. This brings our complexity down to

Õ

nϵ−1 +
1/ϵ∑
d=1

nk

d

+ Õ(ϵrn) + Õ(nrk−1),

where the first part is a harmonic sum which makes for Õ(nϵ−1 + nk), and the total
running time is Õ(n

√
r) for k = r1/2 and ϵ = r−1/2.

E.2.3 Matroid Union
For simplicity of the presentation in this overview, let’s assume we are solving the
k-fold matroid union problem and that k—the number of bases17 we want to find—is
constant. A standard black-box reduction from matroid intersection, combined
with our algorithm outlined above, immediately gives us an Õ(n

√
r) bound in the

dynamic-rank-oracle model. Nevertheless, we show how to exploit certain properties
of matroid union (specifically, the structure of the exchange graphs [EDVJ68; Cun86]
resulted from the reduction below) to speed this up to Õ(n+ r

√
r), i.e. near-linear

time for sufficiently “dense”18 matroids.
Suppose M = (U, I) is the matroid we want to find k disjoint bases for. The

standard reduction to matroid intersection is that we create k copies of all elements
u ∈ U . Then we define two matroids as follows:

• The first matroid M1 says that we only want to use one version of each
element. We set M1 = (U × {1, . . . , k}, Ipart) to be the partition matroid
defined as S ∈ Ipart if and only if |{(u, i) ∈ S : i = x}| ≤ 1 for all x.

• The second matroid M2 says that for each copy of the ground set U we must
pick an independent set according toM. That is setM2 = (U ×{1, . . . , k}, Î)
to be the disjoint k-fold union of M, i.e. S ∈ Î if and only if {u : (u, i) ∈ S}
is independent in M for all i.

17As an example, consider the problem of finding k disjoint spanning trees of a graph.
18We call matroids with n ≫ r “dense” by analogy to the graphic matroids where n denotes

the number of edges and r the number of vertices.
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For a set S which can be partitioned into k disjoint independent sets, notice that in
the exchange graph, the number of elements not in the first layer is bounded by
O(r). This is because every u ∈ U who is not represented in S will be in the first
layer L1 of the BFS tree. As such, we can build the BFS layers starting from the
second layer if we can identify all the elements in this second layer. This can be
done by checking for each y not in the first layer whether L1 contains an exchange
element of y (via computing the rank of (S \ {y}) ∪ L1; no need to do a binary
search). Although binary search is not needed when identifying elements in the
second layer, when going backward among layers to find an augmenting path P , we
still have to find the exact element in the first layer which can be the first element
of P since it will decide which augmenting paths remain “compatible” later. This
inspires us to maintain two separate binary search trees: one, of size O(r), for
finding edges from the second layer and onward, and the other, of size O(n), for
finding the first elements of the augmenting paths. Still, doing a binary search for
each element in the first layer results in a total number of O(rϵ−1) queries to the
binary search tree, which is too much. To reduce the number of queries down to
Õ(r), we note that only binary searches which correspond to the actual augmenting
paths will succeed, i.e., reach the leaf nodes of the binary search tree. Since there
are at most O(r/d) augmenting paths when the (s, t)-distance in G(S) is d, we only
need to do O(r/d) queries to the binary search tree; other queries can be blocked
by first checking if their corresponding exchange elements exist in the first layer.
This results in a running time of Õ(n+ r

√
n) (note:

√
n and not

√
r), which already

matches Gabow’s algorithm for k-disjoint spanning tree [GW88].

Toward Õ(n+ r
√
r) for Matroid Union. The bottleneck of the above algorithm

is that we need to do binary searches over (and hence rebuild periodically) the tree
data structure for the first layer (of size Ω(n)). If we can reduce the size of this tree
down to O(r), then the running time would be Õ(n+ r

√
r). This suggests that we

might want to somehow “sparsify” the first layer. Indeed, for a single augmenting
path, we only need a basis of the first layer. As a concrete example, consider the
case of a graphic matroid: Given a forest S, an edge e ∈ S, and the set of non-tree
edges E \ S, we want to find a “replacement” edge e′ in E \ S for e which “restores”
the connectivity of S − e+ e′. In this case, it suffices to only consider a spanning
forest (i.e. “basis”) B of E \ S, in the sense that such a replacement edge exists in
E \ S if and only if it exists in this spanning forest B ⊆ E \ S.

Moreover, note that after each augmentation a single element will be removed
from the first layer. Thus, if we can maintain a decremental basis of the first layer,
we can build our binary search tree data structure dynamically on top of this basis
and get the desired time bound.

Maintaining a Basis in a Matroid. Our data structure for maintaining a
basis is inspired by the dynamic minimum spanning tree algorithm of [Fre85], in
combination with the sparsification trick of [EGIN97]. It uses Õ(n) time to initialize,
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and then Õ(
√
r) dynamic rank queries19 per deletion. It also supports maintaining

a min-weight basis.
Let L ⊆ U for |L| = O(n) be the first layer in which we want to maintain a

dynamic basis. In the preprocessing stage, we split L into
√
n blocks L1, L2, . . . , L√n

of size roughly
√
n and compute the basis of L from left to right. We also build

the “prefix sums” of these
√
n blocks so that we can quickly access/query sets of the

form L1 ∪ L2 ∪ · · · ∪ Lk for all values of k. When we remove an element x from Li,
we first update the prefix sums in O(

√
n) time. If x is not in the basis we currently

maintain, then nothing additional needs to be done. Otherwise, we have to find the
“first” replacement element, which is guaranteed to be located in blocks Li, . . . , L√n.
The block Lj in which the replacement element lies can be identified simply by
inspecting the ranks of the prefix sums, and after that, we then go through elements
in that block to find the exact element. Note that blocks after Lj need not be
updated, as for them it does not matter what basis we picked among blocks L1 to
Lj . This gives us an O(

√
n)-update-time algorithm for maintaining a basis of a

matroid.
To get a complexity of O(

√
r logn), we show that a similar sparsification structure

as that of [EGIN97] for dynamic graph algorithms also works for arbitrary matroids.
The sparsification is a balanced binary tree over the n elements, where in each node
we have an instance of our (un-sparsified) underlying data structure to maintain
a basis consisting of elements in the subtree rooted at the node. Only elements
part of the basis of a node are propagated upwards to the parent node. This means
that in each instance of our underlying data structure we work over a ground set of
size at most 2r. Thus, each update corresponds to at most two updates (a single
insertion and deletion) to at most O(logn) (which is the height of the tree) nodes
of the tree, each costing O(

√
r) dynamic rank queries in order to maintain the basis

at this node. This results in the desired time bound.

E.3 Preliminaries

Notation. We use standard set notation. In addition to that, for two sets X and
Y , we use X + Y to denote X ∪ Y (when X ∩ Y = ∅) and X − Y to denote X \ Y
(when Y ⊆ X). For an element v, X + v and X − v refer to X + {v} and X − {v},
respectively. Let X ⊕ Y denote the symmetric difference of X and Y .

Matroid. In this paper, we use the standard notion of matroids which is defined
as follows.

Definition E.3.1. A matroid M = (U, I) is defined by a tuple consisting of a finite
ground set U and a non-empty family of independent sets I ⊆ 2U such that the
following properties hold.

19In the application of our matroid union algorithm, there will only be Õ(r) updates, so this is
efficient enough for our final Õ(n+ r

√
r) algorithm.
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• Downward closure: If S ∈ I, then any subset S′ ⊆ S is also in I.

• Exchange property: For any two sets S1, S2 ∈ I with |S1| < |S2|, there
exists an x ∈ S2 \ S1 such that S1 + x ∈ I.

Let U be the ground set of a matroid M. For S ⊆ U , let S̄ denote U \ S. For
X ⊆ U , the rank of X, denoted by rank(X), is the size of the largest independent set
contained in X, i.e., rank(X) = maxS∈I |X ∩S|. The rank of a matroidM = (U, I)
is the rank of U . We let r ≤ n denote the rank of the input matroids. When the
input consists of more than one matroid (e.g., in the matroid union problem), let
ranki denote the rank function of the ith matroid. A basis of X is an independent
set S ⊆ X with |S| = rank(X). A basis of M is a basis of U . The span of
X contains elements whose addition to X does not increase the rank of it, i.e.,
span(X) = {u ∈ U | rank(X ∪ {u}) = rank(X)}.

Fact E.3.2. The rank function is submodular. That is, rank(X) + rank(Y ) ≥
rank(X ∩ Y ) + rank(X ∪ Y ) holds for each X,Y ⊆ U .

Fact E.3.3 (see, e.g., [Pri15, Lemma 1.3.6]). rank(A) = rank(span(A)) holds for
every A ⊆ U .

Lemma E.3.4. For two sets X,Y and their bases SX , SY , it holds that rank(SX +
SY ) = rank(X + Y ).

Proof. Since X,Y ⊆ span(SX + SY ), we have SX + SY ⊆ X + Y ⊆ span(SX +
SY ). The lemma then follows from rank(SX + SY ) = rank(span(SX + SY )) using
Fact E.3.3.

Exchange Graph. Our algorithms for matroid intersection and union will be
heavily based on finding augmenting paths in exchange graphs.

Definition E.3.5 (Exchange Graph). For two matroids M1 = (U, I1) and M2 =
(U, I2) over the same ground set and an S ∈ I1∩I2, the exchange graph with respect
to S is a directed bipartite graph G(S) = (U ∪ {s, t}, ES) with s, t ̸∈ U being two
distinguished vertices and ES = E1 ∪ E2 ∪ Es ∪ Et, where

E1 = {(x, y) | x ∈ S, y ̸∈ S, and S − x+ y ∈ I1},
E2 = {(y, x) | x ∈ S, y ̸∈ S, and S − x+ y ∈ I2},
Es = {(s, x) | S + x ∈ I1}, and
Et = {(x, t) | S + x ∈ I2}.
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The distance layers of G(S) is the sets L1, . . . , LdG(S)(s,t)−1, where Lℓ consists
of elements in U that are of distance ℓ from s in G(S). Most matroid intersection
algorithms including ours are based on augmenting a common independent set with
an augmenting path in G(S) until such a path does not exist. The following lemma
certifies the correctness of this approach.

Lemma E.3.6 (Augmenting Path). Let P be a shortest (s, t)-path20 of G(S). Then,
the set S′ := S ⊕ (V (P ) \ {s, t}) is a common independent set with |S′| = |S|+ 1.
On the other hand, if t is unreachable from s in G(S), then S is a largest common
independent set.

We write S ⊕ P , where P is an augmenting path in G(S), for the common
independent set S′ := S ⊕ (V (P ) \ {s, t}) obtained by augmenting S along P . Let
dG(S)(u, v) denote the (u, v)-distance in G(S). When S is clear from context, let dt
denote dG(S)(s, t). The following lemma states that if dG(S)(s, t) is large, then S is
close to being optimal.

Lemma E.3.7 ([Cun86]). If S ∈ I1 ∩ I2 satisfies dG(S)(s, t) ≥ d, then |S| is at
least

(
1−O( 1

d )
)
r.

The following bound on the total length of shortest augmenting paths will be
useful for our analysis.

Lemma E.3.8 ([Cun86]). If we solve matroid intersection by repeatedly finding the
shortest augmenting paths, then the sum of the lengths of these augmenting paths is
O(r log r).

Lemma E.3.9 ([Cun86; Pri15; CLSSW19]). If we augment along a shortest (s, t)-
path in G(S) to obtain S′, then for each u ∈ U , the following hold (let d := dG(S)
and d′ := dG(S′)).

1. If d(s, u) < d(s, t), then d′(s, u) ≥ d(s, u). If d(u, t) < d(s, t), then d′(u, t) ≥
d(u, t).

2. If d(s, u) ≥ d(s, t), then d′(s, u) ≥ d′(s, t). If d(u, t) ≥ d(s, t), then d′(u, t) ≥
d′(s, t).

Augmenting Sets. The following notion of augmenting sets, introduced by
[CLSSW19], models a collection of “mutually compatible” augmenting paths, i.e.,
paths that can be augmented sequentially without interfering with each other.

Definition E.3.10 (Augmenting Set [CLSSW19, Definition 24]). Let S ∈ I1 ∩ I2
satisfy dG(S)(s, t) = dt and let L1, L2, . . . , Ldt−1 be the distance layers of G(S). A
collection Π := (D1, D2, · · · , Ddt−1) is an augmenting set in G(S) if

20In fact, P only needs to be “chordless” [BBMN21], i.e., without shortcuts. Nonetheless, a
shortest (s, t)-path suffices for our rank-query algorithms.
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(i) Dℓ ⊆ Lℓ holds for each 1 ≤ ℓ < dt,
(ii) |D1| = |D2| = · · · = |Ddt−1|,
(iii) S +D1 ∈ I1,
(iv) S +Ddt−1 ∈ I2,
(v) S −Dℓ +Dℓ+1 ∈ I1 holds for each even 1 ≤ ℓ < dt − 1, and
(vi) S −Dℓ+1 +Dℓ ∈ I2 holds for each odd 1 ≤ ℓ < dt − 1.

One can think of the concept of augmenting sets as a generalization of augmenting
paths. Indeed, an augmenting path is an augmenting set where |D1| = · · · =
|Ddt−1| = 1. The term “mutually compatible” augmenting paths is formalized as
follows.

Definition E.3.11 (Consecutive Shortest Paths [CLSSW19, Definition 28]). A
collection of vertex-disjoint shortest (s, t)-paths P = (P1, . . . , Pk) in G(S) is a
collection of consecutive shortest paths if Pi is a shortest augmenting path in
G(S ⊕ P1 ⊕ · · · ⊕ Pi−1) for each 1 ≤ i ≤ k.

The following structural lemmas of [CLSSW19] will be useful for us, particularly
in deriving Lemma E.5.4 in Section E.5.

Lemma E.3.12 ([CLSSW19, Theorem 25]). Let Π := (D1, . . . , Ddt−1) be an
augmenting set in G(S). Then, S′ := S ⊕Π := S ⊕D1 ⊕ · · · ⊕Ddt−1 is a common
independent set.

For two augmenting sets Π = (D1, D2, . . . , Ddt−1) and Π′ = (D′1, D′2, . . . , D′dt−1),
we use Π ⊆ Π′ to denote that Dℓ ⊆ D′ℓ hold for each 1 ≤ ℓ < dt. In this case, let
Π′ \Π := (D′1 \D1, . . . , D

′
dt−1 \Ddt−1). We will hereafter abuse notation and let Π

also denote the set of elements D1 ∪ · · · ∪Ddt−1 in it. In particular, U \Π denotes
U \ (D1 ∪ · · · ∪Ddt−1).

Lemma E.3.13 ([CLSSW19, Theorem 33]). For two augmenting sets Π ⊆ Π′ in
G(S), Π′ \Π is an augmenting set in G(S ⊕Π).

Lemma E.3.14 ([CLSSW19, Theorem 29]). Given a collection of consecutive
shortest paths P1, . . . , Pk in G(S), where Pi = (s, ai,1, . . . , ai,dt−1, t), the collection
Π = (D1, . . . , Ddt−1), where Di = {a1,i, . . . , ak,i}, is an augmenting set in G(S).

The converse of Lemma E.3.14 also holds.

Lemma E.3.15 ([CLSSW19, Theorem 34]). Given an augmenting set Π in G(S),
there is a collection consecutive shortest paths P1, . . . , Pk in G(S) where Pi =
(s, ai,1, . . . , ai,dt−1, t) such that Di = {a1,i, . . . , ak,i}.

Remark E.3.16. Note that Lemmas E.3.14 and E.3.15 are not equivalent to the
exact statements of [CLSSW19, Theorems 29 and 34] (in particular, they did not
specify how Π and Pi are constructed), but our versions are clear from their proof.
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Claim E.3.17. Let S ∈ I1∩I2 with dG(S)(s, t) = dt and Π ⊆ Π′ be two augmenting
sets in G(S). Let u ̸∈ Π′ be an element. If u is not on any augmenting path of length
dt in G(S ⊕ Π), then u is not on any augmenting path of length dt in G(S ⊕ Π′)
either.

Proof. Let S′ := S ⊕Π and S′′ := S ⊕Π′. Since S′′ can be obtained by augmenting
S′ along a series of shortest augmenting paths (by Lemmas E.3.13 and E.3.15), the
claim follows from the fact that the (s, u)-distance and (u, t)-distance are monotonic
(Lemma E.3.9).

Claim E.3.18. Let Π = (D1, . . . , Ddt−1) be an augmenting set in G(S) and
P = (s, a1, . . . , adt−1, t) be an augmenting path in G(S ⊕ Π). Then, Π′ = (D1 +
a1, . . . , Ddt−1 + adt−1) is an augmenting set in G(S).

Proof. This directly follows from Lemmas E.3.14 and E.3.15.

Using Dynamic Oracle. In the following sections except for Section E.12 where
we discuss independence-query algorithms, all algorithms and data structures will
run in the dynamic-rank-oracle model (see Definition E.1.2). In other words, we
will simply write “in t time” for “in t time and dynamic rank queries”. We will
use the term query-sets to refer to the sets Si in Definition E.1.2. In particular,
constructing a query-set means building the corresponding set from S0 = ∅ with
the Insert(·) operation. Insertion/Deletion of an element into/from a query-set is
done via the Insert/Delete operations. Using the Query operation, we assume
that we know the ranks of all the query-sets we construct in our algorithms.

E.4 Binary Search Tree

In this section, we give the core data structure of our algorithms which allows us
to do binary searches and find free elements (elements x such that S + x ∈ I) and
exchange pairs (pairs (x, y) such that S − x+ y ∈ I, corresponding to edges in the
exchange graph) efficiently. We also support updating the common independent set
S that the exchange relationship is based upon. For a matroid M = (U, I), the
data structure has the following guarantee (s, t ̸∈ U denote the two distinguished
vertices of the exchange graph as defined in Definition E.3.5).

Theorem E.4.1. For any integer β ≥ 1, there exists a data structure that supports
the following operations.

• Initialize(M, S,QS , X): Given S ∈ I, the query-set QS that corresponds to
S, and X ⊆ S̄ (respectively, X ⊆ S or X = {t}), initialize the data structure
in Õ(|X|) time. The data structure also maintains S.

• Find(y): Given y ∈ S ∪ {s} (respectively, y ∈ S̄),
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– if y ∈ S (respectively, X ⊆ S), then return an x ∈ X such that S−y+x ∈
I (respectively, S − x+ y ∈ I), or

– if y = s (respectively, X = {t}), then return an x ∈ X such that S+x ∈ I
(respectively, return the only element x = s or x = t in X if S + y ∈ I
and ⊥ otherwise).

The procedure returns ⊥ if such an x does not exist. The procedure takes Õ(β)
time if the result is not ⊥, and Õ(1) time otherwise.

• Delete(x): Given x ∈ X, if x ̸∈ {s, t}, delete x from X in O(logn) time.

• Replace(x, y): Given x ∈ X and y ̸∈ X, replace x in X by y in O(logn)
time.

• Update(∆): Update S to S ⊕ (∆ \ {s, t}) in amortized Õ( |X|·|∆|β ) time.

Remark E.4.2. To make sense of the seemingly complicated input and casework
of Theorem E.4.1, one should focus on the first item of Find(·). We will use
Theorem E.4.1 to explore the exchange graphs, and thus we need to find an exchange
element x of y as in the first case. The additional complication is included solely
because we also have to deal with edges incident to s or t. For instance, say X ⊆ S̄,
then Find(s) finds an edge in G(S) directed from s to X. This will make our
algorithms presented later cleaner (see Algorithm E.1 for example).

Sometimes, we will omit the QS parameter of Initialize, meaning that we
explicitly build the query-set QS from S in O(r) time before running the actual
initialization. In such cases, |X| will be Ω(r), and thus this incurs no overhead.

We will later refer to the case of X ⊆ S̄ as the co-circuit binary search tree and
the case of X ⊆ S as the circuit binary search tree. The data structure follows
from the binary search algorithm of [CLSSW19, Lemma 10], which is based on the
following observation.

Observation E.4.3 ([CLSSW19]). To find free elements and exchange pairs, we
can use the following observations.

(i) Free element: There exists an x ∈ X such that S + x ∈ I if and only if
rank(S +X) > |S|.

(ii) Co-circuit exchange: Given y ∈ S, there exists an x ∈ X such that S−y+x ∈ I
if and only if rank(S − y +X) ≥ |S|.

(iii) Circuit exchange: Given y ̸∈ S, there exists an x ∈ X such that S − x+ y ∈ I
if and only if rank(S −X + y) = |S −X + y|.

The data structure of Theorem E.4.1 is built upon the following similar data
structure whose independent set S is “static” in the sense that its update will be
specified for each query. We construct the data structure of Lemma E.4.4 first, and
then use it for Theorem E.4.1 later in the section.
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Lemma E.4.4. There exists a data structure that supports the following operations.

• Initialize(M, S,QS , X): Given S ∈ I, a query-set QS corresponding to S,
and X ⊆ S̄ (respectively, X ⊆ S or X = {t}), initialize the data structure in
Õ(|X|) time.

• Find(y,∆): Given ∆ ⊆ V , let S′ := S ⊕ ∆. It is guaranteed that S′ ∈ I.
Given y ∈ S′ ∪ {s} (respectively, y ∈ S̄′),

– if y ∈ S′ (respectively, X ⊆ S′), then return an x ∈ X such that
S′ − y + x ∈ I (respectively, S′ − x+ y ∈ I), otherwise

– if y = s (respectively, X = {t}), then return an x ∈ X such that S′+x ∈ I
(respectively, return the only element x = s or x = t in X if S′ + y ∈ I
and ⊥ otherwise),

in Õ(β) time. The procedure returns ⊥ if such an x does not exist.

• Delete(x): Given x ∈ X, delete x from X in O(logn) time.

• Replace(x, y): Given x ∈ X and y ̸∈ X, replace x by y in X in O(logn)
time.

We present the co-circuit version of the data structures as the circuit version
is analogous (their difference is essentially stated in the two cases (ii) and (iii) of
Observation E.4.3). The data structure of Lemma E.4.4 is a balanced binary tree in
which every node v corresponds to a subset Xv of X. The subsets corresponding to
nodes at the same level form a disjoint partition of X. There are |X| leaf nodes,
each of which corresponds to a single-element subset of X. An internal node v
with children u1 and u2 has Xv = Xu1 ⊔ Xu2 . Each node v is also associated
with a query-set Qv := S +Xv, for which we have prepared a dynamic oracle (see
Definition E.1.2).

Initialization. In the initialization stage, we first compute the query-set of the
root node Qr := S +X from QS in O(|X|) time. As long as the current node v has
|Xv| > 1, we split Xv into two equally-sized subsets Xu1 , Xu2 , compute Qu1 , Qu2

from Qv, and then recurse on the two newly created nodes u1 and u2. Computing
Qu1 and Qu2 from Qv takes O(|Xv|) time in total, and thus the overall running
time for initialization is Õ(|X|).

Query. To find an exchange element of y ∈ S′, we perform a binary search on
the tree. For each node v, we can test whether such an element exists in Xv

via Observation E.4.3(ii) by computing the query-set Q′v := S′ − y + Xv from
Qv := S +Xv in 1 + |∆| dynamic-oracle queries. If such an element does not exist
for the root Xr = X, then we return ⊥. Otherwise, for node v initially being r,
there must exist one of the child nodes ui of v where such an exchange x exists in
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Xui
. We then recurse on ui until we reach a leaf node, at which point we simply

return the corresponding element. Similarly, to find a free element, we compute the
rank of Q′v := S′+Xv instead (see Observation E.4.3(i)). Since we need to compute
Q′v for each of the visited nodes, the running time is O(|∆| logn).

Update. For deletion of x, we simply walk up from the leaf node corresponding
to x to the root node and remove x from each of the Xv and Qv. This takes time
proportional to the depth of the tree, which is O(logn). Replacement of x by y
follows similarly from deletion of x: instead of simply removing x from Xv and Qv,
we add y to them as well.

Remark E.4.5. Note that the above binary search tree is static in the sense that we
only deactivate elements from a fixed initial set. We can extend this data structure to
support a dynamically changing input set X by using a dynamic binary search tree
based on partial rebuilding [And89; And91] instead. The amortized time complexity
remains the same since rebuilding a subtree takes time proportional to the number
of nodes of it.

E.4.1 Periodic Rebuilding

Here we extend Lemma E.4.4 to prove Theorem E.4.1. Recall that the difference
between the two data structures is that we need to support a dynamically changing
independent set in Theorem E.4.1 (which we will need since S changes after each
augmentation in our matroid algorithms). How we achieve this is to essentially
employ a batch-and-rebuild approach to the binary search tree of Lemma E.4.4.

Proof. We maintain a binary search tree T constructed as Initialize(M, S,QS , X)
of Lemma E.4.4 and a collection of “batched” updates ∆batch of size at most β.
Throughout the updates, we also maintain the query-set corresponding to the current
S starting from the given QS and the query-set corresponding to S + X, which
initially can be computed from QS in O(|X|) time. Each call to Find(y) is delegated
to T .Find(y,∆batch), which runs in time Õ(|∆batch|) = Õ(β) time. Note that we
can test whether the result of T .Find(·) will be ⊥ in Õ(1) time by simply checking
if Observation E.4.3(ii) (or (i) if y = s) holds with the query-set corresponding to
S +X we maintain.

Each call to Delete(x) and Replace(x, y) translates simply to T .Delete(x)
and T .Replace(x, y). For an update to S with ∆, we set ∆batch ← ∆batch ∪∆ and
update S and the query-sets accordingly. If the size of ∆batch exceeds β, then we
rebuild the binary search tree with the input common independent set being the
up-to-date S we maintain. Note that we will pass query-set QS to Initialize to not
pay the extra O(r) factor. Finally, since the binary search tree is now up-to-date, we
set ∆batch to be ∅. The rebuilding takes Õ(|X|) time and is amortized to Õ( |X|·|∆|β )
per update operation with |∆| changes.
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E.5 Matroid Intersection

In this section, we present a matroid intersection algorithm in the dynamic-rank-
oracle model that matches the state-of-the-art algorithm [CLSSW19] in the tradi-
tional model.

Theorem E.5.1. For two matroids M1 = (U, I1) and M2 = (U, I2), it takes
Õ(n
√
r) time to obtain the largest S ∈ I1 ∩ I2 in the dynamic-rank-oracle model.

The algorithm follows the blocking-flow framework of [CLSSW19] similar to
the Hopcroft-Karp algorithm for bipartite matching [HK73], which goes as follows.
Initially, they start with S = ∅.

1. First, they obtain a common independent set that is of size at least (1− ϵ)r
by eliminating all augmenting paths of length O(1/ϵ). In each of the O(1/ϵ)
iterations, they first compute the distance layers of G(S) along which they
find a maximal set of compatible shortest augmenting paths using an approach
similar to a depth-first-search from s. Augmenting paths are searched in a
depth-first-search manner. Whenever an element has no out-edge with respect
to the current common independent set to the next layer, they argue that it
can be safely removed as it will not be on a shortest augmenting path anymore
in this iteration. Augmenting along these augmenting paths increases the
(s, t)-distance of G(S) by at least one.

2. With the current solution which is only ϵ fraction away from being optimal,
they find the remaining O(ϵr) augmenting paths one at a time.

A proper choice of ϵ (in this case it is ϵ = 1/
√
r) that balances the cost between

the two steps results in their algorithm.

E.5.1 Building Distance Layers
Building distance layers and finding a single augmenting path in Step 2 is immediate
by replacing binary searches in [CLSSW19, Algorithm 4] with the binary search
trees of Theorem E.4.1.

Lemma E.5.2. It takes Õ(n) time to compute the (s, u)-distance for each u ∈ U
and find the shortest (s, t)-path in G(S) or determine that t is unreachable from s.

Proof. First, we build two binary search trees via Theorem E.4.1 with β = 1, a
circuit binary search tree T1 := Initialize(M1, S,X1) where X1 = S for the first
matroid and a co-circuit binary search tree T2 := Initialize(M2, S,X2) where
X2 = S̄ for the second matroid. Initializing these takes Õ(n) time. These two binary
search trees allow us to explore the exchange graph efficiently.

Then we run the usual BFS algorithm from the source s (or equivalently, all
u ∈ S̄ with S + u ∈ I1). For each visited element u, if u ∈ S, then we repeatedly
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find x ∈ X2 such that S − u + x ∈ I2 using T2.Find(u), mark x as visited, and
remove x from X2 via T2.Delete(x) (until ⊥ is returned). Similarly, for u ∈ S̄, we
find x ∈ X1 with S − x+ u ∈ I1, mark x as visited, and remove x from X1 using
T1. This explores all the unvisited out-neighbors of u in G(S). Since each element
will be visited at most once, the total running time is Õ(n).

E.5.2 Blocking Flow
In this section, we prove the following lemma regarding a single phase of blocking-flow
computation.

Lemma E.5.3. Given an S ∈ I1 ∩ I2 with s, t-distance dG(S)(s, t) = d, it takes
Õ
(
n+ n

√
r

d + (|S′|−|S|)·nd√
r

)
time to obtain an S′ ∈ I1 ∩ I2 with dG(S′)(s, t) >

dG(S)(s, t).

Before proceeding to prove Lemma E.5.3, we first use it to finish our matroid
intersection algorithm. Like Hopcroft-Karp bipartite matching algorithm [HK73]
and the matroid intersection algorithm of [CLSSW19], we run several iterations of
blocking-flow, and then keep augmenting until we get the optimal solution.

Proof of Theorem E.5.1. Starting from an empty set S = ∅, we run the blocking-flow
algorithm until dG(S)(s, t) ≥

√
r. This, by Lemma E.5.3, takes

Õ
(
n
√
r
)

+ Õ

 √r∑
d=1

n
√
r

d

+ Õ

 n√
r
·

 √r∑
d=1

d · (|Sd| − |Sd−1|)

 (E.1)

time, where Sd is the size of the S we get after augmenting along paths of length d.
Observe that

∑√r
d=1 d · (|Sd| − |Sd−1|) is the sum of lengths of the augmenting paths

that we use, and thus the third term in Equation (E.1) is Õ( n√
r
· r) = Õ(n

√
r) by

Lemma E.3.8. The second term also sums up to Õ(n
√
r) (by a harmonic sum), and

therefore the total running time of the blocking-flow phases is Õ(n
√
r). The current

common independent set S has size at least r −O(
√
r) by Lemma E.3.7, and thus

finding the remaining O(
√
r) augmenting paths one at a time takes a total running

time of Õ(n
√
r) via Lemma E.5.2. This concludes the proof of Theorem E.5.1.

The rest of the section is to prove Lemma E.5.3. Our blocking-flow algorithm is
a slight modification to [CLSSW19, Algorithm 5], as shown in Algorithm E.1. It
takes advantage of the data structure of Theorem E.4.1 to explore an out-edge from
the current element aℓ to Aℓ+1—the set of “alive” elements in the next layers—while
(approximately) keeping track of the current common independent set S. An element
u is “alive” if it has not been included in the augmenting set Π := (D1, . . . , Ddt−1)
yet, nor has the algorithm determines that there cannot be any shortest augmenting
path through u.
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Algorithm E.1: Blocking flow
Input: S ∈ I1 ∩ I2
Output: S′ ∈ I1 ∩ I2 with dG(S′)(s, t) > dG(S)(s, t)

1 Build the distance layers L1, . . . , Ldt−1 of G(S) with Lemma E.5.2
2 L0 ← {s} and Ldt

← {t}
3 Aℓ ← Lℓ for each 0 ≤ ℓ ≤ dt
4 Tℓ ← Initialize(M1, S,QS , Lℓ) for each odd 1 ≤ ℓ ≤ dt by Theorem E.4.1

with β =
√
r/d

5 Tℓ ← Initialize(M2, S,QS , Lℓ) for each even 1 ≤ ℓ ≤ dt by Theorem E.4.1
with β =

√
r/d

6 ℓ← 0, a0 ← s, and Dℓ ← ∅ for each 1 ≤ ℓ < dt
7 while ℓ ≥ 0 do
8 if ℓ < dt then
9 if Aℓ = ∅ then break

10 aℓ+1 ← Tℓ+1.Find(aℓ)
11 if aℓ+1 = ⊥ then
12 Tℓ.Delete(aℓ)
13 Aℓ ← Aℓ − aℓ and ℓ← ℓ− 1
14 else
15 ℓ← ℓ+ 1

16 else
// Found augmenting path a1, a2, . . . aℓ

17 for i ∈ {1, 2, . . . , dt − 1} do
18 Di ← Di + ai and Ai ← Ai − ai
19 Ti.Delete(ai) and Ti.Update({ai−1, ai})
20 ℓ← 0

21 return S′ := S ⊕Π, where Π := (D1, D2, . . . , Ddt−1)

We emphasize that the difference between Algorithm E.1 and [CLSSW19, Algo-
rithm 5] is exactly in the replacement of binary searches with the data structure of
Theorem E.4.1. Note that indeed by the specification stated in Theorem E.4.1, the
binary search trees let us explore edges in the exchange graph (see Remark E.4.2). As
a result, our proof will focus on showing that such a replacement does not affect the
correctness. For this, we need the concept of augmenting sets (see Definition E.3.10)
which characterizes a collection of “mutually compatible” augmenting paths—i.e.
a “blocking flow”. The structural results in Section E.3 culminate in the following
lemma that is key to the correctness of our algorithm. It models when we can safely
“remove” an element since there will be no augmenting path through it in the future.
This is in particular required for us (as opposed to the simpler argument used in
[CLSSW19]) because the set S is not fully updated after each augmentation (at
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least in the binary search trees that we use to explore the exchange graphs).

Lemma E.5.4. Let Π ⊆ Π′ be augmenting sets in G(S) with distance layers
L1, . . . , Ldt−1 where dG(S)(s, t) = dt. For x ∈ Lℓ, if there is no y ∈ Lℓ+1 such that

(S ⊕Dℓ ⊕Dℓ+1)⊕ {x, y} ∈ I, where I :=
{
I1, if ℓ is even
I2, if ℓ is odd

, (E.2)

then there is no augmenting path of length dt through x in G(S ⊕Π′).

Proof. We claim that there is no augmenting path of length dt through x in G(S⊕Π):
If there is such a P , then we can put P into Π and get an augmenting set Π̃ :=
(D̃1, . . . , D̃dt−1) by Claim E.3.18. By definition of the augmenting set, this means
that there is such a y ∈ D̃k+1 \ Dk+1 satisfying (E.2), a contradiction to our
assumption. The lemma now follows from Claim E.3.17.

We are now ready to prove Lemma E.5.3.

Proof of Lemma E.5.3. First, We analyze the running time of Algorithm E.1. Sim-
ilar to [CLSSW19, Lemma 15], in each iteration, we use Tℓ.Find(·) to find an
out-edge of aℓ, taking Õ(β) = Õ(

√
r/d) time by Theorem E.4.1. In each iteration,

we either increase ℓ and extend the current path by a new element, decrease ℓ and
remove one element, or find an (s, t)-path (then remove everything in it), and each
element can participate in each of the event at most once. Thus, there are only
O(n) iterations, and the total cost of Tℓ.Find(·) is consequently Õ(n

√
r

d ) by our
choice of β. For each of the augmenting path, Tℓ.Update(·) takes Õ

(
|Lℓ|·d√

r

)
time,

contributing to a total running time of Õ
(

(|S′|−|S|)·nd√
r

)
since Lℓ’s are disjoint.

We then argue the correctness of the algorithm. Observe that at any point in
time, Tℓ is a data structure capable of finding a replacement element with respect
to the independent set S ⊕Dℓ−1 ⊕Dℓ, due to the updates that we gave it. This
means that the collection Π := (D1, D2, . . . , Ddt−1) remains an augmenting set in
G(S) because S ⊕ (Dℓ−1 + aℓ−1)⊕ (Dℓ + aℓ) is independent for each ℓ whenever a
path is found. As a result, when the algorithm terminates, S′ := S ⊕Π is indeed a
common independent set as guaranteed by Lemma E.3.12.

It remains to show that dG(S′)(s, t) > dG(S)(s, t) by arguing that for each aℓ not
in Π but removed from Aℓ at time t, there is no shortest augmenting path in G(S′)
that passes through aℓ. This is a direct consequence of Lemma E.5.4 since Π(t), the
augmenting set obtained at time t, is contained in Π. The fact that T (t)

ℓ+1.Find(aℓ)
returns nothing (equivalently, Equation (E.2) is not satisfied) shows that aℓ is not
on any shortest augmenting path in G(S′) since the set X maintained in T (t)

ℓ+1 (see
Theorem E.4.1) is Aℓ+1 at all time. We remark that x might have an out-edge
(with respect to S ⊕D(t)

ℓ ⊕D
(t+1)
ℓ ) to a removed element with distance ℓ+ 1 from s

(not in Aℓ+1), but such an element, by induction, is not on any augmenting path
either.
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E.6 Dynamically Maintaining a Basis of a Matroid

In this section, we construct a data structure that allows us to maintain a basis
of a matroid in a decremental set. The data structure is used for obtaining an
Õk(n+ r

√
r) running time for matroid union, but it may be of independent interest

as well. Specifically, our data structure has the following guarantees.

Theorem E.6.1. For a (weighted) matroidM = (U, I), there exists a data structure
supporting the following operations.

• Initialize(X): Given a set X ⊆ U , initialize the data structure and return a
(min-weight) basis S of X in Õ(n) time.

• Delete(x): Given x ∈ X, remove x from X and return a new (min-weight)
basis of X in Õ(

√
r) time. Specifically, the new basis will contain at most one

element (the replacement element of x) not in the old basis, and this procedure
returns such an element if any.

Our data structure for Theorem E.6.1 will consist of two parts. The first part,
introduced in Section E.6.1, is a baseline, unsparsified data structure that supports
the Delete operation in Õ(

√
n) time, and the second one is a sparsification structure

which brings the complexity down to Õ(
√
r), as presented in Section E.6.2.

As hinted by the statement of Theorem E.6.1, to make things simpler, we
will assign an arbitrary but unique weight w(x) to each x ∈ X. Now, instead of
maintaining an arbitrary basis of X, we maintain the min-weight basis instead. The
min-weight basis is well-known to be unique (as long as the weights are) and can be
obtained greedily as shown in Algorithm E.2 (see, e.g., [Edm71]).

Algorithm E.2: Greedy algorithm for computing the min-weight basis
Input: A set X ⊆ U of size k
Output: The min-weight basis S of X

1 Order X = (x1, x2, . . . , xk) so that w(x1) < w(x2) < · · · < w(xk)
2 S ← ∅
3 for i ∈ [1, k] do
4 if rank(S + xi) > rank(S) then
5 S ← S + xi

6 return S

Moreover, suppose we remove x ∈ S from the set X. Then the new min-weight
basis is either (i) S − x+ y where y is the minimum weight element in X − x that
makes S − x+ y independent or (ii) simply S − x if such a y does not exist. In case
(i), y is called the replacement element of x. Note that w(y) > w(x) must hold.
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It is useful to note that the S in Line 4 of Algorithm E.2 is interchangeable with
Xi−1 = {x1, . . . , xi−1}, since span(Xi−1) = span(S ∩Xi−1), so the sets Xi−1 and
S ∩Xi−1 have the same rank. In other words, in each iteration i, we can imagine
that Algorithm E.2 has chosen every element before xi.

Observation E.6.2. In Algorithm E.2, xi ∈ S if and only if rank(Xi)>rank(Xi−1).

E.6.1 Baseline Data Structure
Our baseline data structure supports the operations of Theorem E.6.1, except in
time Õ(

√
k) where k = |X| instead of Õ(

√
r).

Lemma E.6.3. For a weighted matroid M = (U, I), there exists a data structure
supporting the following operations.

• Initialize(X): Given a set X ⊆ U with |X| = k, initialize the data structure
and return the min-weight basis S of X in Õ(k) time.

• Delete(x): Given x ∈ X, remove x from X and return the new min-weight
basis of X in Õ(

√
k) time. Specifically, the new basis will contain at most one

element (the replacement element of x) not in the old basis, and this procedure
returns such an element if any.

• Insert(x): Given x ̸∈ X, add x to X. It’s guaranteed that x is not in the
min-weight basis of the new X and the size of X does not exceed 2k.

Initialization. In the initialization stage, we order X by the weights and split
the sequence into

√
k blocks X1, X2, . . . , X√k from left to right, where each block

has roughly the same size O(
√
k). That is, X1 contains the

√
k elements with the

smallest weights while X√k contains elements with the largest weights. We also
compute the basis S of X from left to right as in Algorithm E.2 together with

√
k

query-sets Q1, Q2, . . . , Q√k, where Qj =
⋃j
i=1 Xi is the union of the first j blocks.

This takes Õ(k) time in total.

Deletion. For each deletion of x located in the block Xi, we first update the
query-sets Qi, . . . , Q√k by removing x from them. Let Q′1, . . . , Q′√k denote the old
query-sets before removing x. If x is not in the basis S we currently maintain, then
S remains the min-weight basis of the new X and nothing further needs to be done.
Otherwise, we would like to find the min-weight replacement element y of x. We
know that such a y, if it exists, can only be located in blocks Xi, Xi+1, . . . , X√k. As
such, we find the first j ≥ i with rank(Qj) = rank(Q′j) and recompute the portion
of S inside Xj . This can be done by running Algorithm E.2 with the initial set S
being Qi−1, the union of the first i− 1 blocks (see Observation E.6.2). Thus, the
deletion takes Õ(

√
k) time.
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Insertion. For insertion of x, we simply add x to a block where it belongs
(according to w(x)) and then update Qi’s appropriately. This takes Õ(

√
k) as well.

Rebalancing. To maintain an update time of Õ(
√
k), whenever the size of a block

Xi grows larger than 2
√
k, we split it into two blocks and recompute Qi and Qi+1.

Similarly, to avoid having too many blocks, whenever the size of a block Xi goes
below

√
k/2, we merge it with an adjacent block and remove Qi. Each of the above

operations takes Õ(
√
k) time, which is subsumed by the cost of an update.

We have shown how to implement each operation of Lemma E.6.3 in its desired
running time, and the correctness of the data structure is manifest as we always
follow the greedy basis algorithm (Algorithm E.2).

E.6.2 Sparsification
In this section, we prove Theorem E.6.1 by “sparsifying” the input set of the data
structure for Lemma E.6.3 in a recursive manner, similar to what [EGIN97] did
to improve [Fre85]’s O(

√
|E|) dynamic MST algorithm to O(

√
|V |). The following

claim asserts that such sparsification is valid.

Claim E.6.4. Let SX and SY be the min-weight basis of X and Y , respectively,
where w(x) < w(y) holds for each x ∈ X and y ∈ Y . Then, the min-weight basis of
SX + SY is also the min-weight basis of X + Y .

Proof. Consider running the greedy Algorithm E.2 on the set X + Y to obtain
the min-weight basis S of it. Clearly, we have SX ⊆ S since X contains the
elements of smaller weights (in fact S ∩X = SX). Assume for contradiction that
S ∩ Y ̸⊆ SY , i.e., there exists a y∗ ∈ S ∩ Y which does not belong to SY . Then,
it must be the case that there exists a y ∈ SY with w(y) > w(y∗), as otherwise
(i.e., y∗ is ordered after everything in SY ) by Lemma E.3.4 the greedy algorithm
stops before seeing y∗. We claim that the greedy algorithm on Y chooses y∗ before
all such y’s, thereby contradicting the fact that SY is the min-weight basis of Y .
This is true by the diminishing returns property21 of the rank function: Let Y ∗
be elements in Y with weights smaller than w(y∗). Since y∗ ∈ S, it follows that
rank(X + Y ∗ + y∗) > rank(X + Y ∗), implying rank(Y ∗ + y∗) > rank(Y ∗) and the
greedy algorithm run on Y picks y∗.

We are now ready to present our sparsification data structure.

Proof of Theorem E.6.1. Our data structure is a balanced binary tree where the
leaf nodes correspond to elements in X and each internal node corresponds to the
set consisting of elements in leaf nodes of this subtree. We will abuse notation and
use a node v to also refer to the elements contained in the subtree rooted at v.

21The diminishing returns property of submodular functions states that f(z + X) − f(X) ≥
f(z + Y ) − f(Y ) holds for each Y ⊆ X ⊆ U and z ̸∈ X.
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We first build the binary tree top-down, starting with the root node containing
X and recursively splitting the current set into two subsets of roughly the same
size and recursing on them.22 We then build the min-weight basis of each node
in a bottom-up manner, starting from the leaves. For each node v with children
u1 and u2, we initialize the data structure Dv for Lemma E.6.3 with input set
Su1 + Su2 , the min-weight basis of u1 and u2 which are obtained from Du1 and
Du2 . By Claim E.6.4, the basis Dv maintains is the min-weight basis of v. Thus,
by induction, the basis maintained in the root node is indeed the min-weight basis
of the whole set X. The data structure for Lemma E.6.3 takes time near-linear in
the size of the input set to construct, and since the sparsified input is a subset of
elements in the subtree, the initialization takes time near-linear in the sum of sizes
of the subtrees, which is Õ(n) (indeed, every element occurs in at most logn nodes).

To delete an element x ∈ X, we first identify the leaf node vx of the binary
tree which corresponds to x. Going upward, for each ancestor p of vx, we delete x
from Dp. If we find a replacement element y for x, we insert y into Dq, where q is
p’s parent, before proceeding to q (y is not in Dp so such an insertion is valid by
Claim E.6.4). Since x will be removed from Dq shortly, the input set of Dq remains
the union of the min-weight bases of q’s children. This takes Õ(

√
r) time since

Dp is of size O(r). Inductively, since the min-weight bases of the child nodes are
updated, by Claim E.6.4, the min-weight basis of each of the affect nodes (hence
the min-weight basis of X) is correctly maintained.

E.7 Matroid Union

In this section, we present our improved algorithm for matroid union. Our main
focus of this algorithm is on optimizing the O(n

√
r) term to O(r

√
r). Thus, for

simplicity of presentation, we will treat k as a constant (the dependence on k will
be a small polynomial) and express our bounds using the Ok(·) and Õk(·) notation.

Theorem E.7.1. In the dynamic-rank-oracle model, given k matroidsMi = (Ui, Ii)
for 1 ≤ i ≤ k, it takes Õk(n + r

√
r) time to find a basis S ⊆ U1 ∪ · · · ∪ Uk of

M =M1 ∨ · · · ∨Mk together with a partition S1, . . . , Sk of S in which Si ∈ Ii for
each 1 ≤ i ≤ k.

In Section E.10, we present an optimized (for the parameter k) version of the
above algorithm which solves the important special case when all the k matroids
are the same—i.e. k-fold matroid union—with applications in matroid packing
problems. For example, the problem of finding k disjoint spanning trees in a graph
falls under this special case. In particular, in Section E.10, we obtain the following
Theorem E.7.2, and we discuss some immediate consequences for the matroid packing,
matroid covering, and k-disjoint spanning trees problems in Sections E.7.3 and E.7.4.

22Note that unlike in Section E.4, we are not building query-sets here.
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Theorem E.7.2. In the dynamic-rank-oracle model, given a matroid M = (U, I)
and an integer k, it takes Õ(n + kr

√
min(n, kr) + kmin(n, kr)) time to find the

largest S ⊆ U and a partition S1, . . . , Sk of S in which Si ∈ I for each 1 ≤ i ≤ k.

The rest of this section will focus on the proof of Theorem E.7.1 (again, where
the number of matroids k is treated as a constant). Our algorithm is based on the
matroid intersection algorithm in Section E.5, in which we identify and optimize
several components that lead to the improved time bound.

E.7.1 Reduction to Matroid Intersection
For completeness, we provide a standard reduction from matroid union to matroid
intersection. For an in-depth discussion, see [Sch03, Chapter 42]. Let Mi = (Ui, Ii)
be the given k matroids and U = U1 ∪ · · · ∪ Uk be the ground set of the matroid
union M =M1 ∨ · · · ∨Mk. We first relabel each element in the matroids with an
identifier of its matroid, resulting in M̂i = (Ûi, Ii), where Ûi = {(u, i) | u ∈ Ui}.
Let M̂ = (Û , Î) = M̂1 ∨ · · · ∨ M̂k be over the ground set Û = Û1 ⊔ · · · ⊔ Ûk.

In other words, in M̂, we duplicate each element that is shared among multiple
matroids into copies that are considered different, effectively making the ground
sets of the k matroids disjoint. After this modification, an independent set in M̂ is
now simply the union of k independent sets, one from each matroid. However, that
might not be what we want since these independent sets may overlap, i.e., contain
copies that correspond to the same element. We therefore intersection M̂ with a
partition matroid Mpart = (Û , Ipart) given by

Ipart = {S ⊆ Û | |S ∩ {(u, i) for 1 ≤ i ≤ k | u ∈ Ui}| ≤ 1 holds for each u ∈ U}

to restrict different copies of the same element to be chosen at most once. The
matroid union problem is thus reducible to the matroid intersection problem in the
sense that the intersection of M̂ and Mpart maps exactly to the independent sets
of the matroid union M.

Notation-wise, given the above mapping between the two worlds, whenever we
write S ∈ Ipart ∩ Î, a subset set of Û , we will equivalently regard S as a subset of
U with an implicit partition S1, . . . , Sk where Si ∈ Ii.

E.7.2 Specialized Matroid Intersection Algorithm
Given the reduction, to prove Theorem E.7.1, it suffices to compute the intersection
of M̂ and Mpart in the claimed time bound. In the following, we will set M1 to
be Mpart and M2 to be M̂ when talking about exchange graphs and other data
structures. Our main goal is to optimize the O(n

√
r) term to O(r

√
r), so it might

be more intuitive to think of r ≪ n. We first show that for an S ∈ Ipart ∩ Î, the
exchange graph G(S) is quite unbalanced in the sense that most elements appear
in the first distance layer. In fact, the first distance layer of G(S) contains all
duplicates of elements u in U that do not appear in S. This is by definition of G(S)
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and the fact that M1 = Mpart is the partition matroid. In the following, when
the context is clear, we let dt denote the (s, t)-distance of G(S) and L1, . . . , Ldt−1
denote the distance layers.

Fact E.7.3. It holds that L1 = {(u, i) | (u, i) ∈ Û and (u, j) ̸∈ S for any 1 ≤ j ≤ k}.

Similarly, the odd layers of G(S) (that corresponds to S̄) are well-structured in
the sense that they consist of elements whose one of the duplicates appears in S.
By definition of G(S), we also know that elements in odd layers have only a single
in-edge, which is from their corresponding duplicate in S. These elements thus all
have the same distance from s.

Fact E.7.4. It holds that L3 ∪ L5 ∪ · · · ∪ Ldt−1 = {(u, i) | (u, i) ∈ Û and (u, j) ∈
S for some i ̸= j}, and for each (u, i) ∈ L3 ∪ · · · ∪ Ldt−1, we have dG(S)(s, (u, i)) =
dG(S)(s, (u, j)) + 1 where (u, j) ∈ S.

Union Exchange Graph. Given the above facts, we introduce another notion of
exchange graphs which is commonly used for matroid union (see, e.g., [EDVJ68;
Cun86]). For the given k matroids Mi = (Ui, Ii) and a subset S ⊆ U that can be
partitioned into k independent sets S1, . . . , Sk with Si ∈ Ii, the union exchange
graph is a directed graph H(S) = (U ∪ {s, t}, E) with two distinguished vertices
s, t ̸∈ U and edge set E = Es ∪ Et ∪ Eex, where

Es = {(s, u) | u ̸∈ S},
Et = {(u, t) | Si + u ∈ Ii for some 1 ≤ i ≤ k}, and
Eex = {(u, v) | Si − v + u ∈ Ii where v ∈ Si}.

We can see that the exchange graph G(S) with respect to S ∈ Ipart ∩ Î (as a
subset of Û) and the union exchange graph H(S) with respect to S ⊆ U is essentially
the same in the sense that H(S) can be obtained from G(S) by contracting all
copies of the same element in the first layers and skipping all other odd layers. In
particular, for each (u, i) ∈ S, in G(S), there might be a direct edge from (u, i)
to (u, j) and an edge from (u, j) to (v, j), where (v, j) ∈ Sj and Sj − v + u ∈ Ij .
Correspondingly, in H(S), we skip the intermediate vertex (u, j) and meld the above
two edges as one direct edge from u ∈ Si to v ∈ Sj . We also merge all edges from s
to some (u, i) of the same u in the first layer to a single edge from s to u (Fact E.7.3).
This simplification does not impact the distance layers of H(S) since all such (u, j)
have the same distance from s (Fact E.7.4).

From now on, for simplicity, our algorithms will run on the union exchange
graphs H(S), i.e., we will perform blocking-flow computation and augment S along
paths in H(S). On the other hand, to not repeat and specialize all the lemmas to
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the case of union exchange graphs, proofs and correctness will be argued implicitly
in the perspective of the exchange graph G(S) for matroid intersection. For instance,
for P = (s, a1, . . . , adt−1, t) a shortest (s, t)-path in H(S), “augmenting S along P”
means moving ai to the independent set that originally contains ai+1 for each i ≥ 1,
and thus effectively enlarge the size of S by one via putting a1 in it.23 One can
verify that this is indeed what happens if we map P back to a path P ′ in G(S), and
then perform the augmentation of S (as a subset of Û) along P ′.

Our main idea to speed up the matroid union algorithm to Õk(r
√
r) (instead

of Õk(n
√
r)) is to “sparsify” the first layer of H(S) by only considering a subset of

elements contained in some basis. We formalize this in the following Lemmas E.7.5
and E.7.6 together with Algorithms E.3 and E.4.

Lemma E.7.5. Given S ∈ Ipart ∩ Î and k bases {Bi}ki=1 of Ui \ S, it takes Õk(r)
time to construct the distance layers L2, . . . , Ldt−1 of H(S).

Note that we know exactly what elements are in the first distance layer, so
computing L2, . . . , Ldt−1 suffices.

Algorithm E.3: BFS in a union exchange graph
Input: S ⊆ U which partitions into S1, . . . , Sk of independent sets and k

bases {Bi}ki=1 of Ui \ S
Output: The (s, u)-distance d(u) in H(S) for each u ∈ S ∪ {t}

1 queue← B1 ∪ · · · ∪Bk
2 d(u)←∞ for each u ∈ S ∪ {t}, and d(u)← 1 for each u ∈ B1 ∪ · · · ∪Bk
3 Ti ← Initialize(Mi, Si, Si) (Theorem E.4.1 with β = 1)
4 while queue ̸= ∅ do
5 u← queue.Pop()
6 for i ∈ {1, 2, . . . , k} where u ∈ Ui and u ̸∈ Si do
7 while v := Ti.Find(u) ̸= ⊥ do
8 d(v)← d(u) + 1 and queue.Push(v)
9 Ti.Delete(v)

10 if Si + u ∈ I and d(t) =∞ then d(t)← d(u) + 1

11 return d(u) for each u ∈ S ∪ {t}

Proof. The algorithm is presented as Algorithm E.3, and it is essentially a breadth-
first-search (BFS) starting from B1 ∪ · · · ∪ Bk instead of s. Out-edges in H(S)
are explored via k binary search trees T1, T2, . . . , Tk of Theorem E.4.1, one for
each matroid Mi and independent set Si. Let’s analyze the running time first.

23One can show that the matroid union M is a matroid [Sch03, Chapter 42]. As such, a
basis can be obtained by trying to include each element into S. From the union exchange graph
perspective, the independence test of S+ x corresponds to asking whether “there is a path in H(S)
from x to t”.
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Building Ti takes a total of Õ(|S|) = Õk(r) time. Exploring the graph takes
Õ(|S ∪B1 ∪ · · · ∪Bk| · k) = Õk(r) time in total since each element in S is found at
most once by Ti.Find(·) because Si’s are disjoint, and we also spend O(k) time for
each element in S ∪B1 ∪ · · · ∪Bk iterating over Ti.

It remains to show that starting from B1 ∪ · · · ∪Bk instead of U \ S does not
affect the correctness of the BFS. For this, it suffices to show that we successfully
compute d(u) for all u ∈ S with distance 2 from s. By definition, u ∈ Si is of
distance 2 from s if and only if there exists an x ∈ Ui \ S such that Si − u+ x ∈ Ii.
This is equivalent to ranki(Si−u+ (Ui \S)) > ranki(Si) by Observation E.4.3. But
then by Lemma E.3.4, we have ranki(Si − u+ (Ui \ S)) = ranki(Si − u+Bi), and
so such an x exists in Bi as well. This concludes the proof of Lemma E.7.5.

Lemma E.7.6. Given an S ∈ Ipart ∩ Î with dH(S)(s, t) = dt together with data
structures Di of Theorem E.6.1 that maintains a basis of Ui \ S for each 1 ≤ i ≤ k,
it takes Õk(r + r

√
r

dt
+ (|S′| − |S|) · dt

√
r) time to obtain an S′ ∈ Ipart ∩ Î with

dH(S′)(s, t) > dt, with an additional guarantee that Di now maintains a basis of
Ui \ S′ for each 1 ≤ i ≤ k.

Proof of Lemma E.7.6. Our blocking-flow algorithm for matroid union is presented
as Algorithm E.4. As it is equivalent to Algorithm E.1 running on G(S) except that
the first layer L1 := B1 ∪ · · · ∪Bk is now only a subset (which is updated after each
augmentation) of U \ S, we skip most parts of the proof and focus on discussing
this difference. That is, we need to show that if A1 becomes empty, then there is
no augmenting path of length dt in H(S′) anymore. Given how A1 and Bi’s are
maintained and Lemma E.5.4 (note that the set X maintained in T (i)

ℓ is always
Aℓ∩Si with respect to the current Si and thus it lets us explore out-edges to Aℓ∩Si
satisfying Equation (E.2)), A1 is always the subset of B1 ∪ · · · ∪ Bk consisting of
elements that still potentially admits augmenting path of length dt in H(S′) through
them. That means if A1 = ∅, then there is no augmenting set of length dt in G(S′),
that starts from some b ∈ B1 ∪ · · · ∪ Bk. This would imply that there is no such
path even if we start from x ∈ (Ui \ S) \D1 as Bi is a basis of it: if Si + x− y ∈ I
for some x ∈ (Ui \S) \D1 and y ∈ Si, then there is a b ∈ B with S + b− y ∈ I, and
thus a path starting from x can be converted into a path starting from b. On the
other hand, all elements in D1 are not on a such path by Lemma E.3.9 either. This
shows that indeed dH(S′)(s, t) > dH(S)(s, t).

The guarantee that Di now operates on Ui \ S′ is clear: Augmenting along P =
(s, a1, . . . , adt−1, t) corresponds to adding a1 into S, and since we call Di.Delete(a1)
in Line 22 after each such augmentation, Di indeed stays up-to-date.

It remains to analyze the running time of Algorithm E.4. Computing distance
layers with Lemma E.7.5 takes Õk(r) time. The number of elements that have
ever been in some Ai is Ok(r + |S′| − |S|) since (i) L2 ∪ · · · ∪ Ldt−1 has size Ok(r),
(ii) the initial basis Bi of Ui \ S for each 1 ≤ i ≤ k has total size Ok(r), and (iii)
each of the |S′| − |S| augmentations adds at most Ok(1) elements to A1. Similar



302 PAPER E. FAST ALGORITHMS VIA DYNAMIC-ORACLE MATROIDS

Algorithm E.4: Blocking flow in a union exchange graph
Input: S ⊆ U which partitions into S1, . . . , Sk of independent sets and a

dynamic-basis data structure Di of Ui \ S for each 1 ≤ i ≤ k
Output: S′ ∈ Ipart ∩ Ik with dH(S′)(s, t) > dH(S)(s, t)
Guarantee: Di maintains a basis of Ui \ S′ at the end of the algorithm for

each 1 ≤ i ≤ k
1 Build the distance layers L2, . . . , Ldt−1 of H(S) with Lemma E.7.5
2 L0 ← {s} and Ldt

← {t}
3 Bi ← the basis maintained by Di and L1 ← B1 ∪ · · · ∪Bk
4 Aℓ ← Lℓ for each 0 ≤ ℓ ≤ dt
5 T (i)

ℓ ← Initialize(Mi, Si, QSi
, Aℓ ∩ Si) for each 2 ≤ ℓ < dt and 1 ≤ i ≤ k

(Theorem E.4.1 with β =
√
r/dt)

6 Dℓ ← ∅ for each 1 ≤ ℓ < dt
7 ℓ← 0 and a0 ← s
8 while ℓ ≥ 0 do
9 if ℓ < dt then

10 if Aℓ = ∅ then break
11 if ℓ = 0 then Find an aℓ+1 := T (i)

ℓ+1.Find(aℓ) ̸= ⊥ for some
1 ≤ i ≤ k

12 else aℓ+1 ← an arbitrary element in A1
13 if such an aℓ+1 does not exist then
14 if ℓ ≥ 2 then T (j)

ℓ .Delete(aℓ) where aℓ ∈ Sj
15 Aℓ ← Aℓ − aℓ and ℓ← ℓ− 1
16 else
17 ℓ← ℓ+ 1

18 else
// Found augmenting path a1, a2, . . . aℓ

19 D1 ← D1 + a1 and A1 ← A1 − a1
20 for i ∈ {1, 2, . . . , k} where a1 ∈ Ui do
21 Bi ← Bi − a1
22 if Di.Delete(a1) returns a replacement x then
23 Bi ← Bi + x and A1 ← A1 ∪ {x}

24 for i ∈ {2, . . . , dt − 1} do
25 Di ← Di + ai and Ai ← Ai − ai
26 T (j)

i .Delete(ai) and T (j)
i .Update({ai−1, ai}) where ai ∈ Sj

27 Augment S along P = (s, a1, . . . , adt−1, t)
28 ℓ← 0

29 return S
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to Lemma E.5.3, this means that there are at most Ok(r) iterations, each taking
Ok(

√
r
dt

) time in T (i)
ℓ+1.Find(·) with our choice of β. The algorithm found |S′| − |S|

augmenting paths, taking Õk(dt
√
r · (|S′| − |S|)) time in total to update the binary

search trees. Also, for each such augmentation, we need Õk(
√
r) time to update the

basis Bi for all 1 ≤ i ≤ k, which is subsumed by the cost of updating T (j)
i . These

components sum up the total running time of

Õk

(
r + r

√
r

dt
+ (|S′| − |S|) · dt

√
r

)
.

Theorem E.7.1 now follows easily.

Proof of Theorem E.7.1. We initialize the dynamic-basis data structure Di of Theo-
rem E.6.1 on Ui for each of the matroid Mi. We then run Lemma E.7.6 for at most√
r iterations with {Di}ki=1 until dH(S)(s, t) ≥

√
r and get an S ∈ Ipart ∩ Î with Di

now operating on Ui \ S for each 1 ≤ i ≤ k. This takes

Õk

r√r +

√
r∑

d=1

r
√
r

d
+

√
r∑

d=1
d · (|Sd| − |Sd−1|)

 = Õk(r
√
r)

time. By Lemma E.3.7, S is Ok(
√
r) steps away from being optimal, and thus we

find the remaining augmenting paths one at a time using Lemma E.7.5 in Õk(r
√
r)

time in total. Note that since a single augmentation corresponds to adding an
element to S (hence removing it from U \ S), we can maintain the basis of Ui \ S
that Lemma E.7.5 needs in Õk(

√
r ·
√
r) total update time, which is subsumed by

other parts of the algorithm.

E.7.3 Matroid Packing and Covering
A direct consequence of our matroid union algorithm (Theorem E.7.2 in particular)
is that we can solve the following packing and covering problem efficiently. As a
reminder, the exact dependence on k of our algorithm is Õ(n+ kr

√
min(n, kr) +

kmin(n, kr)) by Theorem E.7.2.

Corollary E.7.7 (Packing). For a matroid M = (U, I), it takes Õ(n
√
n+ n2

r ) time
to find the largest integer k and a collection of disjoint subsets S = {S1, S2, . . . , Sk}
of U such that Si is a basis for each 1 ≤ i ≤ k under the dynamic-rank-query model.

Proof. It’s obvious that k ≤ n
r holds. We do a binary search of k in the range [0, nr ],

and for each k, we can determine the largest subset S of U which can be partitioned
into k disjoint independent sets by Theorem E.7.2. If |S| = kr, then it means that
there are at least k disjoint bases. Otherwise, there are less than k disjoint bases.
The running time is Õ(n

√
n+ n2

r ).
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Corollary E.7.8 (Covering). For a matroid M = (U, I), it takes Õ(αr
√
n+ αn)

time to find the smallest integer α and a partition S = {S1, S2, . . . , Sα} of U such
that Si ∈ I holds for each 1 ≤ i ≤ α under the dynamic-rank-query model.

Proof. We first obtain a 2-approximation α′ of α (i.e., α ≤ α′ ≤ 2α) by enumerating
powers of 2, running Theorem E.7.2 with k = 2i, and checking if the returned S has
size n: If |S| = n, then we know 2i independent sets suffice to cover U . Note that
the enumeration stops whenever we found a suitable value of α′. The exact value of
α can then be found by a binary search in [α′

2 , α
′]. This takes Õ(αr

√
n+ αn) (note

that αr ≥ n must hold).

E.7.4 Application: Spanning Tree Packing
We demonstrate the applicability of our techniques by deriving an Õ(|E|+(k|V |)3/2)
algorithm for the k disjoint spanning tree problem in a black-box manner. This
improves Gabow’s specialized Õ(k3/2|V |

√
|E|) algorithm [GW88]. Since all applica-

tions of our algorithms follow the same reduction, we only go through it once here.
Refer to Section E.11 for other applications of both our matroid union and matroid
intersection algorithms.

Theorem E.7.9. Given an undirected graph G = (V,E), it takes Õ(|E|+ (k|V |)3/2)
time to find k edge-disjoint spanning trees in G or determine that such spanning
trees do not exist with high probability24.

Proof. By Theorem E.7.2, it suffices to provide a data structure that supports the
three dynamic-oracle operations (Definition E.1.2) in polylog(|V |) time. Our black-
box reduction makes use of the worst-case connectivity data structure of [KKM13;
GKKT15], which can be adapted to in O(polylog(|V |)) update time maintain the
rank of a set of edges (see Section E.11.2 for a discussion on how this can be done).

Let MG be the graphic matroid with respect to G = (V,E). G admits k edge-
disjoint spanning trees if and only if MG admits k disjoint bases. The theorem now
follows from Theorem E.7.2 with n = |E| and r = |V |−1 since Theorem E.7.2 returns
a union of k disjoint bases if they exist (we note that k ≤ |E|/(|V | − 1) ≤ O(|V |),
and hence the O(k2r) term is dominated by the O((kr)3/2) term).

E.8 Super-Linear Query Lower Bounds

Lower bounds for matroid intersection have been notoriously difficult to prove. The
current highest lower bound is due to Harvey [Har08] which says that (log2 3)n−o(n)
queries are necessary for any deterministic independence-query algorithm solving
matroid intersection. Obtaining an ω(n) lower bound has been called a challenging
open question [CLSSW19].

24We use with high probability to denote with probability at least 1 − |V |−c for an arbitrarily
large constant c.
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In this section, we show the first super-linear query lower bound for matroid
intersection, both in our new dynamic-rank-oracle model (Definition E.1.2), and also
for the traditional independence-oracle model, thus answering the above-mentioned
open question and improving on the bounds of [Har08]. We obtain our lower bounds
by studying the communication complexity for matroid intersection.

Theorem E.8.1. If Alice is given a matroid M1 = (U, I1) and Bob a matroid
M2 = (U, I2), any deterministic communication protocol needs Ω(n logn) bits of
communication to solve the matroid intersection problem.

The communication lower bound of Theorem E.8.1 implies a similar lower bound
for the number of independence queries needed. We argue that any independence-
query algorithm can be simulated by Alice and Bob in the communication setting by
exchanging a single bit per query asked. Whenever they want to ask an independence
query “Is S ∈ Ii?”, Alice or Bob will check this locally and share the answer with
the other party by sending one bit of communication.

Unfortunately, this argument does not extend to the traditional rank-oracle
model (since each rank query can in fact reveal Θ(logn) bits of information, which
need to be sent to the other party). However, for the new dynamic-rank-oracle
model, the Ω(n logn) lower bound holds as now each new query only reveals constant
bits of information: either the rank remains the same, increases by one, or decreases
by one (and Alice or Bob can send which is the case to the other party with a
constant number of bits). Our discussion proves the following corollaries, given
Theorem E.8.1.

Corollary E.8.2. Any deterministic (traditional) independence-query algorithm
solving matroid intersection requires Ω(n logn) queries.

Corollary E.8.3. Any deterministic dynamic-rank-query algorithm solving matroid
intersection requires Ω(n logn) queries.

Remark E.8.4. We note that our lower bounds are also valid for the matroid union
problem, due to the standard reductions25 between matroid intersection and union.

E.8.1 Communication Setting
We study the following communication game which we call Matroid-Intersection-
with-Candidate. Alice and Bob are given matroids M1 = (U, I1) respectively
M2 = (U, I2). Suppose they are also both given a common independent set
S ∈ I1 ∩ I2, and they wish to determine whether S is a maximum-cardinality

25See Section E.7.1 for a reduction from matroid union to matroid intersection. To reduce from
matroid intersection to matroid union, consider M = M1 ∨ M∗

2, where M∗
2 is the dual matroid

of M2 (S ⊆ U is independent in M∗
2 if and only if U − S contains a basis). It’s easy to show

that the basis B of M in M1 will be of the form B = S ∪ (U \R), where S is the solution to the
intersection between M1 and M2 and R is an arbitrary basis of M2 that contains S.
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independent set. Clearly Matroid-Intersection-with-Candidate is an easier version of
the matroid intersection problem, as Alice and Bob can just ignore the candidate S.

Our idea is that in order to solve Matroid-Intersection-with-Candidate, Alice and
Bob need to determine if there exists an augmenting path—that is an (s, t)-path—in
the exchange graph G(S) (see Definition E.3.5 and Lemma E.3.6). It is known that
(s, t)-connectivity in a graph requires Ω(n logn) bits of communication (Lemma E.8.8,
[HMT88]). Using strict gammoids as our matroids, we argue that we can choose
exactly how the underlying exchange graph looks like, and hence that matroid
intersection admits the same lower bound.

Definition E.8.5 (Strict Gammoid, see [Per68; Mas72]). Let H = (V,E) be a
directed graph and X ⊆ V a subset of vertices. Then (H,X) defines a matroid
M = (V, I) called a strict gammoid, where a set of vertices Y ⊆ V is independent if
and only if there exists a set of vertex-disjoint directed paths (some of which might
just consist of single vertices) in H whose starting points all belong to X and whose
ending points are exactly Y .

Claim E.8.6. Suppose G = (L,R,E) is a directed bipartite graph and a, b ∈ R
are two unique vertices such that a has zero in-degree and b has zero out-degree.
Then there exist two matroids M1,M2 over the ground set L ∪ R such that L is
independent in both matroids and the exchange graph G(L) is exactly G plus two
extra vertices (s and t) and two extra edges (s→ a and b→ t).

Proof. Let F1 = {(u, v)|(u, v) ∈ E, u ∈ L, v ∈ R} be the directed edges from L to
R in G, and F2 = {(u, v)|(v, u) ∈ E, u ∈ L, v ∈ R} be the (reversed) directed edges
from R to L in G. Also let H1 = (L ∪R,F1) and H2 = (L ∪R,F2) be the directed
graphs with these edges respectively.

We let M1, respectively M2, be the strict gammoids defined by (H1, L + a)
respectively (H2, L+b). Now L is independent in both matroids. It is straightforward
to verify that the exchange graph G(L) is exactly as described in the claim. We
certify that this is the case for the edges defined by M1 (M2 is similar):

1. G(L) will have an edge from s to a, since L + a is independent in M1.
Additionally note that a has in-degree zero in G (and hence is an isolated
vertex in H1).

2. For any x ∈ L, y ∈ R, the edge (x, y) exists in G(L) if and only if L− x+ y is
independent in M1. By definition this is if and only if there exists a vertex-
disjoint path starting from L and ending to L− x+ y in H1, or equivalently if
the edge (x, y) exists in H1 (indeed, all vertices in L− x must be both starts
and ends of paths, so the path to y must have started in x).

We now proceed to reduce an instance of (s, t)-connectivity to that of Matroid-
Intersection-with-Candidate, which concludes the proof of Theorem E.8.1.
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Definition E.8.7 ((s, t)-connectivity). Suppose G = (V,EA ∪EB) is an undirected
graphs on n = |V | vertices, where Alice knows edges EA and Bob knows edges EB .
They are also both given vertices s and t, and want to determine if s and t are
connected in G.

Lemma E.8.8 ([HMT88]). The deterministic communication complexity of (s, t)-
connectivity is Ω(n logn).

Proof of Theorem E.8.1. We show that an instance of (s, t)-connectivity can be
converted to an instance of Matroid-Intersection-with-Candidate of roughly the same
size. Suppose the symbols are defined as in Definition E.8.7. Let V̄ = {v̄ : v ∈ V }
be a copy of V . We construct a directed bipartite graph G′ = (V, V̄ , E′A ∪E′B) as
follows:

• (v, v̄) ∈ E′A for all v ∈ V .

• (v̄, v) ∈ E′B for all v ∈ V .

• (v, ū), (u, v̄) ∈ E′A for all {u, v} ∈ EA.

• (v̄, u), (ū, v) ∈ E′A for all {u, v} ∈ EB .

• No other edges exist.

Alice knows E′A, and Bob knows E′B . G′ has 2n vertices and 2n+ 2m edges.
Now let G′′ be G′ but removing all incoming edges from s̄ and all outgoing

edges from t̄, in order to apply Claim E.8.6 on G′′ with a = s̄ and b = t̄. Say we
get matroids M1 and M2. Note that Alice knows M1 and Bob knows M2 by
construction.

Now s and t are connected in G if and only if there is a directed (s̄, t̄)-path in G′′.
This happens if and only if V is not a maximum-cardinality common independent
set of M1 and M2 (i.e. in the case we found an augmenting path for V ).

Hence if there is a (deterministic) communication protocol for matroid intersec-
tion using c bits of communication, there is also one for (s, t)-connectivity using O(c)
bits of communication. Lemma E.8.8 then implies the Ω(n logn) communication
lower bound for matroid intersection.

E.9 Open Problems

Our dynamic-oracle model opens up a new path to achieve fast algorithms for
many problems at once, where the ultimate goal is to achieve near-linear time and
dynamic-rank-query complexities. This would imply near-linear time algorithms for
many fundamental problems. We envision reaching this goal via a research program
where the studies of algorithms and lower bounds in our and the traditional models
complement each other. In particular, a major open problem is to improve our
algorithms further, which would imply improved algorithms for many problems
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simultaneously. A major step towards this goal is improved algorithms in the
traditional model, which would already be a breakthrough. Moreover, failed lower
bound attempts might lead to new algorithmic insights and vice versa, and we
leave improving our lower bounds as another major open problem. We believe that
the communication complexity of graph and matroid problems is an important
component in this study since it plays a main role in our lower bound argument.
Recently the communication and some query complexities of bipartite matching
and related problems were resolved in [BBEMN22]. How about the communication
and query complexities of dynamic-oracle matroid problems and their special cases
such as colorful spanning trees? It is also fruitful to resolve some special cases as
the solutions may shed more light on how to solve matroid problems in our model.
Below are some examples.

• Disjoint Spanning Trees. Can we find k edge-disjoint spanning trees in
an undirected graph in near-linear time for constant k, or even do so for
the case of k = 2 (which already has application in the Shannon Switching
Game)? Our new Õ(|E|+ |V |

√
|V |)-time algorithm shows that it is possible

for sufficiently dense graphs. For the closely related problem of finding k edge-
disjoint arborescences (rooted directed spanning trees) in a directed graph, the
case of k = 2 has long been settled by Tarjan’s linear time algorithm [Tar76],
and the case of constant k has also been resolved by [BHKP08]. It is a very
interesting question whether the directed case is actually computationally
easier than the undirected case or not.

• Colorful Spanning Tree. This problem generalizes the maximum bipartite
matching problem, among others. Given the recent advances in max-flow
algorithms which are heavily based on continuous optimization techniques,
bipartite matching can now be solved in almost-linear time [CKLPGS22] in
general and nearly linear time for dense input graphs [BLNPSSSW20]. It is
very unclear if continuous optimization can be used for colorful spanning tree
since its linear program has exponentially many constraints. This reflects the
general challenge of using continuous optimization to solve matroid problems
and many of their special cases. Thus, improving Hopcroft-Karp’s O(|E|

√
|V |)

runtime [HK73] (which is matched by our dynamic-oracle matroid algorithm)
may shed some light on either how to use continuous optimization for these
problems or how combinatorial algorithms can break this runtime barrier for
colorful spanning tree, bipartite matching, and matroid problems.

Other Problems with Dynamic Oracles. It also makes sense to define dynamic
oracles for problems like submodular function minimization (SFM), which asks to
find the minimizer of a submodular function given an evaluation oracle. In this
regime, similar to matroid intersection, we want to limit the symmetric difference
from the current evaluation query to the previous ones. We believe that the recent
algorithms for submodular function minimization based on convex optimization and
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cutting-plane methods, particularly the work of [LSW15; JLSW20], can be adapted
to the dynamic-oracle setting. However, we are not aware of any applications of
these dynamic-oracle algorithms. The first step is thus improving the best bounds
in the traditional oracle model. The special case of the cut-query setting [RSW18;
MN20; LSZ21; LLSZ21; AEGLMN22] is also very interesting; we leave getting
algorithms for min (s, t)-cut [CKLPGS22] and directed global mincut [CLNPSQ21]
with near-linear time and dynamic-query complexity as major open problems.26

Another interesting direction is the quantum setting. For example, can one define
the notion of dynamic quantum cut query so that the quantum cut-query algorithm
of [AEGLMN22] can imply a non-trivial quantum global mincut algorithm?

Improved Lower Bounds. Obtaining improved lower bounds for matroid in-
tersection is also an important open problem. Getting Ω(n logn) lower bound for
traditional rank-query matroid intersection algorithms is particularly interesting
since it would subsume our Ω(n logn) lower bounds (traditional rank-query lower
bound implies independence-query and dynamic-rank-query lower bounds) and
the Ω(n logn) SFM lower bound of [CGJS22]. For the latter, [CGJS22] showed
an Ω(n logn) lower bound for SFM against strongly-polynomial time algorithms.
Since SFM generalizes matroid intersection in the traditional rank-oracle model
(i.e., a rank query of a matroid corresponds to an evaluation of the submodular
function), getting the same lower bound for traditional rank-query matroid inter-
section algorithms would further strengthen the result of [CGJS22] to hold against
weakly-polynomial time algorithms.

Additionally, achieving a truly super-linear lower bound (i.e. an n1+Ω(1) bound)
for any of the above problems is extremely interesting.

APPENDIX

E.10 k-Fold Matroid Union

In this section, we study the special case of matroid union where we take the k-fold
union of the same matroid. That is, a basis of the k-fold union of M = (U, I) is
the largest subset S ⊆ U which can be partitioned into k disjoint independent sets
S1, . . . , Sk of I. Many of the prominent applications of matroid union fall into this
special case, particularly the k-disjoint spanning tree problem. As a result, here we
show an optimized version of the algorithm presented in Section E.7 with better
and explicit dependence on k that works in this regime.

Theorem E.7.2. In the dynamic-rank-oracle model, given a matroid M = (U, I)
and an integer k, it takes Õ(n + kr

√
min(n, kr) + kmin(n, kr)) time to find the

largest S ⊆ U and a partition S1, . . . , Sk of S in which Si ∈ I for each 1 ≤ i ≤ k.
26Adapting the cut-query algorithm of [MN20] to work with dynamic cut oracles and, even

better, with a parallel algorithm [AB21; LMN21], is also open; though, we suspect that these are
not hard.
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Note that in the breadth-first-search and blocking-flow algorithms in Section E.7,
there is an O(k) overhead where we have to spend O(k) time iterating through the
k binary search trees in order to explore the out-neighbors of the O(kr) elements.
Our goal in this section is thus to show that it is possible to further “sparsify” the
exchange graphs to contain essentially only a basis, hence reducing its size from
Θ(kr) to O(r). We start with a slight modification to the BFS Algorithm E.3 which
reduces the running time by a factor of O(k). The idea is that if we visit an element
u in the BFS which does not increase the rank of all visited elements so far, we can
skip searching out-edges from u. Indeed, if (u, v) is an edge of the exchange graph,
then there must have been some element u′ visited earlier in the BFS which also
has the edge (u′, v).

Algorithm E.5: BFS in a k-fold union exchange graph
Input: S ⊆ U with partition S1, . . . , Sk of independent sets and a basis B

of U \ S
Output: The (s, v)-distance d(v) in H(S) for each v ∈ S ∪ {t}

1 queue← B and R← ∅
2 d(v)←∞ for each v ∈ S ∪ {t}, and d(v)← 1 for each v ∈ B
3 Ti ← Initialize(M, Si, Si) (Theorem E.4.1 with β = 1)
4 while queue ̸= ∅ do
5 u← queue.Pop()
6 if R+ u ∈ I then
7 for i ∈ {1, 2, . . . , k} do
8 while v := Ti.Find(u) ̸= ⊥ do
9 d(v)← d(u) + 1 and queue.Push(v)

10 Ti.Delete(v)
11 if Si + u ∈ I and d(t) =∞ then d(t)← d(u) + 1
12 R← R+ u

13 return d(v) for each v ∈ S ∪ {t}.

Lemma E.10.1. Given S ∈ Ipart ∩ Î and a basis B of U \ S, it takes Õ(kr) time
to construct the distance layers L2, . . . , Ldt−1 of H(S).

Proof. The algorithm is presented as Algorithm E.5. It performs a BFS from a
basis B of the first layer and only explores out-edges from the first basis R it found.
It takes (i) Õ(|S|) time to construct the Ti’s, (ii) Õ(1) time to discover each of the
O(kr) element, and (iii) an additional Õ(k · |R|) time to iterate through all k binary
search trees Ti’s for each u ∈ R. The total running time is thus bounded by Õ(kr).

We have shown in Lemma E.7.5 that it is feasible to replace U \S with simply B.
It remains to show that exploring only the out-neighbors of u ∈ R does not affect
the correctness. Consider a v ∈ S \R (we know that B ⊆ R so it suffices to consider
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elements in S) with an out-neighbor x ∈ Si, i.e., Si− x+ v ∈ I. It then follows that
rank((Si − x) +Rv) = rank((Si − x) + (Rv + v)) ≥ rank(Si) by Observation E.4.3
and Lemma E.3.4, where Rv is the set R when v is popped out of the queue (in
other words, Rv + v ̸∈ I). This implies that there is a u ∈ Rv which is visited before
v that also has out-neighbor x. The modification is therefore correct.

Our blocking-flow algorithm for k-fold matroid union is presented as Algo-
rithm E.6. It’s essentially a specialization of Algorithm E.4 to the case where all the
k matroids are the same, except that we skip exploring the out-neighbors of aℓ and
remove it directly if it is “spanned” by the previous layers and the set Rℓ ⊆ Lℓ of
elements that are not on any augmenting path of length dt. With this optimization,
we obtain the following lemma analogous to Lemma E.7.6.

Lemma E.10.2. Given an S ∈ Ipart ∩ Î with dH(S)(s, t) = dt together with a data
structure D of Theorem E.6.1 that maintains a basis of U \ S, it takes

Õ

 kr︸︷︷︸
(i)

+ (|S′| − |S|) · dt
√
r︸ ︷︷ ︸

(ii)

+ ((|S′| − |S|) · dt + r) · k︸ ︷︷ ︸
(iii)

+ (kr + (|S′| − |S|)) ·
√
r

dt︸ ︷︷ ︸
(iv)


(E.3)

time to obtain an S′ ∈ Ipart ∩ Î with dH(S′)(s, t) > dt, with an additional guarantee
that D now maintains a basis of U \ S′.

We need the following observation to bound the running time of Algorithm E.6.

Observation E.10.3. In Algorithm E.6, it holds that B∪R2∪R3∪· · ·∪Rdt−1 ∈ I.

Proof of Lemma E.10.2. We analyze the running time of Algorithm E.6 first. In
particular, there are four terms in Equation (E.3) which come from the following.

(i) Õ(kr): It takes Õ(kr) time to compute the distance layers using Lemma E.10.1
and initialize all the binary search trees T (i)

ℓ ’s. Computing the rank of
L1 ∪ · · · ∪ Lℓ−1 ∪Rℓ also takes Õ(kr) time in total since we can pre-compute
query-sets of the form L1∪· · ·∪Lk for each k in Õ(kr) time, and each insertion
to Rℓ takes Õ(1) time.

(ii) Õ ((|S′| − |S|) · dt
√
r): For each of the O(|S′| − |S|) augmentations, it takes

Õ(r · dt√
r
) time to update the binary search trees.

(iii) Õ(((|S′| − |S|) · dt + r) · k): The number of elements whose out-edges are
explored is bounded by O ((|S′| − |S|) · dt + r). This is because for each such
element u, either u is included in an augmenting path of length dt, or u is
removed in Line 17. There are O((|S′| − |S|) · dt) such u’s in the augmenting
paths. For u removed in Line 17, if ℓ = 1, then the number of such u’s is
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Algorithm E.6: Blocking flow in a k-fold union exchange graph
Input: S ⊆ U which partitions into S1, . . . , Sk of independent sets and a

dynamic-basis data structure D of U \ S
Output: S′ ∈ Ipart ∩ Ik with dH(S′)(s, t) > dH(S)(s, t)
Guarantee: D maintains a basis of U \ S′ at the end of the algorithm

1 Build the distance layers L2, . . . , Ldt−1 of H(S) with Lemma E.10.1
2 L0 ← {s} and Ldt ← {t}
3 B ← the basis maintained by D and L1 ← B
4 Aℓ ← Lℓ for each 0 ≤ ℓ ≤ dt
5 T (i)

ℓ ← Initialize(Mi, Si, QSi
, Aℓ ∩ Si) for each 2 ≤ ℓ < dt and 1 ≤ i ≤ k

(Theorem E.4.1 with β =
√
r/dt)

6 Dℓ ← ∅ for each 1 ≤ ℓ < dt
7 Rℓ ← ∅ for each 2 ≤ ℓ < dt
8 ℓ← 0 and a0 ← s
9 while ℓ ≥ 0 do

10 if ℓ < dt then
11 if Aℓ = ∅ then break
12 if ℓ ≥ 2 and

rank(L1 ∪ · · · ∪ Lℓ−1 ∪Rℓ ∪ {aℓ}) = rank(L1 ∪ · · · ∪ Lℓ−1 ∪Rℓ)
then Aℓ ← Aℓ − aℓ and continue

13 if ℓ > 0 then Find an aℓ+1 := T (i)
ℓ+1.Find(aℓ) ̸= ⊥ for some

1 ≤ i ≤ k
14 else aℓ+1 ← an arbitrary element in A1
15 if such an aℓ+1 does not exist then
16 if ℓ ≥ 2 then Rℓ ← Rℓ+aℓ and T (j)

ℓ .Delete(aℓ) where aℓ ∈ Sj
17 Aℓ ← Aℓ − aℓ and ℓ← ℓ− 1
18 else ℓ← ℓ+ 1
19 else

// Found augmenting path a1, a2, . . . aℓ
20 B ← B − a1, A1 ← A1 − a1, and D1 ← D1 + a1
21 if D.Delete(a1) returns a replacement x then
22 Bi ← Bi + x and Ai ← Ai + x

23 for i ∈ {2, . . . , dt − 1} do
24 Di ← Di + ai and Ai ← Ai − ai
25 T (j)

i .Delete(ai) and T (j)
i .Update({ai−1, ai}) where ai ∈ Sj

26 Augment S along P = (s, a1, . . . , adt−1, t)
27 ℓ← 0

28 return S
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O(|S′| − |S|+ r) because there are initially O(r) elements in A1, and we add
at most one to it every augmentation. If ℓ ≥ 2, then we insert it into Rℓ, and
by Line 12, the rank of L1 ∪ · · · ∪Lℓ−1 ∪Rℓ increases after including u into Rℓ.
By Observation E.10.3, the number of such u’s is bounded by O(r). The term
then comes from spending O(k) time iterating through the k binary search
trees for each of the O ((|S′| − |S|) · dt + r) elements whose out-neighbors are
explored.

(iv) Õ((kr + (|S′| − |S|)) ·
√
r
dt

): The number of elements that are once in some
Aℓ is bounded by O(kr + |S′| − |S|). Initially, there are O(kr) elements (A1
plus all the Aℓ for ℓ ≥ 2), and each augmentation adds at most one element
to A1. Each of these elements is discovered by T (i)

ℓ .Find(·) at most once,
and thus we can charge the Õ(

√
r
dt

) cost to it, resulting in the fourth term of
Equation (E.3).

Note that for each element whose out-neighbors are explored, any failed attempt
of T (i)

ℓ .Find(·) costs only Õ(1) instead of Õ(
√
r
dt

) according to Theorem E.4.1. The
Õ(
√
r
dt

) cost of a successful search is charged to term (iv) instead of (iii).
As for correctness, it suffices to show that each of the aℓ removed from Aℓ

because it is spanned by L1 ∪ · · · ∪ Lℓ−1 ∪Rℓ in Line 12 is not in any augmenting
path of length dt. Consider its out-neighbor aℓ+1 with respect to the current S,
and we would like to argue that aℓ+1 is not on any augmenting path of length dt
anymore. This is because we have already explored all the out-neighbors of elements
in Rℓ. Since aℓ ∈ span(L1 ∪ · · · ∪ Lℓ−1 ∪ Rℓ), by Lemma E.3.4, there must exist
some u ∈ L1 ∪ · · · ∪Lℓ−1 ∪Rℓ with a directed edge (u, aℓ+1). We consider two cases:

• u ∈ Rℓ. This means that we have already explored aℓ+1, as we finished
exploring all out-neighbors of u already.

• u ∈ L1 ∪ · · · ∪ Lℓ−1. We know that by Lemma E.3.9, both dH(S)(s, v) and
dH(S)(v, t) can only increase after augmentations for all elements v. Hence
aℓ+1 cannot be part of an augmenting path of length dt anymore, since if it
was its distance to t must be d− (ℓ+ 1), but then the distance from u to t
must be at most d− ℓ (which is smaller than its initial distance to t at the
beginning of the phase).

As a result, all of u’s out-neighbors have either already been explored or do not
belong to any augmenting path of length dt. This implies that u is not on any such
path either, and thus it’s correct to skip and remove it from Aℓ. This concludes the
proof of Lemma E.10.2.

Theorem E.7.2 now follows from analyzing the total running time of O(
√

min(n, kr))
runs of Lemma E.10.2.
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Proof of Theorem E.7.2. We initialize the dynamic-basis data structure D of Theo-
rem E.6.1 on U in Õ(n) time. Let p = min(n, kr) be the rank of the k-fold matroid
union. Using D, we then run O(√p) iterations of Lemma E.10.2 until dH(S)(s, t) >√
p. Summing the first two terms of Equation (E.3) over these O(√p) iterations

gives (recall that Lemma E.3.8 guarantees that
∑√p
d=1 d · (|Sd| − |Sd−1|) = Õ(p))

Õ

kr√p+
√
r ·

√
p∑

d=1
d · (|Sd| − |Sd−1|)

 = Õ (kr√p)

since p
√
r ≤ kr√p. The third term of Equation (E.3) contributes a total running

time of

Õ

√p∑
d=1

dk · (|Sd| − |Sd−1|)

+ kr
√
p

 = Õ (kr√p+ kp) ,

while the fourth term of Equation (E.3) sums up to

Õ

√p∑
d=1

kr

√
r

d

+ kr
√
r

 = Õ
(
kr
√
r
)
.

We finish the algorithm by finding the remaining O(√p) augmenting paths one
at a time with Lemma E.10.1 in a total of Õ(kr√p) time. The k-fold matroid
union algorithm thus indeed runs in Õ

(
n+ kr

√
min(n, kr) + kmin(n, kr)

)
time,

concluding the proof of Theorem E.7.2.

E.11 Dynamic Oracles for Specific Matroids & Applications

In this appendix, we show how to leverage known dynamic algorithms to implement
the dynamic rank oracle (Definition E.1.2) efficiently for many important matroids.
What we need are data structures that can maintain the rank of a set dynamically
under insertions and deletions in worst-case update time (converting a worst-case
data structure to fully-persistent can be done by the standard technique of [DSST86;
Die89], paying an overhead of O(logn)). Additionally, note that the data structures
do not need to work against an adaptive adversary since we only ever use the rank
of the queried sets, which is not affected by internal randomness.

In particular, for partition, graphic, bicircular, convex transversal, and simple job
scheduling matroids it is possible to maintain the rank with polylog(n) update-time,
and for linear matroids in O(n1.529) update-time.

Together with our matroid intersection (Section E.5) and matroid union (Sec-
tion E.7) algorithms, this leads to a black-box approach to solving many different
problems. In fact, we can solve matroid intersection and union on any combination
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of the above matroids, leading to improved or matching running times for many
problems (see the introduction Section E.1 with Section E.1 and Table E.2 for a more
thorough discussion). For completeness, we define these problems in Section E.11.5.
The same algorithms are powerful enough to also solve new problems which have
not been studied before.

Example Application: Tree Scheduling (or Maximum Forest with Dead-
lines). We give an example of a reasonably natural combinatorial scheduling
problem, which—to our knowledge—has not been studied before. Suppose we are
given a graph G = (V,E) where each edge e ∈ E has two numbers associated with
it: a release date ℓe and a deadline re. Consider the problem where we want to for
each day pick exactly one edge (say, to build/construct), but we have constraints
that edge e can only be picked between days ℓe and re. Now the task is to come up
with a scheduling plan to build a spanning tree of the graph, if possible.

This problem is exactly a matroid intersection problem between a graphic matroid
and a convex transversal matroid. Hence, by a black-box reduction, we know that
we can solve this problem in Õ(|E|

√
|V |) time.

E.11.1 Partition Matroids

In a partition matroid M = (U, I), each element u ∈ U is assigned a color cu. We
are also, for each color c, given a non-negative integer dc, and we define a set of
elements S ⊆ U to be independent if for each color c, S includes at most dc elements
of this color. Implementing the dynamic oracle for the partition matroid is easy:

Lemma E.11.1. One can maintain the rank of a partition matroid in O(1)-update
time.

Proof. For each color c we maintain a counter xc of how many elements we have
of color c. We also maintain r =

∑
minc(xc, dc), which is the rank of the current

set.

Remark E.11.2. Bipartite matching can be modeled as a matroid intersection problem
of two partition matroids. So our matroid intersection algorithm together with the
above lemma match (up to poly-logarithmic factors induced by fully-persistence)—
in a black-box fashion—the O(|E|

√
|V |)-time bound of the best combinatorial

algorithm for bipartite matching [HK73].

E.11.2 Graphic and Bicircular Matroids

Given a graph G = (V,E), the graphic and bicircular matroids are matroids
capturing the connectivity structure of the graph.
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Graphic Matroid. In the graphic matroidsM = (E, I) a subset of edges E′ ⊆ E
are independent if and only if they do not contain a cycle. We use the following
result to implement the dynamic oracle for this matroid.

Lemma E.11.3 ([KKM13; GKKT15]). There is a data structure that maintains
an initially-empty graph G = (V,E) and supports insertion/deletion of edges e
into/from E in worst case O(log4 |V |) time and query of the connectivity between u
and v in worst case O(log |V |/ log log |V |) time. The data structure works with high
probability against an oblivious adversary.

With a simple and standard extension, we can maintain the number of con-
nected components as well, and hence also the rank (since rank(E′) = |V | −
#connected components in G[E′]).

Corollary E.11.4. There is a data structure that maintains an initially-empty
graph G = (V,E) and supports insertion/deletion of e into/from E in worst-case
O(log4 |V |) time. After each operation, the data structure also returns the number of
connected components in G. The data structure works with high probability against
an oblivious adversary.

Proof. We maintain the data structure C of Lemma E.11.3 and a counter c := |V |
representing the number of connected components. For insertion of e = (u, v), we
first query the connectivity of u and v before inserting e into C. If they are not
connected before the insertion, decrease c by one. For deletion of e = (u, v), after
deleting e from C, we check if u and v are still connected. If not, then we increase c
by one.

Bicircular Matroid. In the bicircular matroid M = (E, I), a subset of edges
E′ ⊆ E are independent if and only if each connected component in G[E′] has at
most one cycle. Similar to the graphic matroid, dynamic connectivity algorithms
can be used to implement the dynamic rank oracle for bicircular matroids too.

Corollary E.11.5. There is a data structure that maintains an initially-empty
graph G = (V,E) and supports insertion/deletion of e into/from E in worst-case
O(log4 |V |) time. After each operation, the data structure also returns the rank of
E in the bicircular matroid. The data structure works with high probability against
an oblivious adversary.

Proof. The dynamic connectivity data structure (Lemma E.11.3) of [KKM13;
GKKT15] can be adapted to also keep track of the number of edges and ver-
tices in each connected component. Using this, the data structure can, for each
connected component c keep track of a number xc as the minimum of the number
of edges in this component and the number of vertices in this component. Then
the rank of the bicircular matroid is just the sum of xc (as in an independent set
each component is either a tree or a tree with an extra edge). In each update two
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components can merge, a component can be split up into two, or the edge-count of
a component may simply change.

Remark E.11.6 (Deterministic Dynamic Connectivity). The above dynamic con-
nectivity data structures are randomized. There are also deterministic connectiv-
ity data structures, but with slightly less efficient sub-polynomial |V |o(1) update
time [CGLNPS20].

E.11.3 Convex Transversal and Scheduling Matroids
Convex transversal and scheduling matroids are special cases of the transversal
matroid, with applications in scheduling algorithms.

Definition E.11.7 (Transversal Matroid [EF65]). A transversal matroid with
respect to a bipartite graph G = (L,R,E) is defined over the ground set L, where
each S ⊆ L is independent if and only if there is a perfect matching in G between S
and a subset of R.

A bipartite graph G = (L,R,E) is convex if R has a linear order R =
{r1, r2, . . . , rn} and each ℓ ∈ L corresponds to an interval 1 ≤ s(ℓ) ≤ t(ℓ) ≤ n
such that (ℓ, ri) ∈ E if and only if s(ℓ) ≤ i ≤ t(ℓ), i.e., the neighbors of each ℓ form
an interval.

Definition E.11.8 (Convex Transversal Matroid and Simple Job Scheduling Ma-
troid). A convex transversal matroid is a transversal matroid with respect to a
convex bipartite graph. A simple job scheduling matroid is a special case of convex
transversal matroids in which s(ℓ) = 1 for each ℓ ∈ L.

One intuitive way to think about the simple job scheduling matroid is that there
is a machine capable of finishing one job per day. The ground set of the matroid
consists of n jobs, where the i-th jobs must be done before its deadline di. A subset
of jobs forms an independent set if it’s possible to schedule these jobs on the machine
so that every job is finished before its deadline.

Lemma E.11.9 (Dynamic Convex Bipartite Matching [BGHK07]). There is a data
structure which, given a convex bipartite graph G = (L,R,E), after Õ(|L| + |R|)
initialization, maintains the size of the maximum matching of G[A∪R] where A ⊆ L
is a dynamically changing subset of L that is initially empty. The data structure
supports insertion/deletion of an x ∈ L to/from A in worst-case O(log2(|L|+ |R|))
update time.

Remark E.11.10. The exact data structure presented in [BGHK07] is different from
the stated one. In particular, they support insertion/deletion of an unknown job,
i.e., we do not know beforehand what the starting date and deadline of the job are,
nor do we know its relative position among the current set of jobs. As a result,
they used a rebalancing-based or rebuilding-based binary search tree [NR72; And89;
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And91], resulting in their amortized bound. For our use case, all the possible jobs
are known and we are just activating/deactivating them, hence a static binary tree
with a worst-case guarantee over these jobs suffices.

E.11.4 Linear Matroid
In a linear matroid M = (U, I), U is a set of n vectors (of dimension r) in some
vector space and the notion of independence is just that of linear independence.
The dynamic algorithm to maintain the rank of a matrix of [BNS19] can be used
without modification as the dynamic oracle.

Lemma E.11.11 (Dynamic Matrix Rank Maintenance [BNS19]). There is a data
structure which, given an n × n matrix M , maintains the rank of M under row
updates in worst-case O(n1.529) update time.

E.11.5 Problems
For completeness, here we define the problems we discuss in the introduction, and
why they reduce to matroid union or intersection.

k-Forest. In this problem we are given a graph G = (V,E) and asked to find k
edge-disjoint forests of the graph, of the maximum total size. It can be modeled as
the k-fold matroids union over the graphic matroid of G.

k-Disjoint Spanning Trees. This problem is a special case of the above k-forest
problem where we ask to find k edge-disjoint spanning trees of the graph. Clearly,
if such exists, the k-forest problem will find them.

k-Pseudoforest. Similar to above, in this problem we are given a graph G = (V,E)
and asked to find k edge-disjoint pseudoforests of the graph, of the maximum total
size. A pseudoforest is an undirected graph in which every component has at most
one cycle. The problem can be modeled as the k-fold matroids union over the
bicircular matroid of G.

(f, p)-Mixed Forest-Pseudoforest. Again, we are given a graph G = (V,E) and
asked to find f forests and p pseudoforest (all edge-disjoint), of the maximum total
size. The problem can be modeled as the matroids union over f graphic matroids
and p bicircular matroids.

Tree Packing. In the tree packing problem, we are given a graph G = (V,E) and
are asked to find the maximum k such that we can find k-disjoint spanning trees in
the graph. This number k is sometimes called the tree-pack-number or strength of
the graph. The problem can be solved with the k-disjoint spanning trees problem,
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by binary searching for k in the range [0, |E|/(|V | − 1)], and is an example of a
matroid packing problem.

Arboricity and Pseudoarboricity. The arboricity (respectively pseudoarboric-
ity) of a graph G = (V,E) is the least integer k such that we can partition the edges
into k edge-disjoint forests (respectively pseudoforests). This can be solved with
the k-forest (respectively k-pseudoforest) problem with a binary search over k. It
is well known that for a simple graph the (pseudo-)arboricity is at most

√
|E|, so

we need only search for k in the range [0,
√
|E|]. The problems are examples of

matroid covering problems.

Shannon Switching Game. The Shannon switching game is a game played on
a graph G = (V,E), between two players “Short” and “Cut”. They alternate turns
with Short playing first, and all edges are initially colored white. On Short’s turn,
he may color an edge of the graph black. On Cut’s turn, he picks a remaining
non-black edge and removes it from the graph. Short wins if he connects the full
graph with black edges, and Cut if he manages to disconnect the graph. It can
be shown that Short wins if and only if there exists two disjoint spanning trees in
the graph (and these two spanning trees describes a winning strategy for Short).
Hence solving this game is a special case of the k-disjoint spanning tree problem
with k = 2.

Graph k-Irreducibility. A (multi-)graph G = (V,E) is called k-irreducible
([Whi88]) if and only if |E| = k(|V | − 1) and for any vertex-induced nonempty,
proper subgraph G[V ′] it holds that |E(G[V ′])| < k(|V ′|−1). The motivation behind
this definition comes from the rigidity of bar-and-body frameworks. A bar-and-body
framework where rigid bars are attached to rigid bodied with joints (represented by
the graph G). Then any stress put on a k-irreducible structure will propagate to all
the bars (i.e. edges). [GW88] show how one can decide if a graph is k-irreducible by
first determining if its edges can be partitioned into k edge-disjoint trees, and then
performing an additional Õ(k|V |) work.

Bipartite Matching. In the bipartite matching problem, we are given a bipartite
graph G = (L∪R,E), and the goal is to find a matching (a set of edges which share
no vertices) of maximum size. Bipartite matching can be modeled as a matroid
intersection problem over two partition matroids ML = (E, IL) and MR = (E, IR).
ML specifies that no two edges share the same vertex on the left L (and MR is
defined similarly on the right set of vertices R).

Colorful Spanning Tree. In this problem27, we are given a graph G = (V,E)
together with colors on the edges c : E → Z. We are tasked to find a spanning

27sometimes also called rainbow spanning tree.
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tree of G such that no two edges in our spanning tree have the same color. This
problem can be modeled by the matroid intersection of the graphic matroid of G
(ensuring we pick a forest), and a partition matroid of the coloring c (ensuring that
we pick no duplicate colors). We also note that this problem is more difficult than
bipartite matching since any bipartite matching instance can be converted to a
colorful spanning tree instance on a star-multi-graph.

Graphic Matroid Intersection. In graphic matroid intersection we are given two
graphs G1 = (V1, E1) and G2 = (V2, E2) and a bijection of the edges ϕ : E1 → E2.
The task is to find a forest in G1 of the maximum size, which also maps to a forest in
G2. By definition, this is a matroid intersection problem over two graphic matroids.
Again, this problem is a further generalization of the colorful spanning tree problem.

Convex Transversal and Simple Job Scheduling Matroid Intersection. In
these problems, we are given a set of unit-size jobs V , where each job v has two
release times ℓ1(v), ℓ2(v) ≥ 1 (in simple job scheduling ℓ(v) = 1) and two deadlines
r1(v),r2(v) ≤ µ. The task is to find a set of jobs S of the maximum size such that
they can be scheduled on two machines as follows: each job needs to be scheduled
at both machines, and at machine i it must be scheduled at time t ∈ [ℓi(v), ri(v)].

Linear Matroid Intersection . In this problem, we are given two n× r matrices
M1 and M2 over some field. The task is to find a set of indices S ⊆ {1, 2, . . . , n} of
maximum cardinality, such that the rows of M1 (respectively M2) indexed by S are
independent at the same time. This is a matroid intersection of two linear matroids
defined by M1 and M2. We note that partition, graphic, and transversal matroids
are special cases of linear matroids.

E.12 Independence-Query Matroid Intersection Algorithm

In this section, we show that we can obtain an Õ(nr3/4) matroid intersection
algorithm in the dynamic-independence-oracle model. This matches the state-of-
the-art traditional independence-query algorithm of Blikstad [Bli21]. We will only
provide a proof sketch here because our algorithm is mostly an implementation of
[Bli21] in the new model with the help of (circuit) binary search trees.

Using the same construction as Theorem E.4.1 and Observation E.4.3, circuit
binary search trees work verbatim in the dynamic-independence-oracle model (how-
ever, co-circuit binary search trees do not). In particular, Observation E.4.3(iii) can
be checked with a single independence query.

Corollary E.12.1. For any integer β ≥ 1, there exists a data structure that supports
the following operations.
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• Initialize(M, S,QS , X): Given S ∈ I, the query-set QS that corresponds to
S, and X ⊆ S or X = {t}, initialize the data structure in Õ(|X|) time. The
data structure also maintains S.

• Find(y): Given y ∈ S̄,

– if X ⊆ S, then return an x ∈ X such that S − y + x ∈ I, or

– if X = {t}, then return the only element x = s or x = t in X if S+y ∈ I
and ⊥ otherwise.

The procedure returns ⊥ if such an x does not exist. The procedure takes Õ(β)
time if the result is not ⊥, and Õ(1) time otherwise.

• Delete(x): Given x ∈ X, if x ̸∈ {s, t}, delete x from X in O(logn) time.

• Replace(x, y): Given x ∈ X and y ̸∈ X, replace x in X by y in O(logn)
time.

• Update(∆): Update S to S ⊕ (∆ \ {s, t}) in amortized Õ( |X|·|∆|β ) time.

Framework. The algorithm of [Bli21] consists of the following three phases.

1. First, obtain an (1 − ϵ)-approximate solution S using augmenting sets in
Õ(n

√
r

ϵ ) time.

2. Eliminate all augmenting paths in G(S) of length at most d using Cunning-
ham’s algorithm implemented by [CLSSW19] in Õ(nd+ nrϵ) time.

3. Finding the remaining O(r/d) augmenting paths one at a time, using Õ(n
√
r)

time each.

With ϵ = r−1/4 and d = r3/4, the total running time is Õ(nr3/4). We briefly
sketch how to implement the above three steps in the same running time also for
the dynamic-independence-oracle model.

Note that the primary difficulty independence-query algorithms face is that
we are only capable of checking Observation E.4.3(iii) (using Corollary E.12.1),
which means that we can only explore the neighbors of u ∈ S̄. The aforementioned
rank-query algorithms for building distance layers and finding blocking-flow style
augmenting paths are thus inapplicable in the dynamic-independence-oracle model.
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Approximation Algorithm. The O(n
√
r/ϵ)-query (1− ϵ)-approximation algo-

rithm of [Bli21] needs to first compute distance layers up to distance O( 1
ϵ ). This is

done in a similar way as sketched below for “Eliminating Short Augmenting Paths”.
Otherwise, the approximation algorithm works through a series of “refine” oper-

ations (algorithms RefineAB, RefineBA, and RefineABA in [CLSSW19; Bli21]) to
build a partial augmenting set. In each such operation, we only need to be able to
do the following for some sets (P,Q): start from some set Q and find a maximal
set X ⊆ P such that Q+X is independent. This can be performed with a greedy
algorithm in time (and dynamic query) O(|P |), given that we already have queried
set Q before (which will be the case).

Finally, the approximation algorithm falls back to finding a special type of
augmenting paths with respect to the current augmenting set, in the RefinePath
algorithm of [Bli21], with Õ(n) queries for each such path. This algorithm can be
implemented also in the dynamic-oracle model with the same query complexity.
RefinePath relies on the RefineAB and RefineBA algorithms (which we already
covered), in addition to a binary search trick to find feasible exchange pairs. This
binary search can be implemented with the circuit trees (Corollary E.12.1), and it
takes a total time Õ(n) to build them (since we can keep track of a queried set for
S, and then we only need to build a circuit tree statically once for each layer in cost
proportional to the size of the layer—which sums up to Õ(n)).

Eliminating Short Augmenting Paths. Using [CLSSW19]’s implementation of
Cunningham’s algorithm, we can eliminate all augmenting paths of length d, thereby
obtaining a (1−1/d)-approximate solution. The algorithm relies on Lemma E.3.9 to
“fix” the distance layers after each augmentation. Initially, all elements have distance
1 or 2 from s depending on whether it belongs to S (the common independent set
obtained by the above approximation algorithm) or not. Before the first and after
each of the remaining O(ϵr) augmentation, we can fix the distance layers as follows.

• For each 1 ≤ ℓ ≤ d and u ∈ Lℓ, if u is not of distance ℓ from s, i.e., there is
no in-edge from Lℓ−1 to u anymore, move u from Lℓ to Lℓ+2. This check is
done as follows, depending on the parity of ℓ.

– If ℓ is even, then for each v ∈ Lℓ−1, we find all the unmarked u ∈ Lℓ that
v has an edge to and mark u. In the end, all the unmarked u ∈ Lℓ do
not belong to Lℓ and should be moved to Lℓ+2.

– If ℓ is odd, then we simply check if there is an in-edge from Lℓ−1 to
decide whether u should be moved to other layers.

Both cases can be implemented efficiently with circuit binary search trees of
Corollary E.12.1: Each time we spend Õ(1) time to either confirm that u has
distance ℓ from s with respect to the current S (in which case it will not be moved
anymore in this iteration), or we increase the distance estimate of u. The total
running time is thus Õ(nd+ nrϵ), where Õ(nd) comes from increasing the distance
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estimate of each element to at most d, and Õ(nrϵ) comes from confirming that each
element belongs to its distance layer in the O(ϵr) iterations.

A caveat here is that we need to support insertion/deletion into the binary search
trees. This can be made efficient by doubling the size of a binary search tree (and
re-initializing it) every time when there are not enough leaf nodes left in it. The
cost of re-building will be amortized to Õ(1) time per update (i.e., movement of an
element to another layer).

Finding a Single Augmenting Path. With the (1− 1/d)-approximate solution
obtained in the first two steps, [Bli21] then finds the remaining O(r/d) augmenting
paths one at a time, using the reachability algorithm of [BBMN21]. The reachability
algorithm roughly goes as follows. First, we initialize two circuit binary search trees
(Corollary E.12.1) over the two matroids for discovering out-edges and in-edges
of elements in S̄. We then repeatedly run the following three steps until either
an (s, t)-path is found (an arbitrary (s, t)-path suffices since such a path can be
converted into a chordless one in Õ(r) time along which augmentation is valid) or
we conclude that t is unreachable from s. We keep track of a set of visited vertices
F which we know are reachable from s.

(i) Identify the set of unvisited heavy vertices in S̄ that have at least
√
r unvisited

out-neighbors or has a direct edge toward t. This is done by sampling a set
R of unvisited vertices in S and then computing for each vertex u whether
R∩OutNgh(u) = ∅, or equivalently, whether S−R+u ∈ I. Intuitively, vertices
with more out-neighbors are more likely to fail the test. This can be tested for
a single R and all u in O(n) time in the dynamic-independence-oracle model.
With O(logn) samples, heavy vertices can be successfully identified with high
probability.

(ii) Discover all the out-neighbors for each light vertex, taking a total of Õ(n
√
r)

time using the circuit binary search tree over the whole run of the algorithm.
(Each vertex turns from heavy to light at most once.)

(iii) Perform a reversed breadth-first-search from all the heavy vertices simultane-
ously. We can assume that every vertex on the path is light (i.e., we find a
“closest” heavy vertex reachable from s), and thus all its out-neighbors have
already been discovered. That is, going backward from S to S̄, we use the
out-edges of light vertices. From S̄ to S, we use the circuit binary search
tree. This takes Õ(n) time, and we either find a heavy vertex reachable from
s (in which case we make progress by visiting at least

√
r vertices in S), or

we conclude that all heavy vertices are unreachable from s (in which case t is
unreachable either).

The number of iterations is bounded by O(
√
r) since we discover at least

√
r

unvisited vertices in S every time. The total running time of finding a single
augmenting path is thus Õ(n

√
r).
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Using the same parameters ϵ and d as in [Bli21] to combine the three phases, we
obtain the following matroid intersection algorithm in the dynamic-independence-
oracle model.

Theorem E.12.2. For two matroids M1 = (U, I1) and M2 = (U, I2), it takes
Õ(nr3/4) time to obtain the largest S ∈ I1 ∩I2 with high probability in the dynamic-
independence-oracle model.
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Abstract

We settle the complexities of the maximum-cardinality bipartite matching
problem (BMM) up to poly-logarithmic factors in five models of computa-
tion: the two-party communication, AND query, OR query, XOR query, and
quantum edge query models. Our results answer open problems that have
been raised repeatedly since at least three decades ago [Hajnal, Maass, and
Turan STOC’88; Ivanyos, Klauck, Lee, Santha, and de Wolf FSTTCS’12;
Dobzinski, Nisan, and Oren STOC’14; Nisan SODA’21] and tighten the lower
bounds shown by Beniamini and Nisan [STOC’21] and Zhang [ICALP’04].
We also settle the communication complexity of the generalizations of BMM,
such as maximum-cost bipartite b-matching and transshipment; and the query
complexity of unique bipartite perfect matching (answering an open question
by Beniamini [2022]). Our algorithms and lower bounds follow from simple
applications of known techniques such as cutting planes methods and set
disjointness.
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F.1 Introduction

In the maximum-cardinality bipartite matching problem (BMM), we are given a
bipartite graph G = (L∪R,E) with n vertices on each side and m edges. The goal is
to find a matching of maximum size in G. This problem, along with its special case
of bipartite perfect matching (BPM), are central problems in graph theory, economics,
and computer science. They have been studied in various computational models
such as the sequential, two-party communication, query, and streaming settings [See
FF56; HK73; Lov79; KUW85; KVV90; MS04; Zha04; IKLSW12; Mad13; Mad16;
GO16; GG17; BHR19; DNO19; AV20; AK20; JST20; BLNPSSSW20; Nis21; AR20b;
CKPSSY21; FGT21; AB21; ALT21; FGLPSY21; RSW22; CKLPPS22, and many
more]. In this paper, we present simple algorithms and lower bound arguments
that settle (up to polylog factors) the complexities of BMM and its generalizations
(e.g. max-cost matching and transshipment) in at least five models of computation.
Our results answer open problems that have been raised repeatedly since at least
three decades ago (e.g. [HMT88; Zha04; IKLSW12; DNO19; Nis21; Ben22a]); see
Table F.1 for a summary of our results.

Communication complexity. To be concrete, we start with the two-party com-
munication model, where edges of the input graph G are partitioned between two
players Alice and Bob. The goal is for Alice and Bob to compute the value of the
BMM or to decide if a BPM exists in G by communicating as frugally as possible.
Many fundamental graph problems have been studied in this model since the 80s
(e.g. [PS82; BFS86; HMT88; DP89]). For BMM and BPM, their communication
complexities have been extensively studied from several angles and perspectives,
including exact solution protocols [BFS86; HMT88; IKLSW12; DNO19], round
restricted protocols [FKMSZ05; GKK12; GO16; AKL17; AB19b; AR20b], multi-
party protocols [GO16; HRVZ15; AKLY16; Kap21; KMT21; HRVZ20], approximate
solution protocols [Kap21; KKS14; KKS14; KMNT20; AB21], matrix rank and poly-
nomial representation [Ben22b; BN21], and economics and combinatorial auctions
[Rot82; Ten02; Ber09]. In particular, Hajnal, Maass, and Turán [HMT88] showed a
lower bound of Ω(n logn) for deterministic protocols1. For randomized and quantum
protocols, the lower bounds are Ω(n) [BFS86; IKLSW12; Raz92]2. For an upper
bound, Ivanyos, Klauck, Lee, Santha, and de Wolf [IKLSW12] implemented the
Hopcroft-Karp algorithm [HK73] to get an O(n3/2 logn)-bit deterministic protocol
(see also [DNO19; Nis21]).

Closing the large gap between existing upper and lower bounds has been men-
tioned as an open problem in, e.g., [HMT88; IKLSW12; DNO19; Nis21]. Beniamini

1[HMT88] did, in fact, show this lower bound for st-connectivity, which, together with folklore
reductions, imply the same bound for BPM.

2 The Ω(n) lower bound follows by a simple reduction from set-disjointness. [HRVZ20] has
shown a Ω(α2nk) lower bound for k-party point-to-point communication model for α-approximation
of BMM. [IKLSW12] shows a Ω(n) quantum communication lower bound by a reduction from
inner-product in F2.
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and Nisan [BN21] recently showed that the rank of the communication matrix
is 2O(n logn), suggesting that a better upper bound might exist. On the other
hand, Ω(n2) lower bounds for o(

√
logn)-round communication may suggest that

an Ω(n1+Ω(1)) communication lower bound may exist [FKMSZ05; GKK12; AR20b;
CKPSSY21]. In this paper, we resolve this open problem with an O(n log2 n) upper
bound:

Theorem F.1.1. The deterministic two-party communication complexity of BMM
is O(n log2 n).

Note that our protocol can find the actual BMM (Alice and Bob know edges in
the BMM in the end) and not just its value. We can in fact solve a more general
problem of min-cost bipartite perfect b-matching which implies upper bounds for a
large class of problems due to existing reductions (see [BLNPSSSW20]).

Theorem F.1.2. Given that all the weights/costs/capacities are integers polynomi-
ally large in n, we can solve the following problems in the two-party edge-partition
communication setting, using O(n log2 n) bits of communication: Maximum-cost
bipartite perfect b-matching, Maximum-cost bipartite b-matching, Vertex-capacitated
minimum-cost (s, t)-flow, Transshipment (a.k.a. uncapacitated minimum-cost flow),
Negative-weight single source shortest path, Minimum mean cycle and Deterministic
Markov Decision Process (MDP).

Models Previous papers This paper
Lower bounds Upper bounds

Two-party communication
Ω(n) Rand,

Ω(n logn) Det,
Footnote 1 and 2

Õ(n1.5)
[DNO19; IKLSW12]

O(n log2 n), Det
Theorem F.1.1

Quantum edge query Ω(n1.5)
[Zha04; Ben22b]

O(n1.75)
[LL15]

Õ(n1.5)
Theorem F.1.3

OR-query
Ω(n) Rand,

Ω(n logn) Det,
[BN21]

Õ(n1.5) Det,
[Nis21]

O(n log2 n), Det
Theorem F.1.3

XOR-query Ω(n) Rand
Ω(n2) Det [BN21]

Õ(n1.5) Rand
Lemma F.2.14 and [Nis21]

O(n log2 n), Rand
Theorem F.1.3

AND-query Ω(n) Rand,
Ω(n2) Det [BN21]

O(n2)
Trivial

Ω(n2), Rand
Theorem F.1.3

Table F.1: The communication and query complexity bounds for BMM and BPM.
All upper bounds are stated for BMM and all lower bounds are stated for BPM.

Query complexity. Besides the communication complexity, we also settle the
query complexity of BMM and BPM for several variants of the edge query model.
In the standard edge query model, the querier can ask whether an edge in the input
graph G is present or not. The goal is to solve the graph problem by making as
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few queries as possible. This query model, in both deterministic and randomized
settings, has been studied for almost half a century [Ros73; RV75; RV76; KSS84;
Haj91; CK07] for various graph problems. For BPM, Yao [Yao88] showed that
n2 edge queries are necessary in the deterministic setting and Dürr, Heiligman,
Høyer, and Mhalla [DHHM06] showed an Ω(n2) lower bounds for the randomized
setting3 thereby completely characterizing (up to constant factors) classical edge
query complexity for BPM.

However, for several variants of the classical edge query complexity, there are
known gaps between the best known upper and lower bounds for BPM. For example,
in the case of quantum edge query protocols, Zhang [Zha04] showed a lower bound
of Ω(n1.5) by using Ambainis’ adversary method [Amb02] (see [Ben22b] for an
alternative proof via approximate degree). The best upper bound is, however, at
O(n1.75) as shown by [LL15]. This upper bound is obtained by simulating the
Hopcroft-Karp algorithm using bomb queries and relating it to the quantum edge
queries.

Another well-studied variant of the classical query protocols is the XOR-query
protocols (otherwise known as the parity decision trees) where the querier is allowed
to ask the following question about the input graph G = (V,E): Given a set S of
potential edges of G, is |S ∩E| odd or even? Similarly, AND-queries and OR-queries
ask if S ⊆ E or not and if |S ∩ E| ≥ 1 or not, respectively. Such query models
have proven to be extremely important in the study of XOR-functions, the log-rank
conjecture and lifting theorems [KM93; MO09; CKLM18; HHL18; MS20]. As
usual, these query models can be studied in deterministic, randomized and quantum
models as well. For graph problems, these query models have recently started to
receive increasing attention [BN21; Ben22a; ACK21]. For AND-query or XOR-query
complexity, a recent result of [BN21] showed that Ω(n2) queries are necessary to
compute BPM deterministically4. For OR-query, [BN21] also showed a deterministic
lower bound of Ω(n logn). The upper bound of Õ(n1.5) for OR-queries (and, thereby,
randomized XOR-queries, see Lemma F.2.14) can be achieved by simulating the
Hopcroft-Karp algorithm [Nis21].

From the above results, it remained open to close the polynomial gaps for quan-
tum and OR-queries (as mentioned in [Nis21; Ben22b]) and whether randomization
helps for XOR-queries and AND-queries. In this paper, we answer these questions:
We provide upper bounds that are tight up to polylogarithmic factors for quantum
and OR-queries. Our upper bound result also shows that randomization helps for
XOR-queries. In contrast, for AND-queries we can show that an Ω(n2) lower bound
holds even for randomized algorithms. Our results are summarized below and in
Table F.1. Note that our lower bound argument also gives simplified proofs of the
lower bounds for XOR-queries and OR-queries.

3[Yao88] showed a stronger result: Any non-trivial monotone graph property needs n2 queries.
[DHHM06] mentioned a Ω(n2) randomized query complexity for Connectivity. A similar con-
struction (which is essentially a reduction from the query complexity of ORn2 ) shows an Ω(n2)
lower bound for (s, t)-Reachability which reduces to BPM.

4For XOR-queries, [BN21] showed that BPM is evasive, i.e., requires n2 queries.
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Theorem F.1.3. The following query bounds hold for BMM:

• The quantum edge query complexity is O(n1.5 log2 n),
• The deterministic OR-query complexity is O(n log2 n),
• The randomized XOR-query complexity is O(n log2 n),

Moreover, the randomized AND-query complexity of BPM is Ω(n2).

Finally, our results also extend to the unique bipartite perfect matching problem
(UBPM), which has been studied in, e.g., the sequential and parallel settings [KVV85;
GKT01; HMT06; Ben22a]. Beniamini [Ben22a] recently show UBPM lower bounds
similar to those for BMM and BPM, i.e. Ω(n logn) communication complexity,
Ω̃(n1.5) quantum edge query (under a believable conjecture5), Ω(n logn) OR-queries,
Ω(n2) XOR-queries, and Ω(n2) AND-queries. We complement these lower bounds
with tight upper bounds, i.e. O(n log2 n) deterministic communication protocol,
O(n1.5 log2 n) quantum edge query algorithm, O(n log2 n) deterministic OR-query
and randomized XOR-query algorithms, and Ω(n2) randomized AND-query lower
bound. Our upper bounds answer an open problem by Beniamini [Ben22a].

Update: After our paper was accepted in FOCS 2022, we observed that our technique
also leads to a O(n log2 n) deterministic protocol in the well-studied Indenpendent
set (IS) query model [BHRRS18; AL21; RWZ20; AA05; ABKRS04; AB19a]. In this
model, a query consists of two disjoint subsets of vertices X and Y , and the answer
to the query is 1 iff there is an edge between X and Y (i.e., E ∩ (X × Y ) ̸= ∅).

Organization. In Section F.1.1, we provide a brief technical overview of our upper
and lower bounds. In Section F.1.2, we list a few open problems that naturally arise
from our work. Section F.2 details our various upper bounds, starting with OR-query
protocols. In Section F.2.3, we show the applications of the OR-query algorithm,
namely two party communication complexity (Section F.2.3), randomized XOR-query
(Section F.2.3), Independent set query (Section F.2.3), ORk-query (Section F.2.3)
and quantum edge query (Section F.2.3). We then list different variants of the
bipartite matching problem (Section F.3) that our technique can solve as well.
Finally, in Section F.4, we provide lower bounds for solving BPM in OR-, AND- and
XOR-query settings.

F.1.1 Technical Overview
Upper bounds. Our algorithms follow an existing continuous optimization
method. There are many such methods and the question is: what is the right
method? An intuitive idea would be to implement some fast sequential algorithms
for BMM and related problems (e.g. [DS08; Mad13; LS14; Mad16; CMSV17; CLS19;
Bra20; LS20; AMV20; BLSS20; BLNPSSSW20; BLLSSSW21; CKLPPS22]), which

5[Ben22a] conjectured that the approximate degree of UBPM is Ω(n1.5) (see Conjecture 1)
which would imply a similar lower bound for quantum edge query complexity.



F.1. INTRODUCTION 339

are based on central path methods. It is not clear, however, how to implement
central path methods efficiently in query or communication settings. They require
polynomially many iterations (e.g. Ω(

√
n)), each of which needs a large commu-

nication and query complexity (e.g. Ω(n) per iteration). Another option is to use
one of the cutting planes methods (e.g. the Ellipsoid method). These methods are a
framework for solving general convex optimization problems and thus are rather
slow for BMM in the sequential setting (e.g. Õ(mn) time [LSW15]) compared to
more specialized alternatives based on central path methods. However, it turns out
that cutting planes methods are the right framework for the communication and
query settings! In particular, we can implement a cutting planes method with a
low number of iterations, such as the center-of-gravity (CG) and volumetric center
(VC) methods [Lev65; New65; Vai89], on the dual linear program, i.e. the minimum
vertex cover linear program6. (We cannot use the Ellipsoid method due to its high
number of iterations.) The CG and VC methods are not useful for solving BMM
in the sequential setting due to their high running time (the CG method even
requires exponential time); however, this high running time is hidden in the internal
computation and thus does not affect the communication/query complexities.

Using the cutting planes methods above, our algorithm is simply the following:
We start with an assignment p : V → R+ on the vertices that is supposed to be a
fractional vertex cover of value F , i.e. for every edge (u, v), p(u) + p(v) ≥ 1 and∑
v∈V (G) p(v) ≤ F . In each iteration, we need to find a violated constraint, i.e. an

edge (u, v) such that p(u) + p(v) < 1, or the value constraint if
∑
v∈V (G) p(v) > F .

This violated constraint then allows us to compute a new assignment p : V → R+

(which is the center of gravity of some polytope) to be used in the next iteration. It
can be shown that this process needs to repeat only for Õ(n) times to construct a
fractional vertex cover of value at least F , or conclude no such cover exists.

This simple algorithm leads to efficient algorithms in many settings. For example,
in the two-party communication setting, Alice and Bob only need to communicate
one violated constraint in each iteration while they can compute the new assignment
p : V → R+ without any additional communication (p : V → R+ depends only on
the discovered violated constraints and not on the input graph). It is also not hard
to implement this method in other settings. We note that in this paper we use the
CG method for simplicity. This method leads to exponential internal computation.
This can be made polynomial by using the VC method [Vai89] instead.

Lower bounds. For lower bounds, our goal is to prove a lower bound for BPM
(which also implies a lower bound for BMM). Let us start with our randomized AND-
query lower bound of Ω(n2). A typical approach to show this is proving an Ω(n2)

6We thank an anonymous FOCS’22 reviewer for pointing out the result in [VWW20] that uses
the cutting plane method to solve general linear program in the multiparty model of communication.
Our result is independent and follows the same general cutting plane framework but we exploit
that for our specific linear program, (i) cutting planes have short description and (ii) we have a
better bound on the number of iterations.
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communication complexity lower bound in the setting defined earlier; however, we
have already shown in Theorem F.1.1 that this is not possible. [BN21] sidestepped
this obstacle by considering the real polynomial associated with BPM. Known
connections between the monomial complexity of this polynomial and AND-query
complexity yield corresponding tight Ω(n2) deterministic AND-query complexity for
BPM.

It turns out that we can prove a randomized AND-query lower bound (and simpli-
fying the lower bounds proofs of [BN21]) by revisiting the two-party communication
lower bounds, but with a slightly different definition. Our main observation here is
that AND-queries can be simulated cheaply by the following variant of the two-party
communication model: Alice gets edge set EA ⊆ E, Bob gets edge set EB ⊆ E, and
they solve BPM (or any other graph function) in the graph G∩ = (V,EA ∩ EB).
Our AND-query lower bound now follows from a reduction from the set disjointness
problem.

Similarly, Beniamini and Nisan [BN21] use real polynomial techniques to prove
deterministic lower bounds for XOR-queries and OR-queries. We provide simple
alternative proofs via the communication complexity of BMM in the symmetric
difference and union graphs G = (V,EA ⊕ EB) and G = (V,EA ∪ EB); such lower
bounds can be proved via a reduction from the equality and st-reachability problems.
Finally note that even though we simplify the query lower bounds proofs, [BN21;
Ben22b] showed something stronger, i.e., a complete characterization of the unique
multilinear polynomial over reals representing BPM which may have other interesting
consequences beyond query complexity.

F.1.2 Open problems
The communication complexity of BMM and BPM has been a bottleneck for many
tasks. The fact that it can be solved by a simple cutting planes method might be
the gateway to solving many other problems. Below we list some of these problems.

1. Demand query complexity of BMM. The demand query setting is equiv-
alent to when we can issue an OR-query only on the edges incident on a
single left vertex (or, equivalently, an IS-query where set X ⊆ L is singleton).
Minimizing the number of demand queries used to solve BMM and BPM is
motivated by economic questions [Nis21; Ben22b]. Like in many settings we
consider, the best demand query upper and lower bounds for BMM and BPM
are O(n1.5) and Ω(n) respectively. Closing this gap remains open. Because
of our efficient IS-query protocol, we believe that a possible direction is to
extend our approach to get a better upper bound for demand query. For
a better lower bound, our results suggest that one might need a technique
specialized for the demand query lower bound: the two known approaches
for proving a demand query lower bounds are via quantum and OR-queries
(see, e.g., Figure 7 in [Ben22b]) and our quantum and OR-query upper bounds
show that these approaches cannot be used.
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2. Bounded communication rounds and streaming passes. Most graph
problems, including BMM and BPM, admit an Ω(n2) communication lower
bound when only Alice can send a message (i.e. the one-way communication
setting) [FKMSZ05]. If Bob gets to speak back once (the 2-round setting),
some problems become much easier (e.g. the communication complexity of
global edge connectivity reduces from Ω(n2) to Õ(n)) [AD21]. Unfortunately,
such an efficient protocol for BPM does not exist even when we allow o(

√
logn)

rounds [CKPSSY21; AR20b]. More generally, r-round protocols are known to
require n1+Ω(1/r) communication [AR20b; GO16]. An important question is to
get tight r-round communication bounds for BMM and BPM. Our algorithm
provides an Õ(n) communication bound for the extreme case where r = n.
One possible extension is to study bounded-iteration cutting planes methods.
For example, can we reduce the number of iterations if in each iteration we can
identify more violating constraints? It will be exciting if a polylog(n)-round
Õ(n)-communication protocol exists. It will be even more exciting if this
can be extended to a polylog(n)-passes streaming algorithm (breaking [LSZ20;
AJJST22] and matching [GO16]).

3. Distributed Matching. The distributed CONGEST model is an important
model to study fundamental graph problems (e.g. minimum spanning tree,
shortest paths, and minimum cut) on distributed networks (e.g. [GHS83;
KP98; Nan14; GL18; FN18; Elk20; BN19; AR20a; GKKLP18; HKN21;
CM20; GNT20; NS14; DEMN21]). Compared to other graph problems,
computing BMM and BPM exactly in CONGEST is much less understood in
this model. This is despite the studies of their variants since the 80s [Lub86;
II86; Gal16; AKO18; AK20]. The best lower bound for this problem is
Ω̃(
√
n+D)[AKO18; DHKKNPPW12] (see also [HWZ21]). The best upper

bound is O(n logn) [AKO18]. For sparse graphs, the upper bound can be
improved to Õ(m3/7(

√
nD1/4 +D)) via continuous optimization [FGLPSY21].

(Better upper bounds via fast matrix multiplication also exist on the special
case of congested clique [Gal16].) A major open problem is to close the gap
between upper and lower bounds. Our results may suggest a new approach
for improving the known upper bounds for the problem. Past results seem
to suggest that graph problems with Õ(n) communication complexity usually
admit an Õ(

√
n+D) upper bound in CONGEST. (A recent example is the

Õ(n) communication complexity protocol of mincut [MN20] that was later
extended to achieve an Õ(

√
n+D) upper bound in CONGEST [DEMN21].)

Proving that this is or is not the case for BMM and BPM will be an exciting
result.

4. General Matching. The maximum matching problem on general (i.e. not-
necessarily-bipartite) graphs is less understood than that on bipartite graphs.
Unlike BMM, the linear programming formulations for general matching is
rather unwieldy, making it difficult to apply the cutting planes method ap-
proach. Settling the communication and query complexity of general matching
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remain intriguing open problems. On one hand, there might be a hope to show
truly super-linear (i.e., Ω(n1+ϵ) for some constant ϵ > 0) communication lower
bounds in these models, thereby showing a gap between the bipartite and
non-bipartite case. On the other hand, an Õ(n) communication complexity
upper bound for the general matching problem would hopefully shed some
light on the interplay between matchings on bipartite versus general graphs.

5. Maxflow/mincut and Related Problems. Max (s, t)-flow, equivalently
min (s, t)-cut, is a powerful tool that can be used to solve BMM, BPM, and
many other fundamental graph problems. Efficiently solving this problem could
only be a dream in the past in many computational models since even its special
case of matching could not be solved efficiently. Our results serve as a step
toward this goal. Particularly interesting goals are solving (s, t)-max-flow/min-
cut in the communication7, distributed, cut query, and streaming settings
(Bounded round communication lower bounds in multiparty communication
setting for (s, t)-max-flow/min-cut have been studied in [ACK19].). Also, there
are problems that were recently shown to be solvable in max-flow time in the
sequential setting such as Gomory-Hu tree, vertex connectivity, Steiner cut,
hypergraph global min-cut, and edge connectivity augmentation [CGLNPS20;
LP20; LP21; LNPSY21; CQ21; MN21]. Can these problems be solved as
efficiently as max-flow in other settings, e.g. the communication, distributed,
and streaming settings?

Other problems include (i) showing Ω(n logn) randomized communication lower
bound for connectivity or even just for BMM and min-cost flow, (ii) closing the
logn factor gap between OR-query upper and lower bounds, and (iii) settling the
quantum OR-query and AND-query complexity of BMM and BPM.

F.2 Bipartite Matching Upper Bounds

Our goal in this section is to present a simple OR-query algorithm based on the
cutting planes framework to find a maximum matching of a bipartite graph, i.e. to
solve the BMM problem. From there we show how our OR-query algorithm can be
translated to several other information theoretical models of computation. Formally,
the following is the main theorem of the section.

Theorem F.2.1. Given n, there are algorithms solving BMM in the following
models.

1. Deterministic two-party edge-partition communication, with communication
complexity O(n log2 n).

7Here we expect Alice and Bob to know the flow values in their respective sets of edges. The
decision version of this problem where we ask if the total flow is at least a threshold k is also
interesting.
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2. Deterministic OR-query, with query complexity O(n log2 n).

3. Randomized XOR-query, with query complexity O(n log2 n).

4. Quantum edge query, with query complexity O(n1.5 log2 n).

Overview. We employ a standard cutting planes framework to determine if a
bipartite graph has a vertex cover of a given size F or not. We show that this cutting
planes method can be implemented in O(n logn) iterations, where in each iteration
we access the input graph a small number of times (O(logn)) using OR-queries to
find an edge that corresponds to a violated constraint (i.e. a cutting plane), if one
exists. Throughout this work, we use the following well known characterization of
the existence of a matching of a certain size in a bipartite graph.

Claim F.2.2 (König’s Theorem). A bipartite graph G has a minimum vertex cover
of size F if and only if it does not have a matching of size F + 1.

The vertex cover linear program. For a bipartite graph G = (V,E) with
V = L ∪ R, |L| = |R| = n, the following linear program (PG) over x ∈ RV
describes the fractional minimum vertex cover problem on G. Since G is bipartite,
the constraint matrix is totally unimodular, and hence (PG) is integral [KVKV11,
Section 5], i.e. there exists an integer optimal solution to (PG).

minimize
∑
v∈V

xv

subject to xu + xv ≥ 1 ∀(u, v) ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

(PG)

Decision version. We first consider a decision version of our problem, namely
given an integer F we want to determine if G has a matching of size at least F + 1.
Note that if we can solve this decision version, then we can also—by binary-searching
over F—solve the optimization version (i.e. finding the minimum size of a vertex
cover / maximum size of a bipartite matching) with an overhead of O(logn). We
start by focusing on solving the decision version (Section F.2.1), and later (in
Section F.2.2) we show how to, via a simple modification of the algorithm, actually
solve the optimization version without this extra O(logn) binary-search overhead.

By König’s Theorem (Claim F.2.2), determining whether G has a matching of
size at least F + 1 is equivalent to determining whether G (does not) have a vertex
cover of size at most F . This is equivalent to determining if (PG) has some feasible
solution x with

∑
xv ≤ F . So we define another polytope (PGF ) as follows:∑

v∈V
xv ≤ F + 1

3

xu + xv ≥ 1 ∀(u, v) ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

(PGF )
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Our decision algorithm either finds a feasible point for the above polytope, or it
finds a witness of PGF having no feasible points in the form of a set of edges that
contains a matching of size F + 1.

Note that we relax the constraint
∑
xv ≤ F a bit to

∑
xv ≤ F + 1

3 . This
ensures that our polytope has a significantly large volume if it is non-empty (see
Lemma F.2.3). Thus our cutting planes methods can terminate and conclude that
the polytope is empty whenever the volume is too small. This relaxation does not
impact the correctness of our algorithm: since (PG) is integral, it has an integral
optimal objective value, which means that if a feasible solution x of (PGF ) exists,
then there also exists a feasible solution x′ which achieves

∑
x′v ≤ F .

Lemma F.2.3. For any bipartite graph G = (V,E), if F is an integer such that
(PGF ) is non-empty, then vol(PGF ) ≥

( 1
20n
)2n.

Proof. Let x be an integral solution for (PGF ), of value F . Indeed, if (PGF ) is feasible,
then such an x must exist due to the integrality of (PG). Let I0 = {i ∈ [2n] | xi = 0}
and I1 = {i ∈ [2n] | xi = 1}. We argue that the hypercube [ 1

20n ,
1

10n ]I0×[1− 1
20n , 1]I1

is completely contained in (PGF ). That is, if, for each xi with xi = 1 we replace it
with any value in [1− 1

20n , 1]; and for each xi with xi = 0 we replace it with with
any value in [ 1

20n ,
1

10n ]; the point remains feasible for (PGF ). We verify this below.

• The 0 ≤ xv ≤ 1 constraints remain valid.

• Similarly, the
∑
xv ≤ F + 1

3 constraint remains valid, since we increase the
value of xi by at most 1

10n for each i, and there are 2n vertices in total (so we
increase

∑
xv by at most 1

5 ).

• Lastly, the constraint xu + xv ≥ 1 (for an edge (u, v) ∈ E) also remains
valid, as either (i) both xu and xv were 1 before, in which case we now have
xu + xv ≥ 2 − 1

10n ; or (ii) exactly one of xu or xv was 1 before, in which
case we increased the variable which was 0 by at least 1

20n and decreased the
variable which was 1 by at most 1

20n .

Thus we have argued that a hypercube of volume
( 1

20n
)2n is contained in (PGF ).

F.2.1 OR-query decision algorithm
In this section we describe our cutting planes based OR-query algorithm for solving
the feasibility problem on (PGF ). We begin with a verbal overview of the algorithm,
followed by pseudocode in Algorithm F.1. The main lemma of this section is the
following.

Lemma F.2.4. Given an integer F , there is a deterministic algorithm (Algo-
rithm F.1) using O(n log2 n) OR-queries which on an input bipartite graph G = (V,E)
either finds a feasible point in (PGF ), or else a witness, in the form of a matching of
size F + 1, that (PGF ) is empty.
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Center-of-gravity cutting planes method. We are now ready to introduce
the cutting planes framework [Lev65; New65]. The idea is that we start with the
polyhedra P0 = {x ∈ [0, 1]V :

∑
xv ≤ F + 1

3} (which contains (PGF )), and repeatedly
find “good” constraints “xu + xv ≥ 1” (corresponding to edges (u, v) ∈ E) to add
which reduce the volume sufficiently fast. Eventually, we either find a (fractional)
feasible solution to (PGF ), or have determined that no such feasible point exist.

We work in iterations, each iteration i is characterized by a polyhedron Pi ⊇ (PGF ).
We compute the center-of-gravity of Pi, denoted by pi = cg(Pi) ∈ Pi, and defined
to be cg(Pi) =

(∫
Pi
z dz
)
/
(∫

Pi
dz
)

. Note that we know Pi, so our algorithm can
compute8 pi = cg(Pi) without using any queries.

Either pi is feasible for (PGF ), in which case the cutting planes algorithm reports
this and terminates. Otherwise there must exist some violated constraint “xu+xv ≥ 1”
in (PGF ) but not in Pi (i.e. pi does not satisfy this constraint, that is pui +pvi < 1). In
this case, we want to find such a violated constraint, and let Pi+1 = Pi ∩ {x ∈ RV :
xu + xv ≥ 1}, after which we continue with the next iteration of the cutting planes
method on Pi+1. We say that an edge (u, v) ∈ E is a violating edge for iteration
i if pui + pvi < 1. The process of finding a violating edge is the only part of the
algorithm which requires access to the input graph, and hence the only place where
OR-queries are being issued. Essentially, we need to implement a separation oracle
FindViolatingEdge, which we explain how to do with OR-queries in Claim F.2.5. The
full algorithm can be found in Algorithm F.1.

Claim F.2.5 (OR-implementation of FindViolatingEdge). Using O(logn) OR-queries
we can find a violating edge or else determine that none exist.

Proof. Given the center-of-gravity point pi, we let S = {(u, v) ∈ L×R | pui +pvi < 1}
be the set of pairs of vertices (u, v) which would be a violating edge if this pair
was also an edge of the graph. Our task is thus to find some edge e ∈ S ∩ E, or
else determine that S ∩ E is empty. This can be done by a binary-search (with
OR-queries) over S.

We now turn to prove several properties about our Algorithm F.1.

Observation F.2.6. Let i be some iteration of the execution of Algorithm F.1, then
Pi ⊇ PGF .

Proof. For every i, the set of constraints defining Pi is, by the behaviour of the
algorithm, a subset of the constraints defining PGF , thus the observation follows.

Lemma F.2.7. The algorithm terminates after O(n logn) iterations of the cutting
planes method.

8Finding the center-of-gravity in an n-dimensional polyhedron is NP-hard. However, all the
considered models in Theorem F.2.1 are query models, and in particular are purely information-
theoretical, and we can thus disregard computational concerns. For ease of presentation, we work
with center of gravity, but alternatively, one could use other variants of cutting plane using more
computationally efficient notions of “center” such as volumetric centers [Vai89].
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Algorithm F.1: OR-query algorithm for BMM
Input: OR-query access to G = (L ∪R,E), vertex set L ∪R, feasibility

parameter F
Output: Whether (PGF ) is feasible

1 P0 ←
{
x ∈ [0, 1]2n

∣∣∣ ∑
v∈V

xv ≤ F + 1
3

}
2 E′ ← ∅
3 i← 0
4 while vol(Pi) ≥

( 1
20n
)2n do

5 pi ← cg(Pi)
6 (u, v)← FindViolatingEdge(E′, pi)
7 if no edge was found then
8 return “Feasible” // pi is feasible for (PGF )
9 E′ ← E′ ∪ {(u, v)}

10 Pi+1 ← Pi ∩ {x ∈ R2n | xu + xv ≥ 1}
11 i← i+ 1
12 return “Infeasible” // E′ contains a matching of size F + 1

Proof. We use the following well-known property of the center of gravity of a convex
polytope.

Lemma F.2.8 ([Grü60]). For any convex polytope P with center of gravity c and
any halfspace H = {x | ⟨a, (x− c)⟩ ≥ 0} passing through c, it holds that:

1
e
≤ vol(P ∩H)

vol(P ) ≤
(

1− 1
e

)
.

This implies that, in our case, vol(Pi+1) ≤ (1− 1
e )vol(Pi). This means that in

each iteration, we either find a feasible solution to (PGF ), or cut down the volume by
a constant fraction as we have found a violating edge. Initially, vol(P0) ≤ 1, since
it is contained in the unit-hypercube [0, 1]2n. By Lemma F.2.3 we can terminate
when Pi has volume less than

( 1
20n
)2n and conclude that (PGF ) is empty in this case.

This happens after at most O
(
log((20n)2n)

)
= O(n logn) iterations.

Lemma F.2.9. Let imax denote the last iteration in the execution of the algorithm.
Then either pimax ∈ PGF which serves as a witness that a vertex cover of size F
exists, or PGF = ∅ and the set E′ ⊆ E (constructed by the algorithm) contains a
matching of size F + 1.

Proof. In the case where we find a feasible point p in (PGF ), this point is a fractional
vertex cover of size at most F + 1

3 for our graph (and hence a non-constructive
witness that there exists an (integral) vertex cover of size F in the graph).
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On the other hand, suppose we determined that (PGF ) is empty, which means
we got to an iteration imax where vol(Pi) <

( 1
20n
)2n. We argue that this actually

means that the polyhedron Pi is empty. That is, we argue that we have found
a set of edges E′ ⊆ E which contain a matching of size F + 1 (E′ is the set of
edges whose constraints we added to Pimax during the cutting planes method). If
this was not the case, that is if the maximum matching size in E′ is at most F ,
then it must be the case, by Claim F.2.2, that a vertex cover of size F exists in
the subgraph G′ = (L ∪ R,E′), and hence that some integer point exists in our
polyhedron Pimax

. We can deduce that this is impossible, however, by simply noting
that by the behaviour of the algorithm, it holds that (PG′

F ) = Pimax
, and thus

we can apply Lemma F.2.3 which then says that vol(Pi) ≥
( 1

20n
)2n, which is a

contradiction.

By Claim F.2.5 and Lemma F.2.7 we see that the algorithm makes a total of
O(n log2 n) OR-queries, and Lemma F.2.9 argues its correctness. This concludes the
proof of Lemma F.2.4.

F.2.2 OR-query optimization algorithm
In this section we describe a standard modification (see e.g. [Vai89, Section 4]) to
our cutting planes decision algorithm, so that it solves the optimization version with
the same query-complexity.

Lemma F.2.10. There is a deterministic algorithm using O(n log2 n) OR-queries
which solves the BMM problem. In particular, the algorithm finds a maximum
matching M , together with a witness that M is maximum in the form of a fractional
vertex cover of size strictly less than |M |+ 1.

Proof. The idea is to run Algorithm F.1 starting with F = 2n. Whenever the
algorithm finds a feasible point pi, instead of terminating, we lower the value of F
instead. The point pi is a certificate that a vertex cover of size ⌊

∑
v p

v
i ⌋ exists (since

(PG) is integral). Hence we lower F to F ← ⌊
∑
v p

v
i ⌋ − 1, by adding the constraint∑

v xv ≤ F + 1
3 , and continue the cutting planes algorithm. Note that the constraint∑

v xv ≤ F + 1
3 forms a violating constraint for pi (and therefore cuts down the

volume by a constant fraction, see Lemma F.2.8, and counts as an iteration of the
cutting planes algorithm).

At the end, the algorithm must terminate by determining that (PGF ) is empty
(for the current value of F ), in which case the found edges E′ contains a matching
of size F + 1 (see Lemma F.2.9). On the other hand, the last time we lowered F ,
we had a fractional vertex cover pi of size strictly less than F + 2.

F.2.3 Applications
The goal of this section is to complete the proof of Theorem F.2.1. We prove the
theorem by showing how to simulate the OR-query cutting planes algorithm in the
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communication setting and the different query models (randomized XOR, IS, ORk,
and quantum edge query).

Communication complexity

We first consider the two-party edge-partition communication setting, where the
edges E of the graph are partitioned into sets EA and EB given to Alice and Bob
respectively.

Claim F.2.11. There is a communication protocol solving BMM in O(n log2 n) bits
of communication.

A standard way of doing this is to simulate each OR-query S ⊆ L× R with 2
bits of communication: Alice and Bob check locally if S ∩EA, respectively S ∩EB ,
is non-empty and then share this information with each-other.

Alternatively, Alice and Bob can implement the “FindViolatingEdge”-subroutine
of Algorithm F.1 directly by checking locally for a violating edge and sharing it, if they
find one, to the other party. This makes sure that E′ is mutually known throughout
the protocol. Sending an edge requires O(logn) bits of communication, and needs
to be done O(n logn) times. So this alternative approach achieves the same final
communication complexity (although in slightly fewer rounds of communication),
and is also closer to our weighted matching algorithm in Section F.3.2 (where the
query-settings are no longer compatible).

Randomized XOR-query

Now we turn to the XOR-query setting. [BN21] showed that solving BPM is evasive
for the XOR-query setting for any deterministic algorithm, meaning that any such
algorithm needs to make n2 queries (that is, the trivial algorithm for querying every
potential edge individually is optimal)! Nevertheless, we show that randomized XOR-
query algorithms are much more powerful, and can achieve almost linear number of
queries instead.

Claim F.2.12. There is a randomized algorithm which makes O(n log2 n) XOR-
queries and, w.h.p.9, solves BMM.

In order to establish this result, we need the following folklore observation.

Observation F.2.13. For any k, let x ∈ {0, 1}k be a binary string of length
k, such that x ̸= 0k. If r ∈ {0, 1}k is sampled uniformly at random, then
Pr
[
(
∑k
i=1 xiri) is odd

]
= 1

2 .

Lemma F.2.14. A single OR-query can be simulated, w.h.p., by issuing O(logn)
randomized XOR-queries.

9w.h.p. = with high probability; meaning with probability at least 1 − 1/nc for an arbitrarily
large constant c.
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Proof. If we want to simulate an OR-query over a subset S, we can sample S′ ⊆ S
randomly (independently keep every element with probability 1

2 ) and issue an
XOR-query over S′. If the answer to said OR-query was “YES”, then we have, by
Observation F.2.13, a constant probability of realizing this with our XOR-query over
S′. If we repeat O(logn) times, we can answer the OR-query correctly w.h.p.

Proof of Claim F.2.12. Just applying Lemma F.2.14 to our OR-query algorithm
would imply an O(n log3 n) randomized XOR-query algorithm. An additional obser-
vation is required to bring the query complexity down to O(n log2 n). We note that
in each invocation of FindViolatingEdge, we need only simulate the first OR-query,
after which we, w.h.p., have in hand a concrete set S′ ⊆ S for which XOR(S′) = 1
(or else determined that the answer to said OR-query should be “NO”). At this point
we can binary-search deterministically using an additional O(logn) XOR-queries
to find a violating edge in S′. Hence, each invocation of FindViolatingEdge can be
simulated, w.h.p., via O(logn) XOR-queries; and thus by Lemmas F.2.7 and F.2.9,
the entire algorithm requires O(n log2 n) XOR-queries and is correct w.h.p.

Independent set (IS) query

In this section we discuss a restricted version of the OR-query, namely the Independent
Set (IS) query, as studied by, for example, [BHRRS18; AL21; RWZ20; AA05;
ABKRS04; AB19a]. An IS-query consists of specifying two subsets X ⊆ L and
Y ⊆ R and asking if there is any edge between some vertex in X and some vertex
in Y (or, conversely if X ∪ Y forms an independent set)10.

Claim F.2.15. There is a deterministic algorithm that solves BMM with O(n log2 n)
IS-queries.

Proof. In each iteration, the cutting plane method finds some fractional point
p ∈ RL∪R, and we are asked to implement a separation oracle FindViolatingEdge for
this point. That is we want to determine if any edge in the set S = {(u, v) ∈ L×R |
pu + pv < 1} exists (and if so find it). With unrestricted OR-queries this is easy (see
Claim F.2.5), however it might not be the case that this set S is structured like an
IS-query. In the case when p is integral, we can define X = {v ∈ L : pv = 0} and
Y = {v ∈ R : pv = 0}, and note that S = X × Y . Hence, in the case of integral p,
we can implement FindViolatingEdge using IS-queries: first we binary search on X,
and then on Y , to find the violating edge if it exists.

We argue that there always exist an integral point p′ ∈ ZL∪R which we can use
instead of p when calling the separation oracle FindViolatingEdge. The integral point
p′ will satisfy the following two properties:

10Generally, an Independent set query specifies only one subset of vertices whereas the Bipartite
independent set query specifies two disjoint sets of vertices as defined here. However, for bipartite
graphs, these two types of queries are equivalent.
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(i) For all pairs (u, v) ∈ L×R, if pu + pv ≥ 1 then p′u + p′v ≥ 1 too. This means
that if we found a violating edge for p′, the same edge is also violating for p.

(ii)
∑
p′v ≤

∑
pv. This means that if there were no violating edges (i.e. p′ formed

a vertex cover), we have found a certificate that the maximum matching size
is at most

∑
p′v ≤

∑
pv.

Indeed, consider the bipartite graph H with edge set {(u, v) ∈ L×R : pu + pv ≥ 1}.
In H, p is a (fractional) vertex cover of size

∑
pv. This means that there exists an

integral vertex cover of size ⌊
∑
pv⌋ in H, since the minimum vertex cover linear

program is integral for bipartite graphs. Therefore, we pick p′ to be an arbitrary
such integral vertex cover, and we note that by definition it satisfies the above
properties (i) and (ii).

ORk-query

Here we discuss the OR-query of limited width k, i.e. the ORk-query. That is, we
are only allowed to ask OR-queries over sets S ⊆ L×R of size |S| ≤ k. This model
turns out to be useful as an intermediary step towards proving tight upper bounds
for the quantum edge query model (see Section F.2.3). Considering this model also
helps to unveil the difficulty behind designing demand query algorithms (see open
problems in Section F.1.2 for further discussion) for BPM, pointing to the fact that
the barrier is not the size of the query, but rather its locality.

Claim F.2.16. There is a deterministic algorithm that solves BMM with O(n log2 n)
ORn-queries.

In fact, we show, via an amortization argument, that any OR-query algorithm
(for an arbitrary graph problem) can be simulated with ORk-queries with an additive
overhead dependent on k.

Lemma F.2.17. Any OR-query algorithm A (for any graph problem) making q
queries can be converted to an ORk-algorithm making q + ⌊n2

k ⌋ queries.

Proof. The main idea of the proof is the following: Every time an OR-query answers
“NO”, we know that none of the queried edges are present in the graph G. This is
an important piece of information that helps us save queries in the future. More
formally, we use the following amortization argument.

We keep track of a set Ec ⊆ L×R of pairs (u, v) which we know are not edges of
G, that is E∩Ec = ∅. Whenever A issues an OR-query S ⊆ L×R we do the following.
Let S1, S2, . . . , Sr be a partition of S \ Ec so that |S1| = |S2| = . . . |Sr−1| = k, and
|Sr| ≤ k. We issue the ORk-queries S1, S2, . . . , Sr sequentially, in order, until we
get a “YES” answer which we return to A (or else, after we have received “NO”
from all the sets we return a “NO” answer to A). For the last query which we made
(which was either a query to Sr, or a query which returned “YES”), we charge the
cost to A. In total, we thus charge at most q cost to A: one per OR-query A issues.
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For all the queries to Si which got “NO” answers and for which i < r, we update
Ec ← Ec ∪ Si. Hence, for each such “NO” answer we have increased the size of
Ec by k. Note that this can happen at most ⌊n2

k ⌋ times. So, other than the q
queries charged to A, we have made at most ⌊n2

k ⌋ queries. Hence, in total, we made
q + ⌊n2

k ⌋ ORk-queries to simulate the q many OR-queries from A.

Plugging in our O(n log2 n) OR-query algorithm to the above lemma yields
Claim F.2.16.

Quantum edge query (Q2)

In this section we consider the quantum edge-query model. See [BW02] for a formal
definition and [NC16] for a more extensive background on quantum computing.

Claim F.2.18. The quantum edge query complexity of solving BMM is O(n1.5 log2 n).

We use our ORk-query algorithm (Lemma F.2.17) together with a well known
quantum result (Lemma F.2.19) regarding the quantum query complexity of the
OR function.

Lemma F.2.19 (Grover Search [Gro96]). There is quantum query algorithm that
computes w.h.p. the OR function over k bits with query complexity O(

√
k log k).

Proof of Claim F.2.18. Consider the instance of Lemma F.2.17 where we put k =
n

log2 n
, then we obtain an ORk-query algorithm for BMM with O(n log2 n) queries.

Each such ORk-query can be simulated, w.h.p., using O(
√
k logn) = O(

√
n) quantum

edge queries, by Lemma F.2.19.

F.3 Weighted and Vertex-Capacitated Variants

In this section we show that the cutting planes method is strong enough to be
generalized to solve weighted and (vertex-)capacitated problems, for example max-
cost b-matching. As an application, we also show how to solve unique bipartite
perfect matching (UBPM) in Section F.3.3. For the weighted problems, we focus
on the two-party edge-partition communication setting, since there is no natural
generalization of the OR-queries.

Theorem F.3.1. Given that all the weights/costs/capacities are integers polynomi-
ally large in n, we can solve the following problems11 in the two-party edge-partition
communication setting, using O(n log2 n) bits of communication.

(i) Maximum-cost bipartite perfect b-matching.

(ii) Maximum-cost bipartite b-matching.
11See [BLNPSSSW20, Section 8.6 (full version)] for a more extensive discussion of these variants.
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(iii) Vertex-capacitated minimum-cost (s, t)-flow.

(iv) Transshipment (a.k.a. uncapacitated minimum-cost flow).

(v) Negative-weight single source shortest path.12

(vi) Minimum mean cycle.

(vii) Deterministic Markov Decision Process (MDP).

Reductions. Problems (i), (ii), (iii), (iv) are equivalent, and problems (v), (vi),
(vii) can all be reduced to, for example, (i). All these reduction are shown in
[BLNPSSSW20] (and can be verified as rectangular reductions, i.e., compatible with
the two-party communication setting), except that (ii) (i.e. max-cost, not-necessarily-
perfect, bipartite b-matching) can solve any of (actually really all of): (i), (iii), (iv);
which we show in Section F.3.1.

These reductions allow us to focus on a single one of these problems. We pick
item (ii), that is max-cost (not-necessarily-perfect)13 bipartite b-matching, which is
the one which most closely resembles the unweighted bipartite matching problem.
In Section F.3.2 we show how the cutting planes framework can be generalized to
work with the costs c and demand vector b.

Definition F.3.2 (b-matching). Given a graph G = (V,E), a demand vector
b ∈ ZV≥0, and edge-costs c ∈ ZE , we call a vector y ∈ ZE≥0 a b-matching (or a
fractional b-matching if we allow y ∈ RE≥0) if

∑
e∈δ(v) ye ≤ bv for all v ∈ V (where

δ(v) is the set of edges incident to v). If
∑
e∈δ(v) ye = bv for all v ∈ V , then y is a

perfect b-matching. The cost (or weight) of y is
∑
e∈E ceye.

F.3.1 Max-cost perfect b-matching → Max-cost b-matching
We can reduce the perfect variant to the not-necessarily-perfect one. Suppose we
are given an instance (G = (V,E), b ∈ ZV≥0, c ∈ ZE) of the perfect variant which we
wish to solve. Firstly, we may assume that the costs are non-negative, since adding
a constant W to all costs will increase the cost of a perfect b-matching by exactly
W

∑
v∈V

bv

2 .
If we just solve max-cost b-matching, we in general do not obtain a perfect

b-matching, since matchings of smaller cardinality might have higher cost. To
encourage the max-cost b-matching to prioritize perfect matchings over non-perfect
matchings, we simply add a large integer W to all the the costs. That is we use
the cost function c′e = ce +W instead (again, we can do this since we know exactly

12Although the reduction shown in [BLNPSSSW20] is randomized, we note that it can be made
deterministic by noticing that both parties in the end will know all the edges of a shortest path
tree.

13Some of the other problems, e.g. perfect b-matching, can have unbounded dual linear programs
which make them trickier to work with in the cutting planes framework.
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how this will affect the cost of a perfect b-matching). If W is sufficiently large (in
particular set W := 1 + |V | ·max ce), any max-cost b-matching will also be a perfect
b-matching (if one exist).

If it was not, suppose M is a non-perfect b-matching and of maximum cost for c′,
in a graph which allows a perfect b-matching. Then there must exist an augmenting
path in M of length 2ℓ+1 ≤ |V | (where we add ℓ+1 edges and remove ℓ). The total
cost (w.r.t. c′) of the added edges is now at least (ℓ+ 1)W , while the cost of the
removed edges is at most ℓ(W + max ce) ≤ ℓW + |V |max ce < ℓW +W = (ℓ+ 1)W .
That is we added more cost than we removed, hence contradicting that M was of
maximum cost.

F.3.2 Cutting planes method for max-cost bipartite b-matching
In this section we briefly explain how the cutting planes algorithm can solve the
max-cost bipartite b-matching, and hence prove Theorem F.1.2. The details are
postponed to Section F.5. The main result of this section is the following:

Lemma F.3.3. Max-cost bipartite b-matching can be solved using O(n log2(nW ))
communication, where W := max{max |ce|,max bv} is the largest number in the
input.

Let G = (V,E) (bipartite with |V | = n), b ∈ ZV≥0 and c ∈ ZE be an instance of
the max-cost bipartite b-matching problem. We assume the edges (together with
their costs) are partitioned between two parties Alice and Bob, say Alice owns
EA (together with ce for e ∈ EA) and Bob EB (together with ce for e ∈ EB). We
assume both players know the demands b (otherwise it can be communicated in
O(n logW ) bits).

Dual linear program. Similarly as for the unweighted bipartite matching prob-
lem, we run a cutting planes algorithm on the dual linear program (P(G,b,c)) (refer
to the constraints of Definition F.3.2 for the primal linear program). We can think
of x ∈ (P(G,b,c)) as a generalized version of a vertex cover, and an optimal solution
would be one of minimum cost (w.r.t. costs bv). Similarly to the uncapacitated and
unweighted case, since the graph is bipartite, (P(G,b,c)) is integral, and thus has an
integral optimal solution.

min
∑
v∈V

bvxv

s.t. xu + xv ≥ cuv ∀(u, v) ∈ E
xv ≥ 0 ∀v ∈ V

(P(G,b,c))

Claim F.3.4. Any optimal solution x∗ to (P(G,b,c)) has x∗v ≤W for all v ∈ V .

Proof. If this is not the case, we can decrease x∗v without violating any of the
constraints, and the objective value

∑
bvxv becomes smaller.
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This motivates the following feasibility polytope (P(G,b,c)
F ), which can be used

to check if (P(G,b,c)) has a solution with objective value at most F , for any integer
F ∈ Z. ∑

v∈V
bvxv ≤ F + 1

3

xu + xv ≥ cuv ∀(u, v) ∈ E
0 ≤ xv ≤W + 1 ∀v ∈ V

(P(G,b,c)
F )

Modifications to the algorithm. Like for the unweighted and uncapacitated
case, we can show that if this polytope is non-empty, then it has significantly large
volume (Lemma F.3.5, whose proof is in Section F.5). This means that the cutting
plane algorithm can terminate whenever the volume becomes too small. The only
modifications we need to make to Algorithm F.1 are thus the following:

• We start with a larger initial polytope P0 = [0,W + 1]V ∩{x ∈ RV :
∑
bvxv ≤

F + 1
3}.

• When we check for (and add) violating constraints we also use the edge-cost cuv.
That is an edge (u, v, cuv) is violating if pui + pvi < cuv, and the corresponding
constraint we add is “xu + xv ≥ cuv”.

• We terminate when the volume is less than ( 1
20nW )n (see Lemma F.3.5).

Lemma F.3.5 (Generalization of Lemma F.2.3). If (P(G,b,c)
F ) is non-empty, then

vol(P(G,b,c)
F ) ≥

( 1
20nW

)n.

Observation F.3.6 (Generalization of Claim F.2.5). We can communicate a single
violated constraint with 2 log(n) + log(W ) + 1 = O(log(nW )) bits of communication.

Total communication. The generalized algorithm will start with initial polytope
P0 ⊆ [0,W + 1]n, and terminate whenever vol(Pi) becomes smaller than

( 1
20nW

)n
(Lemma F.3.5). In each iteration the volume is cut down by a constant fraction
(Lemma F.2.8). Hence we need O

(
log
(
Wn/

( 1
20nW

)n)) = O(n log(nW )) iterations.
Each iteration needs O(log(nW )) bits of communication, for a total of O(n log2(nW ))
bits of communication (Observation F.3.6), proving Lemma F.3.3. We also note
that the same standard trick to convert the decision version to the optimization
version (Section F.2.2) works here as well.

F.3.3 Application: Unique Bipartite Perfect Matching
In the unique bipartite matching problem, or UBPM for short, we are asked to
determine if an (unweighted) bipartite graph has a unique perfect matching. The
interplay between UBPM and BPM is quite subtle, by some measures, e.g. certificate
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complexity, the former is known to be strictly harder than the latter, in other
settings, such as sequential, simple near linear time algorithms for UBPM have been
known since the turn of the century [GKT01]. While for BPM, only a very recent
line of work, employing heavy machinery from continuous optimization and dynamic
data structures culminated in a near linear time algorithm for BPM [CKLPPS22].
In this section, we show that our upper bounds also hold for the UBPM problem,
both for the communication and query models.

Theorem F.3.7. The UBPM problem can be solved in:

• O(n log2 n) bits of communication in the deterministic two-party edge-partition
communication model.

• O(n log2 n) deterministic OR-queries.

• O(n log2 n) randomized XOR-queries, w.h.p.

• Õ(n
√
n) quantum edge queries.

Proof sketch. (Formal proof can in Section F.5).
Our main idea on how to solve UBPM can be summarized in two stages:

(1) First find a perfect matching M (see Theorem F.2.1).

(2) Assign weights to the edges as follows: ce = 1 if e ∈M , and ce = 2 otherwise.
After this, we find a max-cost perfect matching M ′ (see Theorem F.3.1).

If M ′ ̸= M , we have proved that the perfect matching is not unique. Conversely,
if M ′ = M , then M must be the unique perfect matching, since any other perfect
matching (if they would exist) has higher cost. In the communication setting, this
argument suffices. For the query models, however, one needs to be a bit more
careful since we have not defined what, for example, an OR-query means in the
max-cost setting. The formal proof of this—which is straightforward, although a bit
technical—can be found in Section F.5. The other query-models follow from similar
reductions as those in Section F.2.3.

Remark F.3.8. We also note that there are alternative ways to solve UBPM after
one has solved BPM. Instead of solving max-cost matching as the second step, one
can instead determine if an alternating cycle (that is a cycle in G where every other
edge is in M) exist. The perfect matching M is unique if and only if no such cycle
exist. Note that finding such a cycle can easily be done in, for example, O(n logn)
OR-queries by running depth-first-searches to detect a directed cycle in the directed
residual graph (edges in M go from R→ L, other edges from L→ R).
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F.4 Communication Lower Bounds

In this section we discuss three communication problems related to OR-queries,
AND-queries, and XOR-queries respectively. We show simple lower bounds on the
communication complexity of these three problems, and argue that this implies
corresponding query lower bounds.

We summarize our obtained query lower bounds below in Theorem F.4.1. Note
that our lower bounds are asymptotically the same as those obtained in [BN21].
However, while [BN21] employs rather sophisticated mathematical machinery in
order to obtain these lower bounds, we obtain them via simple communication
complexity reductions from well known functions. In addition to the already known
lower bounds of [BN21], our technique also shows one new result: namely that the
Ω(n2) AND-query lower bound even holds for randomized algorithms.

Theorem F.4.1. To solve the bipartite perfect matching (BPM) problem one needs
to use:

• Ω(n logn) OR-queries (deterministic).

• Ω(n2) AND-queries (deterministic or randomized).

• Ω(n2) XOR-queries (deterministic).

In this section we give an overview of the main ideas—which are all relatively
simple—but we postpone the formal proofs to Section F.6.

Problem setup. We consider a two-party communication setting between two
players Alice and Bob. Alice is given a graph GA = (V,EA) and Bob a graph
GB = (V,EB) on the same set of vertices V = L ∪R (where |L| = |R| = n). They
wish to solve BPM on an aggregate of their graphs. We consider three different
types of aggregate graphs (and hence get three different communication problems),
naturally corresponding to OR / AND / XOR:

• Union graph G∪ = (V,EA ∪ EB).

• Intersection graph G∩ = (V,EA ∩ EB).

• Symmetric difference graph G⊕ = (V,EA ⊕ EB).

It is not difficult to see that any OR / AND / XOR query algorithms can be simulated
in an communication protocol for G∪ / G∩ / G⊕ respectively. As an example, to
answer an AND-query over S ⊆ (L × R) in G∩, Alice and Bob check locally if
S ⊆ EA, respectively if S ⊆ EB, and exchange this information with each-other.
This gives the following Lemma F.4.2, which we formally prove in Section F.6.
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Lemma F.4.2. If there is a query-algorithm A solving the bipartite-perfect-matching
problems using q many OR / AND / XOR queries, then there is a communication
protocol which solve the bipartite-perfect-matching problem on G∪ / G∩ / G⊕
respectively, using 2q bits of communication. If A is deterministic, then so is the
communication protocol.
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Figure F.1: An example of our graph construction for G∩. The blue edges are
known to both parties to be in the aggregate graph G∩. Between the v and w layers,
Alice owns the red edges and Bob the green. The graph G∩ has a perfect matching
if and only if it has an edge between some vi and wj .

Intersection Graph (AND). We construct a difficult instance for solving BPM
on G∩ by reducing from Set-Disjointness on Θ(n2) bits. Our construction can be
seen in Figure F.1, where determining if G∩ has a perfect matching boils down to
determining if there exists any edge between some vertex vi and some vertex wj in
G∩. This is exactly a Set-Disjointness problem of size Θ(n2).

Since Set-Disjointness is known to require linear communication in the number
of bits [KN97] (both for deterministic and randomized algorithms), we obtain the
following Claim F.4.3 whose formal proof can be found in Section F.6.

Claim F.4.3. Solving BPM (or UBPM) on G∩ requires Ω(n2) bits of communication,
even if public randomness is allowed.

Symmetric Difference Graph (XOR). Our communication lower bound of
G⊕ is very similar to the lower bound on G∩. We use the same graph-structure
(Figure F.1), but determining if there is any (vi, wj) edge in G⊕ now corresponds to
solving the Equality problem (again on Θ(n2) bits) instead of the Set-Disjointness
problem. This is since an edge (vi, wj) exists if and only if exactly one of Alice or
Bob have it, which is if and only if the set of Alice’s edges does not equal the set of
Bob’s edges.

It is well known that Equality exhibits a large gap between its deterministic and
randomized communication complexity. While the former is known to be Ω(n), the
latter requires only O(1) bits of communication in the presence of shared randomness
(with error probability < 1

3 ) [KN97]. This might also provide some intuition why we,
in the case of XOR-queries, obtain the separation of Õ(n) randomized upper bound
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(Claim F.2.12) vs Ω(n2) deterministic lower bound. The full proof of Claim F.4.4
can be found in Section F.6.

Claim F.4.4. Solving BPM on G⊕ requires Ω(n2) bits of communication for any
deterministic protocol.

Union Graph (OR). Our lower bound for G∪ follows a similar vein, but the
graph construction is a bit different. By a standard reduction, the (s, t)-reachability
problem on a (not-necessarily-bipartite) n-vertex graph can be solved by solving
bipartite perfect-matching on a graph on 2n vertices. The (s, t)-reachability problem,
in the edge-partition setting, is known to need Ω(n logn) bits of communication for
any deterministic protocol [HMT88]. Proving any super-linear randomized lower
bound still remains open. The full proof of Claim F.4.5 can be found in Section F.6.

Claim F.4.5. Solving BPM on G∪ requires Ω(n logn) bits of communication for
any deterministic protocol.
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APPENDIX

F.5 Omitted proofs from Section F.3.2

Lemma F.3.5 (Generalization of Lemma F.2.3). If (P(G,b,c)
F ) is non-empty, then

vol(P(G,b,c)
F ) ≥

( 1
20nW

)n.

Proof. Similarly to Lemma F.2.3, let x be some integral feasible solution to (P(G,b,c)
F ),

we know such a solution exists since (P(G,b,c)) has an optimal integer solution, and
by assumption that (P(G,b,c)

F ) is not empty, we can deduce that its value is at most
F + 1

3 , which is at most F since it is integer. For the same reason, we can also,
by Claim F.3.4, assume w.l.o.g. that xv ≤ W for all v ∈ V . Our goal is to prove
that (P(G,b,c)

F ) contains a cube of dimensions 1
20nW , thus concluding the proof. Note

that for each v ∈ V we can independently increase the value of xv by any value
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in the range [0, 1
20nW ] while maintaining the feasibility of the resulting point w.r.t.

(P(G,b,c)
F ). This is due to the following observations.

• The constraint
∑
v∈V

bvxv ≤ F + 1
3 remains valid as as x has value F , and

we increase each coordinate by at most 1
20nW , as there are 2n vertices and

bv ≤W for all v ∈ V , it means that we increase the value of the solution by
at most 1

10 , which is less than 1
3 .

• All edge constrains xv + xu ≥ cuv for all (u, v) ∈ E clearly remain valid as we
are only increasing the value of variables.

• As F.3.4 allows us to assume that xv ≤W for all v ∈ V for the original x, the
constraints 0 ≤ xv ≤W + 1 for all v ∈ V remain valid as well as each entry is
increased by at most

( 1
20nW

)
.

Theorem F.3.7. The UBPM problem can be solved in:

• O(n log2 n) bits of communication in the deterministic two-party edge-partition
communication model.

• O(n log2 n) deterministic OR-queries.

• O(n log2 n) randomized XOR-queries, w.h.p.

• Õ(n
√
n) quantum edge queries.

Proof. Here we give the formal proof that we can determine if an unweighted
bipartite graph G = (V,E) (with V = L ∪R, |L| = |R| = n) has a unique bipartite
matching in all our different models. We show that O(n log2 n) OR-queries suffices,
and the other models follows similarly as in Section F.2.3.

We start by obtaining a maximum matching M of G, by Lemma F.2.4. If M is
not a perfect matching, G admits no perfect matching, and we are done. From now
on assume that M is a perfect matching.

We now construct an instance of a weighted matching. Let ce = 10n if e ∈M
and ce = 10n+ 1 otherwise. We wish to solve the max-cost matching problem with
edge costs c. We will soon explain how to do this with OR-queries, but first we show
how doing this completes the proof.

Let M ′ be a max-cost matching in G with respect to the costs c. Note that M
has cost 10n2, so we know that M ′ has cost at least 10n2 too. First we argue that
M ′ must be a perfect matching of G. This is because any non-perfect matching has
weight at most (n− 1)(10n+ 1) < 10n2.

• If M ′ ̸= M , we have found two perfect matchings of the graph, and are done
(G does not have a unique perfect matching).
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• If M ′ = M , we conclude that M is the unique perfect matching in the graph.
This is since any other perfect matching of G, if they would exist, would have
had strictly larger cost.

Now we return to explaining how to solve the max-cost (w.r.t. the cost c)
matching using only OR-queries. Note that we already know the weights of all
(potential) edges (either 10n if they are in M , which we know; or 10n+ 1 otherwise),
and this is not something which needs to be found out using OR-queries. By the
above discussion, it suffices to check if any matching of weight strictly more than
10n2 exist or not. Hence we use a version of (P(G,b,c)

F ) with c being our costs, b the
all-ones vector, and F = 10n2, to obtain the following polytope (PUBPM):∑

v∈V
xv ≤ 10n2 + 1

3

xu + xv ≥ 10n ∀(u, v) ∈M
xu + xv ≥ 10n+ 1 ∀(u, v) ∈ E \M
0 ≤ xv ≤ 10n+ 2 ∀v ∈ V

(PUBPM)

If this polytope is feasible, then M must be the unique perfect matching, and if
it is feasible, another perfect matching M ′ of higher cost exist.

We note that in the above polytope (which is a special case of the (P(G,b,c)
F )

polytope from Section F.3), we know all the constraints initially except the “xu+xv ≥
10n for (u, v) ∈ E \ M” constraints. Hence, when running the cutting planes
algorithm we may start with all other constraints in our initial polytope. Now, to
implement the FindViolatingEdge-subroutine (a.k.a. the separation oracle) given a
point pi, we binary search (with OR-queries) over the set of potentially violated
edges, i.e. the set S = {(u, v) ∈ L × R | pui + pvi < 10n + 1, (u, v) ̸∈ M} (like in
Claim F.2.5, but now this set S is a bit different for our problem). Otherwise, the
cutting planes algorithm is exactly the same as for the max-cost b-matching in
Section F.3.2.

F.6 Omitted proofs from Section F.4

Lemma F.4.2. If there is a query-algorithm A solving the bipartite-perfect-matching
problems using q many OR / AND / XOR queries, then there is a communication
protocol which solve the bipartite-perfect-matching problem on G∪ / G∩ / G⊕
respectively, using 2q bits of communication. If A is deterministic, then so is the
communication protocol.

Proof. Alice and Bob can simulate a query on the aggregate graph with a single bit
sent in each direction as follows:

• An OR-query S ⊆ L×R can be simulated on G∪: Alice and Bob locally check
if |S ∩EA| > 0, respectively |S ∩EB | > 0, and communicates this to the other
party.
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• An AND-query S ⊆ L × R can be simulated on G∩: Alice and Bob locally
check if |S ∩EA| = |S|, respectively |S ∩EB | = |S|, and communicates this to
the other party.

• An XOR-query S ⊆ L × R can be simulated on G⊕: Alice and Bob locally
compute the parity of |S ∩ EA|, respectively |S ∩ EB |, and communicates
this to the other party. If they have the same parity, then the parity of
|S ∩ (EB ⊕ EA)| is even, otherwise it is odd.

Claim F.4.3. Solving BPM (or UBPM) on G∩ requires Ω(n2) bits of communication,
even if public randomness is allowed.

Proof. Let k be an integer and suppose Alice and Bob are tasked to solve a Set-
Disjointness problem on k2 bits. That is, suppose Alice is given a subset A ⊆ [k]× [k]
and Bob is given a subset B ⊆ [k] × [k], and they want to determine if A ∩ B is
empty or not. This is known to require Ω(k2) bits of communication, even if public
randomness is allowed [Raz92].

We now proceed by setting up two bipartite graphs GA = (L ∪ R,EA) and
GB = (L ∪ R,EB) such that the graph G∩ = (L ∪ R,EA ∩ EB) has a perfect
matching if and only if A ∩B ̸= ∅. For an illustration, see Figure F.1.

The graph will have 4k + 2 vertices. Let L = {s, v1, v2, . . . , vk, z1, z2, . . . , zk}
and R = {t, u1, u2, . . . , uk, w1, w2, . . . , wk}. The edges (s, ui), (ui, vi), (wi, zi) and
(zi, t) (for all i ∈ [k]) will be in both Alice’s and Bob’s graphs. Note that the edges
(ui, vi) and (wi, zi) form an almost-perfect-matching in G∩: all vertices except s
and t are matched. Hence, a perfect-matching exists in G∩ if and only if there is an
augmenting path (with respect to the almost-perfect-matching) between s and t in
the graph.

Additionally, for every (i, j) ∈ A we add the edge (vi, wj) to Alice’s edges, and
similarly for every edge (i, j) ∈ B we add the edge (vi, wj) to Bob’s edges.

• If (i, j) ∈ A ∩B exists, then (vi, wj) is an edge of G∩, and G∩ has a perfect
matching: (s, ui, vi, wj , zj , t) forms the desired (s, t)-augmenting path.

• On the other hand, if A ∩ B = ∅, then G∩ has no perfect matching since s
and t are in different components in the graph and hence no augmenting path
between them exists.

Note that the version of Set-Disjointness where we are promised that |A∩B| ≤ 1
is still difficult (i.e. also has an Ω(n2) communication lower bound) [Raz92]. This
means that our lower bound also holds for the unique bipartite matching problem
(UBPM), as there can never be more than one perfect matching in this promise
version.

Claim F.4.4. Solving BPM on G⊕ requires Ω(n2) bits of communication for any
deterministic protocol.
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Proof. Let k be an integer and suppose Alice and Bob are tasked to solve a Equality
problem on k2 bits. That is, suppose Alice is given a subset A ⊆ [k]× [k] and Bob is
given a subset B ⊆ [k]× [k], and they want to determine if A = B (this is equivalent
to determine if A⊕B = ∅). This is known to require Ω(k2) bits of communication
for any deterministic algorithm.

We use a similar graph construction on 4k+ 2 vertices as in the G∩-query setting
(again, for an illustration, see Figure F.1). The edges (s, ui), (ui, vi), (wi, zi) and
(zi, t) (for all i ∈ [k]) will be in be in Alice’s graph, but not Bob’s (so that all these
edges will be G⊕). Again, note that a perfect-matching exists in G⊕ if and only if
there is an augmenting path (with respect to the almost-perfect-matching {(ui, vi),
(wi, zi) : i ∈ [k]}) between s and t in the graph.

Additionally, we add the edge (vi, wj) to Alice’s graph if (i, j) ∈ A, and similarly
add the edge (vi, wj) to Bob’s graph if (i, j) ∈ B. That is the edge (vi, wj) is in G⊕
if and only if (i, j) ∈ A⊕B.

• If (i, j) ∈ A ⊕ B exist, then then (vi, wj) is an edge of G⊕, and G⊕ has a
perfect matching: (s, ui, vi, wj , zj , t) forms the desired (s, t)-augmenting path.

• On the other hand, if A⊕ B = ∅, then G⊕ has no perfect matching since s
and t are in different components in the graph and hence no augmenting path
between them exists.

Claim F.4.5. Solving BPM on G∪ requires Ω(n logn) bits of communication for
any deterministic protocol.

Proof. Suppose the two parties are given an instance of (s, t)-connectivity. That is
Alice is given edges FA and Bob FB in a k-vertex (not-necessarily-bipartite) graph
H = (V, FA ∪ FB). They are also both given two vertices s, t ∈ V and want to
determine if s and t are in the same connected component in H. This is known to
require Ω(n logn) bits of communication.

We proceed by constructing bipartite graphs GA = (L ∪ R,EA) and GB =
(L ∪ R,EB) for Alice and Bob, such that G∪ = (L ∪ R,EA ∪ EB) has a perfect
matching if and only if s and t are connected in H.

We let L = {v : v ∈ V \ {s}} and R = {v′ : v ∈ V \ {t}}. Note that
|L| = |R| = k− 1. Let the edge (v, v′) be in both EA and EB (and thus also an edge
of G∪) for all v ∈ V \ {s, t}. These edges form an almost-perfect matching of size
k− 2: all vertices except s and t′ are matched. Again, G∪ has a perfect matching if
and only if there is an augmenting path (with respect to this partial almost-perfect
matching) between s and t in the graph.

For each edge (v, u) ∈ FA, we add (v, u′) (unless v = t) and (v′, u) (unless v = s)
to Alice’s edges EA. We do the same for Bob.

Now there is an (s, t)-path in H if and only if there is an augmenting path
(w.r.t. the almost-perfect matching {(v, v′) : v ∈ V \ {s, t}}) between s and t in
G∪. Indeed, a path (s, v1, v2, . . . , vr, t) in H corresponds to the augmenting path
(s, v′1, v1, v

′
2, v2, . . . , v

′
r, vr, t) in G∪.
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Abstract

In the dynamic approximate maximum bipartite matching problem we
are given bipartite graph G undergoing updates and our goal is to maintain a
matching of G which is large compared the maximum matching size µ(G). We
define a dynamic matching algorithm to be α (respectively (α, β))-approximate
if it maintains matching M such that at all times |M | ≥ µ(G) ·α (respectively
|M | ≥ µ(G) · α− β).

We present the first deterministic (1 − ε)-approximate dynamic matching
algorithm with O(poly(ε−1)) amortized update time for graphs undergoing
edge insertions. Previous solutions either required super-constant [Gupta
FSTTCS’14, Bhattacharya-Kiss-Saranurak SODA’23] or exponential in 1/ε
[Grandoni-Leonardi-Sankowski-Schwiegelshohn-Solomon SODA’19] update
time. Our implementation is arguably simpler than the mentioned algorithms
and its description is self contained. Moreover, we show that if we allow
for additive (1, ε · n)-approximation our algorithm seamlessly extends to also
handle vertex deletions, on top of edge insertions. This makes our algorithm
one of the few small update time algorithms for (1 − ε)-approximate dynamic
matching allowing for updates both increasing and decreasing the maximum
matching size of G in a fully dynamic manner.

Our algorithm relies on the weighted variant of the celebrated Edge-Degree-
Constrained-Subgraph (EDCS) datastructure introduced by [Bernstein-Stein
ICALP’15]. As far as we are aware we introduce the first application of the
weighted-EDCS for arbitrarily dense graphs. We also present a significantly
simplified proof for the approximation ratio of weighed-EDCS as a matching
sparsifier compared to [Bernstein-Stein], as well as simple descriptions of a
fractional matching and fractional vertex cover defined on top of the EDCS.
Considering the wide range of applications EDCS has found in settings such
as streaming, sub-linear, stochastic and more we hope our techniques will be
of independent research interest outside of the dynamic setting.
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G.1 Introduction

Matchings are fundamental objects of combinatorical optimization with a wide
range of practical applications. The first polynomial time algorithm for finding a
maximum matching was published by Kuhn1 [Kuh55] in 1955 which ran in O(n4)
time. A long line of papers have focused on improving this polynomial complexity.
Notably Edmonds and Karp [EK72] showed the first O(n3) time algorithm for the
problem which was later improved to O(n2.5) [HK73]. Mucha and Sankowski [MS04]
showed maximum matching can be solved in matrix multiplication time, that is in
O(nω) where ω is currently around 2.38. In the very recent breakthrough result
of Chen-Kyng-Liu-Peng-ProbstGutenberg-Sachdeva [CKLPGS22], they showed an
O(m1+o(1)) time algorithm for the maximum flow problem (which generalizes bipar-
tite matching) providing the first near-linear time algorithm, essentially settling the
problem in the sequential setting.

Dynamic Model. This paper focuses on the matching problem in the dynamic
model where it has received extensive research attention in recent years, see e.g
[BK22; Waj20; ACCSW18; BK21; BS16; PS16; AAGPS19; BFH21; CS18; NS16;
San07; BHN16] and many more. In this setting our task is to maintain a large
matching as the graph undergoes updates. We will refer to updates being fully
dynamic if they concern both insertions and deletions and partially dynamic if only
one of the two is allowed. The objective is to minimize the time spent maintaining the
output after each update. Throughout the paper we will always refer to update time
in the amortized sense—averaged over the sequence of updates. In [San07] Sankowski
has shown the fist improvement for the fully dynamic maximum matching problem in
terms of update time (O(n1.45)) compared to static recomputation after each update.
Unfortunately, based on well accepted hardness conjectures no dynamic algorithm for
the maximum matching problem may achieve update time sub-linear in n [HKNS15].
Most works focused on the relaxed approximate version of the problem where the
goal is to maintain a large matching in G with respect to the maximum matching
size µ(G). We will refer to matching algorithms as α-approximate (respectively
(α, β)-approximate) if it maintains matching M such that at all times |M | ≥ µ(G) ·α
(respectively |M | ≥ µ(G) · α− β).

Fully Dynamic Approximate Matching. The holy grail of dynamic algo-
rithm design is to achieve an update time of O(polylog(n)) or ideally even constant.
For the fully dynamic approximate matching problem, a long line of research [BGS18;
BHN17; BHI18; BK19; BDHSS19; OR10; Sol16; BCH17] has lead to algorithms
achieving ≈ 1

2 -approximation with O(polylog(n)) and constant update time. No
fully dynamic algorithm has been found achieving better than 1

2 -approximation in
O(polylog(n)) update time for the problem, and this challenge appears to be one of

1However, this result is usually attributed to Kőnig and Egerváry.
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the most celebrated problem within the dynamic matching literature. A set of inter-
esting papers focused on ≈ 2

3 -approximation in Õ(
√
n) update time [BS15; BS16;

Kis22; GSSU22] and other approximation-ratio to polynomial-update-time trade-
offs in the better-than- 1

2 -approximation regime were achieved by [BK22; BLM20;
RSW22]. Note that through periodic recomputation of the matching (roughly every
εµ(G) updates) we can achieve fully dynamic (1− ϵ)-approximation in Õ(n) update
time [GP13]. Very recently [BRR23] has shown that (1−ε)-approximation is possible
in slightly sublinear update time O(n/ log∗(n)O(1)) suggesting that there might exist
efficient non-trivial algorithms for the problem. Note that very recently [Beh23;
BKSW23] have independently shown that if our goal is to maintain the size of the
maximum matching (and not the edge-set) then sub- 1

2 approximation is achievable
in polylogarithmic update time.

Partially Dynamic Matching Algorithms. For small approximation ratios,
achieving polylogarithmic update time for fully dynamic matching seems far out
of reach with current techniques, or perhaps even impossible. Hence, a long line
of papers have focused on maintaining a (1− ε)-approximate matching in partially
dynamic graphs: either incremental (edge insertions) or decremental (edge deletions).
The first O(poly(log(n), ε−1)) algorithm for maintaining a (1 − ε)-approximate
matching under edge insertions is due to Gupta [Gup14], with amortized update
time O(log2(n)/ε4). Their algorithm models the bipartite matching problem as a
linear program, and uses the celebrated multiplicative-weights-updates framework.
Generalizing the result of [Gup14] recently Bhattacharya-Kiss-Saranurak [BKS23a]
has shown that an arbitrarily close approximation to the solution of a linear program
undergoing updates either relaxing or restricting (but not both) its solution polytope
can be maintained in O(poly(logn, ε−1)) update time. Hence, the algorithm of
[BKS23a] shows how to maintain a (1 − ε)-approximate matching under either
decremental or incremental updates with a unified approach. As both of these
papers rely on static linear program solver sub-routines their update times inherently
carry log(n) factors, and it seems implausible that these techniques can achieve
constant update time independent of n.

The decremental algorithms of [BPS20; JJST22] focus on maintaining “evenly
spread out” fractional matchings so that they are robust against edge-deletions.
These algorithms rely on either maximum-flow computation or convex optimization
sub-routines which similarly to LP-solvers carry log(n)-factors into the update time.

The first constant time2 partially dynamic matching algorithm is due to [GLSSS19]
who solve (1− ε)-approximate matching in incremental graphs with an update time
of (1/ε)O(1/ε). Their solution relies on augmenting path elimination, a technique
used commonly for the matching problem in the static setting. However, enumerat-
ing augmenting paths seems to inherently carry an exponential dependency on 1/ε
due to the number of possible such paths present in the graph.

2That is constant time when ε is constant, i.e. the update time should be independent of n.
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As far as we are aware partially dynamic (1−ϵ)-approximate matching algorithms
with update time independent of n and faster than some exponential in ϵ are
all restricted to a relaxed version of the problem where the graph may undergo
vertex insertions/deletions. Such an algorithm can simply be obtained through
straightforward periodic rebuilds (if we allow for additive ϵ · n slack) or as shown by
Zheng-Henzinger [ZH23]3. Hence, it we can observe the following apparent gap in
the literature of partially dynamic matching algorithms:

Question G.1.1. Can we maintain a (1−ε)-approximate maximum matching
of a partially dynamic bipartite graph in O(poly(ε−1)) update time?

Based on the current landscape of the dynamic algorithms literature, achieving
(1−ε)-approximation under fully dynamic updates in small update times seems to be
far out of reach. Contrary to the extensive research effort, no fully dynamic algorithm
with poly(log(n), ε−1) has been found for maintaining matchings with better than
1
2 -approximation. This apparent difficulty proposes the research of dynamic models
somewhere between fully and partially dynamic updates. The previously mentioned
paper by Zheng-Henzinger [ZH23] implements a (1− ϵ)-approximate algorithm with
O(1/ε)-update time which can support vertex insertions and deletions on separate
sides of the bipartition. The existence of this new result proposes the following
natural question:

Question G.1.2. Under what kind of non-partially dynamic updates can
we maintain a (1− ε)-approximate maximum matching of a bipartite graph?

G.1.1 Our Contribution
In this paper we provide a positive answer to Question 1 and make progress towards
understanding Question 2. Our main result is the first O(poly(1/ε)) update time
(1− ε)-approximate dynamic matching algorithm for bipartite graphs undergoing
edge insertions:

Theorem G.1.3. There exists a deterministic dynamic algorithm which for arbitrary
small constant ε > 0 maintains a (1 − ε)-approximate maximum matching of a
bipartite graph undergoing edge insertions in total update time O(n/ε6 +m/ε5).

Previous algorithms for (1 − ε) approximate dynamic matching under edge
updates required update times which were either super-constant [Gup14; BKS23a]
or had an exponential dependency on ε−1 [GLSSS19]. Furthermore, our algorithm

3A very recent paper of Zheng-Henzinger [ZH23] has initially claimed an algorithm which can
maintain a (1 − ϵ)-approximate matching in O(1/ε) update time under edge deletions. However,
the authors have found a mistake in their paper and claim that their algorithm only works under
specific vertex updates
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is arguably simpler then previous implementations and it is self contained (except
for the static computation of (1− ε)-approximate maximum matchings) where as
most dynamic matching algorithms either rely on heavy machinery from previous
papers or use black-box tools like multiplicative weight updates or flow-subroutines.

We further show that if we allow for (additive) (1, ε · n)-approximation4 our
algorithm seamlessly extends to a wider range of updates:

Theorem G.1.4. There exists a deterministic dynamic algorithm which for arbitrary
small constant ε > 0 maintains a (1, ϵ · n)-approximate maximum matching of a
bipartite graph undergoing edge insertions and vertex deletions in total update time
of O(n/ε8 +m/ε5).

In contrast to the similar update time result of [ZH23] which allows for edge
deletions and vertex insertions on one side of the bipartition our algorithm allows
from arbitrary vertex deletions. Our algorithm maintains a (1 − ε)-approximate
maximum matching of the graph throughout updates which can both increase and
decrease the maximum matching size of the graph. Hence, we hope our techniques
provide useful insight towards fully dynamizing (1− ε)-approximate algorithms for
the matching problem.

Our algorithm relies on the weighted variant of the celebrated Edge-Degree-
Constrained-Subgraph (EDCS) matching sparsifier. The unweighted EDCS (first
introduced by Bernstein-Stein [BS15]) has found applications in a number of differ-
ent computational settings: streaming [Ber20; ABBMS19; AB21], stochastic, one
way communication, fault tolerant [AB19], sub-linear [Beh23; BKSW23; BRR23;
BKS23b] and dynamic [BS15; BS16; Kis22; GSSU22; Beh23]. On the other hand
the weighted EDCS variant which provides a tighter approximation has only found
applications in small arboricity graphs [BS15]. Hence, we initiate the study of the
weighted EDCS in dense graphs.

Furthermore, we show a significantly simplified proof for the approximation ratio
of the weighted EDCS datastructure with respect to the maximum matching size.
In our proof, we identify simple and explicit descriptions of a fractional matching
and fractional vertex covers defined on top of the weighted EDCS, which might
be of independent interest. Moreover, we show that the dependence on the slack
parameter on the maximum degree of the weighted EDCS is exactly quadratic. This
in sharp contrast to the unweighted EDCS where the same relationship have been
proven to be linear [Beh21]. While within the dynamic matching algorithm literature
papers don’t tend to focus on exact ϵ complexities but rather n dependence, in
models such as semi-streaming and distributed the ϵ dependency usually gains more
focus. Our hard example (most likely) rules out applications of weighted EDCS in
these models for obtaining sub ϵ−2 round/pass complexity algorithms. We hope that
these observations will be of independent research interest due to the wide-spread
popularity of the EDCS datastructure for solving matching problems.

4Recall that this means that we maintain a matching of size at least µ − εn, as opposed to
µ− εµ, where µ denotes the size of the maximum matching.
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G.1.2 Our Techniques

Assume H is a multi-graph defined on the vertex set of G and let degH(v) stand for
the degree of vertex v in H. We define the degree of an edge to be the sum of the
degrees of its endpoints.5

Definition G.1.5 (Weighted EDCS [BS15]). Given a graph G = (V,E), a
multiset H is called a weighted EDCS with parameter β ifa:

(i) degH(u) + degH(v) ≤ β for all edges (u, v) ∈ H.

(ii) degH(u) + degH(v) ≥ β − 1 for all edges (u, v) ∈ E.

If H is not a weighted EDCS, we call an edge e ∈ H overfull if it violates
(i), and an edge e ∈ E underfull if it violates (ii).

aSome authors use an additional parameter β− < β which replaces the “β − 1” in the
degree-constraint. For our purposes, we will always have β− = β − 1.

If β = Ω(ε−2) and H is a β-WEDCS of G then µ(H) ≥ µ(G) · (1− ε) ([BS15],
Theorem G.5.1). In order to derive our incremental result we show that a β-WEDCS
can be efficiently maintained greedily under edge insertions. In turn we can efficiently
maintain a (1− ϵ)-approximate matching within the support of H through periodic
recomputation.

Define a valid update of H to be one of the following: (i) and edge e ∈ H which
is overfull with respect to H gets deleted from H; and (ii) a copy of an edge e ∈ E
which is underfull with respect to H is added to H. In Lemma G.3.3 (slightly
improving on the similar lemma’s of [AB19; Ber20; BS15]) we show that if H is
initialized as the empty graph and only undergoes valid updates, then it there are
at most O(µ(G) · β2) many updates.

Fix some β = Θ(ε−2). Assume G is initially empty and initialize H to be an
empty edge set (note that by definition initially H is a β-WEDCS of G). Assume
edge e is inserted into G. If at this point e is not underfull with respect to H there
is nothing to be done as H remained a valid WEDCS of G. If e is underfull with
respect to H we add copies of it to H until it is not. This process of adding e to H
has increased the edge degree of edges neighbouring e in H and some of them might
have became overfull. To counteract this we iterate through the neighbours of e in
an arbitrary order and if we find an overfull edge e′ we remove it from H. This edge
removal decreases the edge degrees in the neighbourhood of e′. To counteract this
we recurse and look for underfull edges in the neighbourhood of e′. If such an edge
e′′ is found we add copies of it to H until e′′ is not underfull and repeat the same

5Note that we are sticking to the notation weighted-EDCS instead of multi-EDCS to be in line
with the naming convention of [BS15] which defined H to be a weighted graph with integer edge
weights.
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steps as if e′′ was just inserted into G. This defines a natural recursive process for
restoring the WEDCS properties after each edge insertion in a local and greedy way.

Whenever we have to explore the neighbourhood of an edge in O(∆) time (where
∆ is the max-degree) to either check for underfull or overfull edges we do so because
H underwent a valid update. By Lemma G.3.3 this may only happen at most
O(µ(G) · β2) times. Hence, naively the total work spent greedily fixing the WEDCS
properties is O(µ(G) ·∆ · β2). For some graphs this value might be significantly
larger then m. In order to improve the update time to Oβ(m) we assign a counter cv
to each vertex v measuring the number of valid updates of H the neighbourhood of
v has underwent. Once cv grows to Ω(β2 · ε−1) we mark v dirty and ignore further
edges inserted in the neighbourhood of v. By marking a single vertex dirty and
ignoring some edges incident on it we may loose out only on a single edge of any
maximum matching. However, whenever we mark a vertex dirty we can charge
Ω(β2 · ε−1) valid updates of H to that vertex. As there may be at most O(µ(G) ·β2)
valid updates of H in total we may only mark O(µ(G) ·ε) vertices dirty hence we will
only ignore an O(ϵ)-fraction of any maximum matching within the graph through
ignoring edges incident on dirty vertices. As we may scan the neighbourhood of
vertex v at most O(β2 · ε−1) = poly(ε−1) times until v is marked dirty we ensure
that each edge is explored poly(ε−1) times guaranteeing a total running time of
O(m · poly(ε−1)). Full details can be found in Section G.3.

Towards Full Dynamization. The algorithm almost seamlessly adopts to
vertex deletions if we allow for (1, ε · n)-approximation6. Whenever a vertex gets
deleted from the graph our WEDCS H might be locally affected. This means that
over the full run of the algorithm, H may undergo further valid updates then the
O(µ(G) ·β2) bound provided by Lemma G.3.3. A potential function based argument
allows us to claim that each vertex deletion may increase the total number valid
updates H may undergo by O(β2). As each vertex may be deleted at most once
this means that the total number of valid updates we might make to restore H is
O(n · β2), each update requiring O(∆) time if naively implemented. By marking
vertices as dirty as before we can guarantee amortized O(poly(1/ε)) update time.
However, now we must mark up to ≈ ε ·n vertices as dirty (as opposed to ≈ ε ·µ(G)
like before), which means we may miss out on ε · n edges of the maximum matching.

G.2 Preliminaries

Matching Notation. Let NE(v) stand for the edges neighbouring vertex v in
E. A fractional matching f of a graph G is an assignment of the edges of G to values
in the range [0, 1] such that for all vertices v ∈ V it holds that

∑
e∈NE(v) fe ≤ 1.

6Readers may reasonable argue that the additive slack is not necessary as a number of vertex-
sparsification techniques exist in literature allowing us to improve the approximation to purely
multiplicative slack in the dynamic setting. Unfortunately, these techniques don’t appear to be
robust against vertex-wise updates.
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The size of a fractional matching is simply the sum of the fractional values over its
edges. That is a maximum fractional matching is the solution to the linear program
max{

∑
e∈E fe :

∑
e∈NE(v) fe ≤ 1 for all v ∈ V , f ≥ 0}. A solution x to the dual of

this program min{
∑
v∈V xv : xu + xv ≥ 1 for all (u, v) ∈ E, x ≥ 0} is a fractional

vertex cover.
Approximation with respect to a fractional matching is defined simmilarly as

with respect to integral matchings. For a graph G = (V,E) we use µ(G) to denote
the size of the maximum matching in G. Likewise, we use µ∗(G) to denote the size
of the maximum fractional matching. It is well-known that µ(G) ≤ µ∗(G) ≤ 3

2µ(G)
for any graph, and that µ∗(G) = µ(G) in bipartite graphs.

Theorem G.2.1 (Hopcroft-Karp [HK73]). There exists a deterministic static
algorithm which finds a (1− ε)-approximate maximum matching of a graph G on m
edges in O(m/ε) time.

G.3 Incremental Approximate Matching

We start by showing our incremental fractional matching algorithm, and then show
how to extend it (for bipartite graphs) to also maintain an integral matching.

G.3.1 Weighted EDCS & Fractional Matchings
In this section we show our algorithm to (almost7) maintain a weighted EDCS H in
an incremental graph. It is well-known that such an H will be a (1− ε)-matching
sparsifier on bipartite graphs, that is a “sparse” subgraph with µ(H) ≥ (1− ε)µ(G)
[BS15].

As we show later in Section G.5.1 (Theorem G.5.1), we even known something
stronger: there is an explicit fractional matching in H of size at least (1− ε)µ∗(G),
defined as

f(u,v) = min
(

1
degH(v) ,

1
degH(u)

)
on each (u, v) ∈ H. (G.1)

Note that [BS16] similarly (implicitly) defines a large fractional matching on the
support of a weighted EDCS, however our construction and analysis are arguably
simpler. This fractional matching is also valid for general (non-bipartite) graphs.
Hence our incremental algorithm will also maintain this explicit (1− ε)-approximate
fractional matching (even in non-bipartite graphs). Formally we prove the following
theorem.

Theorem G.3.1. For any ε ∈ (0, 1), there is an algorithm (Algorithm G.1) that
maintains a (1− ε)-approximate maximum fractional matching in an incremental

7As we will see later in this section, our sparsifier H will be a weighted EDCS for G \R, where
R is a subgraph of G with very small maximum matching size µ(R) = O(εµ(G)).
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graph in total update time O(n/ε6 +m/ε5). Additionally, this fractional matching
is always supported on a set of edges H of size |H| ≤ Θ(µ(G)/ε2) and maximum
degree O(1/ε2).

First we need two standard facts about weighted EDCS. For completeness, we
prove these in Section G.7. Lemma G.3.3 has only been shown before for unweighted
EDCS [AB19; Ber20; BS15] and not weighted (but the arguments are very similar).

Lemma G.3.2. In a β-WEDCS H, the maximum degree is at most β and |H| ≤
βµ∗(G).

Lemma G.3.3. If a multiset of edges H is only ever changed by removing overfull
edges and adding underfull edges, then there are at most β2µ∗(G) such insertion-
s/deletions to H.

Overview. Our algorithm (see Algorithm G.1) will maintain a weighted EDCS
H with β = Θ(1/ε2). We also maintain the (1− ε)-approximate fractional matching
f as in Equation (G.1) and Theorem G.5.1.

When we get an edge-insertions (u, v), we need to reestablish the property
that H is an EDCS. If (u, v) is underfull (degH(u) + degH(v) < β − 1), we add
it (maybe multiple times) to H. This means that degH(u) (similarly degH(v))
increases, which can potentially make some incident edge (u,w) ∈ H overfull
(degH(u) + degH(w) > β), so we must remove one such edge. This might in turn
lead to some edge (w, z) ∈ E being underfull (as now degH(w) decreased), so we
add this edge to H. This process continues, so both from u and v we need to search
for alternating paths of underfull and overfull edges (as is standard in EDCS-based
algorithms). In total, Lemma G.3.3 says there are O(n/ε4) updates to H over the
full run of the algorithm.

We note that searching for an overfull edge is cheap: the maximum degree in
H is just O(β) (Lemma G.3.2), so we can afford to, in Θ(1/ε2) time, check all
incident edges. However, searching for underfull edges is more expensive: this time
we cannot afford to just go through all neighboring edges in E, as we no longer have
a bound on the maximum degree.

To overcome this we use an amortization trick which allows us to ignore a vertex
if we touched it too many times. There are only β2µ∗(G) updates to H in total
(Lemma G.3.3), so there will only be εµ∗(G) many vertices incident to more than
2β2/ε of these updates. Any edges incident to these “update-heavy” vertices we
may ignore, as this may only decrease the maximum matching size by an ε fraction.
We thus only need to check each edge a total of O(1/ε5) times over the run of the
algorithm, except when it is in H already. Note that H is no longer a weighted
EDCS of G = (V,E), but rather of G′ = (V, (E \ R) ∪H) where R is this set of
edges we ignored (with µ∗(R) ≤ εµ∗(G)).
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Algorithm G.1: Incremental Weighted EDCS & Frasctional Matching
// Initially E = H = ∅ and degH(v) = visits[v] = 0 for all v ∈ V .
// When an edge insertion e appears, add it to E and call

FixEdge(e).

1 function FixEdge(e = (u, v))
2 if degH(u) + degH(v) > β and (u, v) ∈ H then // overfull
3 Remove (one copy of) the edge (u, v) from H

4 if degH(u) + degH(v) < β − 1 then // underfull
5 Add (one copy of) the edge (u, v) to H
6 if the edge was added or removed then
7 Update degH(u),degH(v), and the fractional matching accordingly
8 FixVertex(u), FixVertex(v)

9 function FixVertex(v)
10 visits[v]← visits[v] + 1
11 if visits[v] < 2β2/ε then
12 for edge e ∈ E incident to v do
13 FixEdge(e)

14 else
15 for edge e ∈ H incident to v do
16 FixEdge(e)

Running Time. We analyse the total update time spent in different parts of
our algorithm.

• We first note that FixEdge runs in constant time whenever it does not update
H. It is called once for each edge-insertion (total O(m) times), and also some
number of times from FixVertex.

• Now consider the case when FixEdge does update H (which happens at most
β2µ∗(G) times per Lemma G.3.3). Now the algorithm uses O(β) time for the
update of the fractional matching and insertion/removal in H, in addition
to exactly two calls to FixVertex. Except for these calls to FixVertex,
over the run of the algorithm we hence spend a total of O(µ(G)β3) = O(n/ε6)
time.

• By the previous point, we will call FixVertex at most 2β2µ∗(G) times. In
each call, we either loop through all incident edges in H or E. If we loop
through H, we visit β many edges (by Lemma G.3.2). Either these FixEdge
calls take constant time, or they are already accounted for in the previous
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point. In total, this thus accounts for another O(µ(G)β3) = O(n/ε6) running
time.

• We account for the case when FixVertex loops through all incident edges in
E differently. Consider how often a specific edge e appears in the for-loop at
line 13. Each endpoint vertex of e will reach this line at most O(β2/ε) times.
Hence, in total for all edges, line 13 is run at most O(mβ2/ε) = O(m/ε5)
times.

Approximation Guarantee. We now argue the approximation ratio. We
will show that the fractional matching supported on H is a (1− 2ε)-approximation
of maximum fractional matching in G. If one want a (1− ε′)-approximation, then
one can run the algorithm in the same asymptotic update time setting ε = ε′/2,
and changing β accordingly.

Define RV to be the set of “dirty”/“update-heavy” vertices: that is vertices v
for which FixVertex(v) has been called at least 2β2/ε many times (i.e. visits[v] ≥
2β2/ε). By a counting argument |RV | ≤ 2β2µ∗(G)/(2β2/ε) = εµ∗(G), since by
Lemma G.3.3 in total there are only β2µ∗(G) many updates to H, each issuing
exactly two calls to FixVertex. If RE is the set of edges incident to RV , then
µ∗(RE) ≤ |RV | ≤ εµ∗(G) since RV is a vertex cover of RE .

Define G′ = (V,E \ (RE \H)). By the above, µ∗(G′) ≥ (1− ε)µ∗(G). We will
finish the proof by arguing that H is a weighted EDCS of G′, and thus that our
fractional matching is of value at least (1−ε)µ∗(G′) ≥ (1−ε)2µ∗(G) ≥ (1−2ε)µ∗(G).
Whenever an edge is added or removed to H, we call FixVertex on its endpoints,
and no other degrees degH have changes. Every time FixVertex(v) is called for
v ̸∈ RV , we make sure that all edges e ∈ E incident to it satisfy the definition of
an EDCS, and when FixVertex(v) is called for some v ∈ Rv, we check the edges
incident to H. We note that when a vertex becomes “update-heavy” (added to Rv),
then we do not immediately remove all incident edges from H (as then we no longer
have the same bound on the number of updates to H since Lemma G.3.3 no longer
applies).
Remark G.3.4. We note that our algorithm runs in time O(nβ3 +mβ2/ε), and a
valid question is whether setting β = Θ(1/ε2) is actually necessary? Recently it
was shown that for unweighted EDCS β = Θ(1/ε) is enough [Beh21]. However, for
weighted EDCS the ε2 dependency is indeed necessary, as we show by an example
where this is asymptotically tight in Section G.5.2 (Theorem G.5.4).

G.3.2 Integral Matchings in Bipartite Graphs
In this section we argue how to extend our fractional matching algorithm (Theo-
rem G.3.1) to maintain an integral matching instead (for bipartite graphs), in the
same asymptotic update time. We cannot use known dynamic rounding techniques
[BKS23a; Waj20], since all these incur polylog(n) factors or require randomization,
and we are aiming for update time independent of n. In fact, our technique is simple
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and combinatorial; and only relies on the standard Hopcroft-Karp algorithm for
finding a (1− ε)-approximate matching in the static setting [HK73].

Theorem G.1.3. There exists a deterministic dynamic algorithm which for arbitrary
small constant ε > 0 maintains a (1 − ε)-approximate maximum matching of a
bipartite graph undergoing edge insertions in total update time O(n/ε6 +m/ε5).

Remark G.3.5. Before proving the above theorem, we briefly explain how to achieve
a slightly less efficient version (amortized O(1/ε8) update time) by using the fully
dynamic (1− ε)-approximate matching algorithm of Gupta-Peng [GP13] as a black
box. The idea is to run the fully dynamic algorithm on our sparsifier—the weighted
EDCS H. This way we maintain a matching M of size |M | ≥ (1 − ε)µ(H) ≥
(1− ε)2µ(G) ≥ (1− 2ε)µ(G).

Gupta-Peng [GP13] state that their algorithm runs in O(
√
m/ε2) time per

update. However, as previously pointed out by e.g. [BS15, Lemma 1], it is in
fact more efficient when the max-degree ∆ is low, in which case the update time
is only O(∆/ε2). Since H always has max-degree β = Θ(1/ε2), we can maintain
the integral matching M in O(1/ε4) time per update to H. Over the run of the
algorithm, we only perform O(µ(G)/ε4) updates to H (see Lemma G.3.3), hence
the total additional update time spent maintaining the integral matching will be
O(n/ε8).

Proof of Theorem G.1.3. To prove Theorem G.1.3, we need a slightly more refined
analysis than the one above. We still run our incremental algorithm (Algorithm G.1
and Theorem G.3.1) to maintain a weighted EDCS H together with a fractional
matching supported on H. Similarly to above, we additionally maintain an (1− ε)-
approximate (integral) matching M of H.

The main idea of the fully dynamic algorithm of Gupta-Peng [GP13] is to lazily
recompute (in O(|H|/ε) time via Hoproft-Karp Theorem G.2.1) M every ≈ εµ
updates to H (indeed, during this few updates, the matching size cannot change its
value by more than εµ). There are two observations which helps us to do better:

(i) The graph G (but not the sparsifier H) is incremental, so µ(G) can only grow.

(ii) We know a good estimate of µ(G), namely the size of our fractional matching.
Denote by µ̃ the value of the maintained fractional matching, so that (1 −
ε)µ(G) ≤ µ̃ ≤ µ(G).

The above two observations mean that we only need to recompute the matching M
whenever µ(G) actually have increased significantly (namely by a (1 + Θ(ε))-factor),
and not just every εµ updates.

Formally, whenever |M | ≥ (1 − ε)2µ̃ we know that M is still a (1 − 3ε)-
approximation since then |M | ≥ (1−ε)2µ̃ ≥ (1−ε)3µ(G) ≥ (1−3ε)µ(G). Conversely,
whenever |M | < (1− ε)2µ̃, we recompute M in time O(|H|/ε) (Theorem G.2.1) so
that it is a (1− ε)-approximation of the maximum matching in H (and thus also a
(1− 2ε)-approximation of the maximum matching in G).
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Let us now bound the total time spent recomputing M . Let M1,M2, . . . ,Mt be
the different approximate matchings we compute during the run of the algorithm.
We first note that at the time when we compute Mi+1:

|Mi| ≤ (1− ε)2µ̃ ≤ (1− ε) ((1− ε)µ(H)) ≤ (1− ε)|Mi+1| (G.2)

This in turn means that |Mi| ≤ (1 − ε)t−i n (since |Mt| ≤ n), and hence that∑t
i=1 |Mi| ≤ n

∑∞
i=0(1− ε)i ≤ n/ε, by a geometric sum.

Finally we note that we spend O(|Mi|/ε3) time in order to compute Mi. Indeed,
when we compute Mi, we did so in O(|H|/ε) time, and |H| = O(µ(G)/ε2) by
Lemma G.3.2. This means that in total, over the run of the algorithm, we spend
O(
∑
|Mi|/ε3) = O(n/ε4) time maintaining the integral matchings Mi. This is in

addition to the time spent maintaining the weighted EDCS H and the fractional
matching (see Theorem G.3.1). This concludes the proof of Theorem G.1.3.

G.4 Vertex Deletions

In this section we will observe that our algorithm can also handle vertex deletions
(simultaneously to handling edge insertions) in similar total update time. However,
this comes with one caveat: we instead get additive approximation error proportional
to εn (that is we maintain a matching of size µ∗(G)− εn, instead of µ∗(G)− εµ∗(G)
as before).

Theorem G.4.1. For any ε ∈ (0, 1), there is an algorithm that maintains a
fractional matching of size at least µ∗(G) − εn in an graph G undergoing edge
insertions and vertex deletions. The total update time is O(n/ε6 +m/ε5).

Proof. The algorithm (Algorithm G.1) remains the same as in Section G.3.1. When
a vertex is deleted, we simply remove all it’s incident edges from E and H, and call
FixVertex on all neighboring vertices (in H) who now changed their degree. The
only thing which changes in the analysis is the β2µ∗(G)-bound on the number of
updates to H (Lemma G.3.3), which no longer applies. However, we can still get a
weaker version of Lemma G.3.3 with a β2n total update bound instead:

Lemma G.4.2. If a multiset of edges H is only ever changed by (i) removing
overfull edges, (ii) adding underfull edges, and (iii) removing all edges incident
to a vertex when no edges are underfull or overfull, then there are at most 3β2n
insertions/deletions to H.

Given Lemma G.4.2 (which we prove in Section G.7), we see that the running time
analysis of Algorithm G.1 can remain exactly the same! In the approximation guaran-
tee analysis, we now have more “update-heavy” vertices |RV | ≤ 6β2n/(2β2/ε) = 3εn,
which is why we now can lose up to O(nε) edges from the matching. Otherwise, the
approximation guarantee analysis remains the same, and so does the rest of the
analysis of the algorithm.
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Rounding in Bipartite Graphs. Similar as in Section G.3.2, we can round
the fractional matching to an integral one in bipartite graphs, also while supporting
edge-insertions and vertex-deletions simultaneously.

Theorem G.1.4. There exists a deterministic dynamic algorithm which for arbitrary
small constant ε > 0 maintains a (1, ϵ · n)-approximate maximum matching of a
bipartite graph undergoing edge insertions and vertex deletions in total update time
of O(n/ε8 +m/ε5).

Proof. Unlike in Section G.3.2, we cannot argue that µ(G) is increasing when we
have vertex deletions. So instead we resort to the Gupta-Peng [GP13] framework
discussed in Remark G.3.5 (together with Lemma G.4.2), which has the additional
cost of O(n/ε8) total update time to maintain an approximate integral matching on
our sparsifier H.

Remark G.4.3. We note that normal vertex-sparsification techniques (such as the
one shown in [Kis22] against oblivious adversaries) do not apply here in order to
assume n = Θ̃(µ(G)) so that the additive error becomes multiplicative again. This
is because vertex deletions in the original graph might become edge deletions in
the vertex-sparsified graph. We also note that one can achieve similar guarantees
of supporting vertex deletions with additive εn slack using any edge-incremental
algorithm (also for non-bipartite graphs) as a black-box: see Section G.6 for a
discussion on how this can be done. The general approach in Section G.6 will give
worse dependency on 1/ε (for dense graphs), compared to Theorems G.1.4 and G.4.1
above.

G.5 Tight Bounds of the of Approximation Ratio of a
Weighted EDCS

G.5.1 Explicit Fractional Matching

In this section, we give explicit formulas only based on the degrees in H, for a
(1− ε)-approximate fractional matching. We prove this by also providing an explicit
approximate fractional vertex cover, and showing that these satisfy approximate
complimentary slackness. This also significantly simplifies the previous proof [BS15]
that H is (1− ε)-matching sparsifier in bipartite graphs.

Theorem G.5.1. Suppose H is a weighted EDCS of a graph G, with parameter
β ≥ 25/ε2. Let f(u,v) = min{ 1

degH (v) ,
1

degH (u)} for each8 (u, v) ∈ H. Then f is a
(1− ϵ)-approximate fractional matching of G.

8We note that edges e appearing multiple time in H all contribute towards fe: if e appears ϕe

times in H, the value of fe is naturally scaled by ϕe.
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Define rv := degH(v) − β−1
2 for a vertex v ∈ H. We define the fractional

matching f as in the statement of the theorem, together with the fractional vertex
cover x:

f(u,v) = min
(

1
degH (u) ,

1
degH (v)

)
for edge (u, v) ∈ H (G.3)

xv =
{

min(1, 1
2 + r2

v

β ) if rv ≥ 0
max(0, 1

2 −
r2

v

β ) if rv < 0
(G.4)

It is now relatively straightforward (albeit a bit calculation-heavy) to argue that f
and x are indeed feasible solutions and that they satisfy approximate complimentary
slackness.

Claim G.5.2. Our f is a fractional matching and our x is a fractional vertex cover
of G.

Proof. Our f is feasible since no vertex v is overloaded by the matching: at most
degH(v) many incident edges to v contribute at most 1/degH(v) each.

To argue that x is feasible, consider some edge (u, v) ∈ E. Without loss
of generality we may assume that degH(v) ≥ degH(u) and degH(v) ≥ β−1

2 , i.e.
rv ≥ ru and rv ≥ 0 (since degH(u) + degH(v) ≥ β − 1 as H is a weighted EDCS).
If r2

v ≥ β/2, xv = 1 so (u, v) is covered. In the case r2
v < β/2, we instead have

xv = 1
2 + r2

v

β . It is always the case that xu ≥ 1
2 −

r2
u

β . Additionally we note that
ru + rv ≥ 0 (so r2

u ≤ r2
v) since degH(u) + degH(v) ≥ β − 1, so we conclude that

xu + xv ≥ 1, and hence that (u, v) is covered.

Claim G.5.3. The fractional matching f and fractional vertex cover x satisfy
(1− 3√

β
, 1 + 2√

β
+ 2

β )-approximate complementary slackness9; in particular:

(i) Whenever f(u,v) > 0, then xu + xv ≤ 1 + 2√
β

+ 1
β .

(ii) Whenever xv > 0, then
∑
u:(u,v)∈H f(u,v) ≥ 1− 4√

β
.

Proof. We verify (i) and (ii).

(i) Suppose f(u,v) > 0, then (u, v) ∈ H, so degH(u) + degH(v) ∈ {β − 1, β}. This
means that 0 ≤ rv + ru ≤ 1. If both rv and ru are non-negative, we have that
xu + xv ≤ 2( 1

2 + 12

β ) ≤ 1 + 2
β . Now, without loss of generality ru < 0 ≤ rv. In

case r2
u ≥ β/2, we know xu = 0 so xu + xv ≤ 1. In the case when r2

u < β/2,

9For completeness, we define the approximate complimentary slackness conditions in Section G.7
and prove them in Lemma G.7.1.
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we know xu = 1
2 + r2

u

β and xv ≤ 1
2 + r2

v

β . Since ru + rv ≤ 1, we known that
rv ≤ |ru|+ 1. Concluding:

xv +xu ≤ 1 + (|ru|+ 1)2 − r2
u

β
= 1 + 2|ru|+ 1

β
< 1 + 2

√
β + 1
β

= 1 + 2√
β

+ 1
β
.

(ii) Suppose xv > 0. Hence rv > −
√
β/2 (else xv = 0), that is degH(v) > β−1

2 −√
β/2. For any incident edge (u, v) ∈ H, we must have degH(v)+degH(u) ≤ β,

so degH(u) ≤ β−1
2 + (1 +

√
β/2). Now, we see that we assign weight at least

1/(β−1
2 + (1 +

√
β/2)) to the edge (u, v) in f . Since this holds for all the

degH(v) > β−1
2 −

√
β/2 incident edges we know that v will in total receive,

from the fractional matching f , at least:∑
u:(u,v)∈H

f(u,v) ≥
β−1

2 −
√
β/2

β−1
2 + 1 +

√
β/2

= 1−
√

8β + 2
β +
√

2β + 1
≥ 1− 3√

β
.

Proof of Theorem G.5.1. By the above claims and approximate complimentary
slackness (see Lemma G.7.1 in Section G.7) we know that (1− 3√

β
)|x| ≤ (1 + 2√

β
+

2
β )|f |. Since (1− 3√

β
)/(1 + 2√

β
+ 2

β ) > 1− 5√
β

, we get that |f | ≥ (1− 5√
β

)|x| ≥
(1− ε)|x| ≥ (1− ε)µ∗(G) whenever β ≥ 25/ε2.

G.5.2 Lower Bound
In this section we show that Theorem G.5.1 is tight up to a constant, i.e. that
one must set β = Θ(1/ε2) in order to guarantee that a weighted EDCS preserves
a (1 − ε)-fraction of the matching. This might be a bit surprising, considering
that for the unweighted EDCS, it is known that β = Θ(1/ε) suffices (to preserve a
( 2

3 − ε)-approximation to the matching [Beh21]).

Theorem G.5.4. For any β ≥ 2, there exists a (bipartite) graph G together with a
weighted EDCS H for which µ(H) = (1−Θ(1/

√
β))µ(G).

We show our construction in Figure G.1, and also describe it here formally in
words. For simplicity, we will assume that β = 2γ2 for some integer γ (but it is not
difficult to adapt the proof for when β is not twice a square). In our construction,
each edge appears at most once in H, and all edges e ∈ H have degH(e) = β; all
edges e ∈ E \H have degH(e) = β − 1.

Define the gadget Gi = (Si, Li, Ei) to be a complete bipartite graph in which
|Si| = γ2 + i and |Li| = γ2− i (S is for vertices with small degree, and L for vertices
with large degree). The subgraph H will consist of many of these gadgets Gi, so we
start by noting a few properties about them. Firstly, vertices in Li have degree β

2 + i

while those in Si have degree β
2 − i. This means that any edge in (u, v) ∈ Ei has

degree exactly degGi
(u) + degGi

(v) = β. We also note that the maximum matching
inside Gi is of size |Li| = γ2 − i.
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L0 L
(1)
1S

(1)
1 L

(1)
2S

(1)
2 L

(1)
γ−1S

(1)
γ−1

L
(1,1)
γS

(1,1)
γ

L
(1,2)
γS

(1,2)
γ

L
(1,γ)
γS

(1,γ)
γ

S0 L
(2)
1S

(2)
1 L

(2)
2S

(2)
2 L

(2)
γ−1S

(2)
γ−1

L
(2,1)
γS

(2,1)
γ

L
(2,2)
γS

(2,2)
γ

L
(2,γ)
γS

(2,γ)
γ

Figure G.1: The lower bound construction. The blue edges are part of H, while
the yellow are not. We have γ =

√
β/2, and each set Si, Li indicates an independent

set of vertices of size |Si| = γ2 + i and |Li| = γ2 − i (so in H they have degrees β
2 − i

and β
2 + i respectively). The maximum matching in H matches all vertices in Li to

the corresponding Si. The maximum matching in G however, matches Li to Si+1
(and S0 to S(2)

1 ), in addition to Lγ which can also be matched to Sγ .

Subgraph H. We begin by describing how the weighted EDCS H looks like,
and later we will define what additional edges are also in the full graph G. The
subgraph H will exactly consist of:

• One copy of G0.

• Two copies each of G1, G2, . . . , Gγ−1. Call the copies G(1)
i and G

(2)
i .

• 2γ copies of Gγ . Call the copies G(1,j)
γ and G

(2,j)
γ for j = 1, 2, . . . , γ.

Claim G.5.5. µ(H) = 4γ3 − 4γ2 + γ.

Proof. Since the maximum matching size in Gi is |Li| = γ2 − i we get:

µ(H) = |L0|+ 2γ|Lγ |+ 2(|L1|+ |L2|+ · · ·+ |Lγ−1|)

= γ2 + 2γ(γ2 − γ) + 2
γ−1∑
i=1

(γ2 − i)

= 4γ3 − 4γ2 + γ

Full graph G. Now we describe the additional edges which are part of G but
not already in H (see also Figure G.1):

• For k ∈ {1, 2}, we connect G(k)
1 , G

(k)
2 , . . . , G

(k)
γ−1 in a chain as follows: every

pair (u, v) with u ∈ L(k)
i and v ∈ S(k)

i+1 is an edge (so that the induced subgraph
on these two sets of vertices forms a complete bipartite graph).
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• At the end of these two chains, we connect all the gadgets G(k,j)
γ as follows:

every pair (u, v) with u ∈ L(k)
γ−1 and v ∈ S(k,j)

γ for some j, is an edge.

• Finally we connect these two chains using G0 = (S0, L0, E0) as follows: every
pair (u, v) with u ∈ L0 and v ∈ S(1)

1 is an edge; and every pair (u, v) with
u ∈ S0 and v ∈ S(2)

1 is an edge.

We note that G is bipartite and all above edges have degree exactly degH(u) +
degH(v) = β − 1, so indeed H is a weighted EDCS of G.

Claim G.5.6. µ(G) ≥ 4γ3 − 3γ2 + γ.

Proof. We argue that a matching of this size exists in G. In fact the only edges of
H we will use as part of this matching are those in the gadgets G(k,j)

γ .

• We pick a matching between L
(k)
i and S

(k)
i+1 of size |L(k)

i | = γ − i for all
k ∈ {1, 2} and i = 1, 2, . . . , γ − 2.

• In G
(k,j)
γ we pick a matching of size |L(k,j)

γ | = γ2 − γ. Note that exactly 2γ
vertices in S

(k,j)
γ are left unmatched.

• Denote by U (k) the set of unmatched vertices in S
(k,1)
γ , S

(k,2)
γ , . . . , S

(k,γ)
γ , for

k ∈ {1, 2}. Note that |U (k)| = 2γ2 and that (L(k)
γ−1, U

(k)) forms a complete
bipartite graph, so we pick a matching of size |L(k)

γ−1| = γ2 − γ + 1 from there.

• Finally we pick matchings between L0 and S
(1)
1 (respectively S0 and S

(2)
1 ) of

size |L0| = γ (respectively |S0| = γ).

In total we see that the above matching is exactly |S0| = γ larger than in Claim G.5.5,
which concludes the proof of the claim.

Approximation ratio. To conclude the proof of Theorem G.5.4, we see that
µ(G) − µ(H) = γ2 ≥ 1

4γµ(G) whenever γ ≥ 1. Hence H preserves at most a
(1− 1

4γ ) = (1− 1
2
√

2β
) fraction of the maximum matching of G.

G.6 Black-Box Vertex Deletions

Here we briefly explain how one can convert any incremental (1− ε)-approximate
maximum matching algorithm to also support vertex deletions, if allowing additive
εn approximation instead, in a black-box fashion. The reduction is simple and also
works in general (non-bipartite) graphs. Hence, as an immediate application, we
can get a (1, εn)-approximate matching algorithm for general graphs undergoing
both edge-insertions and vertex-deletions, with amortized 1/εO(1/ε) update time, if
using the incremental algorithm of [GLSSS19].
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Lemma G.6.1. Suppose A is an algorithm which maintains a (1−ε/2)-approximate
maximum matching for a graph undergoing edge insertions, running in total time T .
Then there exists an algorithm which maintains a (1, εn)-approximate matching, in
total time O(T/ε), on a graph undergoing both edge insertions and vertex deletions.

Proof. We run A, and whenever we get a vertex deletion we ignore it and keep
the vertex in the graph. In the outputted matching from the algorithm we remove
any edges incident to deleted vertices. When εn/2 vertices have been deleted,
we actually delete them from the graph and rerun the algorithm from scratch
(starting on the empty graph). This will only happen 2

ε times, which is the running
time blow-up. At each point, the algorithm maintains a matching of size at least
µ− (εn/2 + εn/2) = µ− εn, since only one edge can be removed per deleted vertex
still remaining in the graph.

G.7 Omitted Proofs

EDCS properties

Lemma G.3.2. In a β-WEDCS H, the maximum degree is at most β and |H| ≤
βµ∗(G).

Proof. If a vertex u has degH(u) > β, then any incident edge (u, v) ∈ H is overfull:
degH(u) + degH(v) > β, leading to a contradiction. Hence the maximum degree is
at most β. Now we construct a fractional matching by assigning a weight of 1/β to
every edge in H (so an edge appearing with multiplicity ϕ in H gets weight ϕ/β).
Clearly this is a feasible fractional matching of G, since no vertex is overloaded.
On the other hand, the size of this fractional matching is |H|/β, implying that
|H| ≤ βµ∗(G).

Lemma G.3.3. If a multiset of edges H is only ever changed by removing overfull
edges and adding underfull edges, then there are at most β2µ∗(G) such insertion-
s/deletions to H.

Proof. We use a potential function argument. Define

Φ(H) := |H|(2β − 1)−
∑

(u,v)∈H

(degH(v) + degH(u))

=
∑

(u,v)∈H

(2β − 1− degH(u)− degH(v))

We note that if an edge (u, v) appears multiple times in H, it appears multiple times
in the above sum as well. We first note that Φ(∅) = 0 and Φ(H) ≤ β|H| ≤ β2µ∗(G),
by Lemma G.3.2 and since (2β − 1− degH(u)− degH(v)) ≤ β when H is a valid
EDCS. Now we verify that updates to H increase the potential by at least 1:
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• Insertion of an underfull edge (u, v) ∈ E.
That is degH(u)+degH(v) ≤ β−2 before adding the edge. The term |H|(2β−1)
will increase by 2β − 1.

∑
(u,v)∈H(degH(v) + degH(u)) will increase by at

most 2β − 2, since one term of value degH(v) + degH(v) ≤ β − 2 + 2 (the +2
comes from degH(v) and degH(u) increasing by one when we add (u, v) to H)
is added, and at most β − 2 other terms decrease in value by one.

• Deletion of an overfull edge (u, v) ∈ H.
That is degH(u) + degH(v) ≥ β + 1 before removing the edge. The term
|H|(2β − 1) will decrease by 2β − 1.

∑
(u,v)∈H(degH(v) + degH(u)) will

decrease by at least 2β, since one term of value degH(v) + degH(v) ≥ β+ 1−2
(the −2 comes from degH(v) and degH(u) decreasing when we remove (u, v))
is erased, and at least β + 1 other terms increase in value by one.

Lemma G.4.2. If a multiset of edges H is only ever changed by (i) removing
overfull edges, (ii) adding underfull edges, and (iii) removing all edges incident
to a vertex when no edges are underfull or overfull, then there are at most 3β2n
insertions/deletions to H.

Proof. We continue the potential function argument from the proof of Lemma G.3.3
above. When we delete, from H, all edges incident to some vertex u, we know
that we deleted at most β many edges from H (as the degree of this vertex was at
most β). For each such incident edge (u, v), we bound how much its deletion could
have decreased the potential function. The |H|(2β − 1) term decreased by exactly
2β − 1, and the −

∑
(u,v)∈H(degH(u) + degH(v)) term can only increase. So the

total decrease in potential, over all up to β incident edges which were deleted, is at
most 2β2 − β.

Since we can only delete up to n vertices in total, and the potential is always
bounded by β2µ∗(G) ≤ β2n, it follows that the total increase in the potential
function, over the run of the algorithm, is at most 3β2n− nβ (and thus this many
updates to H from insertions/deletions of underfull/overfull edges). In total we
deleted at most nβ edges in H incident to deleted vertices, so the total number of
updates to H is thus bounded by 3β2n− βn+ βn = 3β2n.

Approximate Complimentary Slackness

Lemma G.7.1. Suppose we have the primal linear program max{cTx : Ax ≤ b, x ≥
0}, and its dual min{bT y : AT y ≥ c, y ≥ 0}. We say that feasible primal solution
x and dual solution y satisfy (α, γ)-approximate complementary slackness (for
α ≤ 1 ≤ γ) if: (i) if xi = 0 then (AT )iy ≤ γci, and (ii) if yj = 0 then (A)jx ≥ αbj.
When this is the case, then αbT y ≤ γcTx (i.e. x and y are γ

α -approximate optimal).

Proof. We see that γcTx−αbT y = xT (γc−AT y) + yT (Ax−αb). Now either xi = 0
or (γc−AT y)i ≥ 0; and either yj = 0 or (Ax−αb)j ≥ 0. Hence γcTx−αbT y ≥ 0.
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Abstract

We provide a simple online ∆(1+o(1))-edge-coloring algorithm for bipartite
graphs of maximum degree ∆ = ω(logn) under adversarial vertex arrivals on
one side of the graph. Our algorithm slightly improves the result of (Cohen,
Peng and Wajc, FOCS19), which was the first, and currently only, to obtain
an asymptotically optimal ∆(1 + o(1)) guarantee for an adversarial arrival
model. More importantly, our algorithm provides a new, simpler approach for
tackling online edge coloring.
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H.1 Introduction

Edge coloring is a classic problem in graph theory and algorithm design: Given a
graph, assign colors to the edges, with no two adjacent edges sharing a color. Pioneer-
ing work by König [Kön16] and later Vizing [Viz64] showed that ∆ and ∆ + 1 colors
suffice for bipartite and general graphs of maximum degree ∆, respectively. (At least
∆ colors are clearly needed.) Algorithms attaining or approximating these bounds
were designed in numerous models of computation, including distributed [PS97;
Chr23], parallel [KS87], dynamic [DHZ19; Chr23], and streaming algorithms [CL21;
ASZ22; CMZ23; GS23; BS23]. The latter includes several simple (asymptotically
optimal) ∆(1 + o(1))-edge-coloring streaming algorithms for random-order streams
[CL21; ASZ22].

In contrast, online edge-coloring algorithms (especially for adversarial order) and
their analyses are somewhat more involved [AMSZ03; BMM12; CPW19; BGW21;
SW21; KLSST22; NSW23]. The only truly simple online edge coloring algorithm
known is the trivial 2-approximate greedy algorithm, which is optimal only for the
low-degree regime ∆ = O(logn) [BMN92]. More involved algorithms were developed
for the high-degree setting. For example, all known algorithms for (α + o(1))-
approximate adversarial-order online edge coloring with α < 2 for ∆ = ω(logn)
[CPW19; SW21; KLSST22; NSW23] rely on interleaved invocations of online
matching subroutines that compute a matching that matches each edge e with
probability at least 1/(α∆).1 The outer loop using such online matching algorithms,
introduced by [CPW19], is not particularly complicated, and can be described and
analyzed in about one page (see e.g., [SW21, Section 6]). However, the matching
algorithms used within this framework and their analyses are quite non-trivial
[CW18; CPW19; SW21; KLSST22; NSW23].

We break from the above template, avoiding this outer loop and subsequent com-
plicated online matching subroutines. Instead, we obtain our results by a sequence of
offline bipartite matching computations (more precisely, random sampling of match-
ings). This yields a simple asymptotically-optimal online edge coloring algorithm
for the first (and so far only) adversarial arrival model for which positive results
are known: one-sided vertex arrivals in bipartite graphs [CPW19]. Specifically, we
prove the following.

Theorem H.1.1 (See Theorem H.2.4). There exists an online edge-coloring algo-
rithm for the one-sided vertex arrival model with the following guarantee. On any
n-node, maximum degree ∆ bipartite graph, it computes a (∆ + q)-edge-coloring
with high probability,2 where q = O(∆2/3 log1/3 n).

The above theorem only gives non-trivial guarantees if ∆ ≥ q (i.e., when
∆ = Ω(logn) is sufficiently large). Indeed, when ∆ < q, greedy already provides an
edge coloring with 2∆− 1 ≤ ∆ + q colors.

1Such matchings can be obtained by sampling a color in an α∆ coloring, so these problems are
basically equivalent.

2By with high probability, we mean probability of at least 1 − n−c for some constant c > 0.
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Our simple online ∆(1 +o(1))-edge-coloring algorithm improves on the o(1) term
of the algorithm of [CPW19], which uses ∆+O(∆3/4 log1/4 n) colors if ∆ = ω(logn).
Moreover, our simpler algorithm nearly matches a lower bound of ∆ + Ω(

√
∆) colors

established in that prior paper. We leave the question of whether an algorithm
(simple or otherwise) matching this lower bound’s o(1) terms exists as an open
problem.

H.2 Simple yet optimal online bipartite edge coloring

Problem statement. A bipartite graph of maximum degree ∆ = ω(logn) is
revealed.3 Initially, only n,∆ and the nodes on the offline side are known. At time
t, the node wt on the online side is revealed, together with its edges, which must be
assigned colors immediately and irrevocably. The objective is to compute a valid
edge coloring using as few colors as possible.

Our algorithm. We attempt to provide a valid (∆+q)-edge-coloring, for q = o(∆)
to be chosen later. In particular, we will color edges of each offline node u with
distinct colors, chosen uniformly at random from C := [∆ + q]. To also color edges of
each online node wt with distinct colors, we correlate the random choices at different
offline nodes as follows.

At each time t we consider a bipartite graph Ht with one side given by the
set of neighbors NG(wt) of the arriving online node wt in G, and the other side
being the set of colors C. The neighbor v ∈ NG(wt) and color c ∈ C are connected
by an edge cv ∈ Ht if and only if v has no edge colored c.4 To color the edges
incident to the arriving node wt in a valid manner, these edges must be given distinct
colors and the color chosen for the edge {u,wt} must not already be used at the
offline node u. These requirements correspond exactly to matchings in Ht. We
thus attempt to sample a matching Mt in Ht where each edge {u,wt} is assigned a
uniformly random available color of neighbor u. This can be achieved by a number of
randomized rounding algorithms for the bipartite matching polytope, provided the
desired marginal matching probabilities lie in this polytope. Fittingly, the crux of
our analysis is show that the latter holds w.h.p. for q = o(∆) sufficiently large. For
simplicity of analysis, we allow for a low-probability “failure mode” if this condition
fails, in which case we still insist on coloring offline nodes with colors uniformly at
random, but without necessarily providing a valid edge coloring. Our pseudocode is
given in Algorithm H.1.

Observation H.2.1. By definition, we always have
∑
c x

t
cv = 1 for a vertex

v ∈ NG(wt). And so, if
∑
v x

t
cv ≤ 1 for all colors c ∈ C, then the vector x⃗t is in the

bipartite matching polytope (of Ht), and a matching Mt as above can be sampled
3As noted above, if ∆ is smaller, the problem is solved optimally by the greedy algorithm.
4We use the notation cv ∈ Ht instead of the more standard but notationally cumbersome

{c, v} ∈ E(Ht).
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Algorithm H.1: Simple Edge Coloring
1 foreach arrival of online node wt do
2 Let Ht be a bipartite graph with node sets NG(wt) and C, with cv ∈ Ht

iff v has no edge colored c (yet).
3 foreach c ∈ C and v ∈ V do
4 Let xtcv ←

1[cv∈Ht]
∆−dt(v)+q , for dt(v) the degree of v by time t.

5 if
∑
v x

t
cv ≤ 1 for each color c ∈ C then

6 Sample matching Mt in Ht with marginals Pr[cv ∈Mt] = xtcv, and
color each edge {v, wt} using the color c that is matched to v in Mt.

7 else /* FAILURE MODE */
8 Color each edge {v, wt} with u.a.r. color c ∈ NHt(v).

efficiently (and simply, [GKPS06]). In this case, all edges {v, wt} incident to wt
get colored at time t (since

∑
c x

t
cv = 1) and they all receive distinct colors from

their endpoints’ prior and other current edges (due to the definition of Ht and∑
v x

t
cv ≤ 1).

Analysis overview. We wish to show that the condition
∑
v x

t
cv ≤ 1 for all times

t and colors c, necessary to avoid the failure mode and output a valid edge coloring,
occurs with high probability. For this, we prove two invariants in Lemma H.2.2: we
prove (H.1) a closed form for E[xtcv], implying E[

∑
v x

t
cv] ≤ 1− Ω(q/∆). If for all t

and c these xtcv were independent, standard Chernoff bounds would suffice to show
that w.h.p.,

∑
v x

t
cv does not deviate much from its expectation, and in particular

is at most one. As these variables may be dependent, we also prove (H.2) negative
correlation of the random variables xtcv, allowing us to apply Chernoff-like bounds
to these dependent variables and prove that the desired condition holds w.h.p., in
Lemma H.2.3.

Lemma H.2.2. Let Ztcv be the indicator variable for color c not being used by
edges of v when wt arrives. At any time t, the following invariants hold:

• (Marginals) For any color c ∈ C and offline node v, we have:

Pr[Ztcv = 1] = ∆− dt(v) + q

∆ + q
. (H.1)

• (Negative dependence) For any color c ∈ C and offline nodes v1, . . . , vk, we
have:

Pr

 ∧
i∈[k]

(Ztcvi
= 1)

 ≤ ∏
i∈[k]

Pr[Ztcvi
= 1]. (H.2)
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Proof. We prove both invariants by induction on t ≥ 1. The base case t = 1 trivially
holds for both. To prove both inductive steps, we first note that 1[cv ∈ Ht] =
Ztcv · 1[v ∈ NG(wt)]. So, the value of the random variable xtcv conditioned on any
history up to time t implying Ztcv = 1 is precisely xtcv := 1[v∈NG(wt)]

∆−dt(v)+q . In particular,
conditioning on any such history, the color c is used for edge {v, wt} with probability
precisely xtcv (also in the failure mode, and also if v ̸∈ NG(wt)).

The first invariant’s inductive step then follows from the above observation and
the inductive hypothesis,by a routine calculation, as follows:

Pr[Zt+1
cv = 1] = (1− xtcv) · Pr[Ztcv = 1] (H.3)

=
(

1− 1[v ∈ NG(wt)]
∆− dt(v) + q

)
· ∆− dt(v) + q

∆ + q

= ∆− dt+1(v) + q

∆ + q
.

For the second invariant’s inductive step, we claim that for any history H up
to time t that implies

∧
i∈[k](Ztcvi

= 1), we have that Pr
[∧

i∈[k](Zt+1
cvi

= 1)
∣∣∣ H] ≤∏

i∈[k](1− xtcv). This inequality is clearly an equality for the failure mode, where
colors are assigned independently; otherwise, the LHS equals 1−

∑
i∈[k] x

t
cvi

, which
is upper bounded by the RHS, where this standard inequality follows from the union
bound. Therefore, by total probability over histories H as above and the inductive
hypothesis and Equation (H.3), we obtain the claimed statement:

Pr

 ∧
i∈[k]

(Zt+1
cvi

= 1)

 = Pr

 ∧
i∈[k]

(Zt+1
cvi

= 1)

∣∣∣∣∣∣
∧
i∈[k]

(Ztcvi
= 1)

 · Pr

 ∧
i∈[k]

(Ztcvi
= 1)


≤
∏
i∈[k]

(1− xtcv) ·
∏
i∈[k]

Pr[Ztcvi
= 1]

=
∏
i∈[k]

Pr[Zt+1
cvi

= 1].

Using these invariants, we now show that Algorithm H.1 is unlikely to enter the
failure mode.

Lemma H.2.3. If q = 3∆2/3 log1/3 n ≤ ∆, then with high probability, for each time
t and color c ∈ C ∑

v

xtcv ≤ 1.

Proof. Fix a time t and color c. Notice that 1[cv ∈ Ht] = Ztcv · 1[v ∈ NG(wt)], and
hence xtcv = Zt

cv

∆−dt(v)+q for all v ∈ NG(wt) (and xtcv = 0 for all v /∈ NG(wt)). For
all v ∈ NG(wt), define the random variables Yv := q · xtcv = q

∆−dt(v)+q · Z
t
cv. It
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suffices to prove that
∑
v Yv ≤ q with high probability. This follows from a variant

of Chernoff bounds, as follows.
First, by Invariant (H.2), because Yv ̸= 0 if and only if Ztcv = 1, we have that:

Pr
[∧
v

(Yv ̸= 0)
]
≤
∏
v

Pr [Yv ̸= 0] .

For such weighted binary variables Yv ∈ {0, q
∆−dt(v)+q}, the above is equivalent

to the definition of 1-correlation in the sense of [PS97, Definition 3.1], namely
E[
∏
v∈U Yv] ≤

∏
v∈U E[Yv] for all U ⊆ NG(wt). As shown in [PS97], this suffices

to upper bound the moment-generating function of
∑
v Yv and derive strong tail

bounds. In particular, by [PS97, Corollary 3.3], since we also have that Yv ∈ [0, 1]
for all v, the following Chernoff bound holds for any ε > 0:

Pr
[∑

v

Yv ≥ (1 + ε) · E

[∑
v

Yv

]]
≤ exp

(
−
ε2 · E [

∑
v Yv]

2 + ε

)
. (H.4)

Next, by Invariant (H.1), E[Yv] = q
∆+q for each node v ∈ NG(wt). Hence,

E[
∑
v Yv] = kq

∆+q , where k := |NG(wt)| ≤ ∆. By setting ε := ∆+q−k
k in the Chernoff

bound (H.4) we obtain:

Pr

 ∑
v∈NG(wt)

Yv ≥ q

 = Pr

 ∑
v∈NG(wt)

Yv ≥
(

1 + ∆ + q − k
k

)
· kq

∆ + q


≤ exp

(
− (∆ + q − k)2

k2 · kq

∆ + q
· k

∆ + q + k

)
≤ exp

(
− q3

2∆2 + 3∆q + q2

)
≤ exp

(
− q3

6∆2

)
.

Above, the second-to-last inequality follows because
(
− (∆+q−k)2·q

(∆+q)(∆+q+k)

)
is decreasing

in k ≤ ∆, and the last inequality relies on q ≤ ∆ by the lemma’s hypothesis. Thus,
for our choice of q,

Pr
[∑

v

xtcv ≥ 1
]

= Pr
[∑

v

Yv ≥ q

]
≤ 1
n4.5 ≤

1
2n3 .

The lemma then follows by union bounding over all n online nodes and at most 2n
colors.

Combining Observation H.2.1 and Lemma H.2.3, we obtain our result.
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Theorem H.2.4. Algorithm H.1 with q = 3∆2/3 log1/3 n ≤ ∆ (i.e., if ∆ ≥ 81 logn)
computes a (∆ + q)-edge-coloring of any n-node, maximum degree ∆ bipartite graph
with high probability.

Proof. By Lemma H.2.3, the condition
∑
v x

t
cv ≤ 1 holds for all time t and colors c

with high probability, which by Observation H.2.1 results in a valid edge coloring
using ∆ + q colors.

Remark H.2.5. In Section H.3, using standard anti-concentration bounds, we
also show that our analysis is tight, i.e., that Algorithm H.1 indeed requires
∆ + Ω(∆2/3 log1/3 n) colors to work.
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APPENDIX

H.3 Tight example for our algorithm

In the following we show that the bound of (∆ +O(∆2/3 log1/3 n)) colors is tight for
Algorithm H.1, for a wide range of ∆ superlogarithmic (and even polynomial) in n.

Lemma H.3.1. For any constant r ≥ 3, there exists an infinite family of instances
with n nodes and maximum degree ∆ = Θ(n1/r), on which Algorithm H.1 run with
q = 1

6r1/3 ·∆2/3 log1/3 n fails to output a valid edge coloring with constant probability.

Proof. For all (sufficiently large) integer k, we let ∆ := k − 1 and construct an
instance graph with n := max{k, ⌊kr−2⌋} · (∆2 + 1) ≤ kr−2 · (∆2 + 1) ≤ kr many
nodes. In the instance, ∆ = k − 1 = Θ(n1/r) is the maximum degree of any node in
the instance. We turn to describing this instance.

A gadget consists of an online node wt connected to ∆ offline neighbors of degree
∆− 1 (before wt arrives), each of these belonging to disjoint subgraphs. Hence, for
any color c these offline nodes are neighbors of c in Ht independently. Our instance
consists of max{k, ⌊kr−2⌋} ≥ k disjoint (hence independent) such gadgets, each
having ∆2 + 1 nodes and therefore totaling n nodes.

We now fix the gadget corresponding to some wt. Since the ∆ neighbors v
of wt neighbor c independently in Ht, each with probability ∆−dt(v)+q

∆+q = q+1
∆+q

(by Invariant (H.1)), the number of neighbors of c in Ht is distributed as X =∑
v∈NG(wt) Z

t
cv ∼ Bin(∆, q+1

∆+q ). Since all neighbors v of c in Ht have dt(v) = ∆− 1
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and hence xcv = 1
q+1 · Z

t
cv, Algorithm H.1 does not enter failure mode if and only if

|X| ≤ q + 1. We thus wish to lower bound

Pr[X > q + 1] = Pr[X > (1 + q/∆) · E[X]] ≥ Pr[X ≥ (1 + 2q/∆) · E[X]]. (H.5)

Let ε := 2q/∆. By [KY15, Lemma 4], for ε < 1/2 such that ε2 · E[X] ≥ 3 (as
we shortly verify is the case here), we have the following asymptotic converse of
Chernoff’s bound:

Pr [X ≥ (1 + ε) · E[X]] ≥ exp
(
−9ε2 · E[X]

)
. (H.6)

To see that the required conditions for applying this inequality hold, first notice
that ε = 2q

∆ = O( 3
√

logn/∆), and so ε < 1/2 for sufficiently large k (and hence for
sufficietly large ∆ = Θ(n1/r) >> logn). On the other hand, we have that for large
enough k (and hence n):

ε2 · E[X] = (2q)2

∆2 ·∆ ·
q + 1
∆ + q

≥ 4q2

∆2 ·∆ ·
q

2∆ = 2q3

∆2 = 1
108r · logn ≥ 3.

Similarly, using that n ≤ kr, we have:

ε2 · E[X] = (2q)2

∆2 ·∆ ·
q + 1
∆ + q

≤ 4q2

∆2 ·∆ ·
2q
∆ = 8q3

∆2 = logn
27r ≤

log k
9 . (H.7)

Combining the above, we obtain:

Pr[X > q+1]
(H.5)
≥ Pr[X ≥ (1+ε)·E[X]]

(H.6)
≥ exp

(
−9ε2 · E[X]

) (H.7)
≥ exp (− log k) = 1

k
.

Hence, Algorithm H.1 enters failure mode on any fixed gadget with probability at
least 1

k . As the instance consists of max{k, ⌊kr−2⌋} ≥ k many independent gadgets,
the probability that the algorithm does not enter failure mode on any of them is upper
bounded by a constant,

(
1− 1

k

)k ≤ 1/e, or put otherwise Pr[enter failure mode] ≥
1− 1/e.

Now, condition on Algorithm H.1 entering failure mode, and fix some time t and
color c ∈ C for which

∑
v x

t
cv > 1 (i.e., this is a witness for the algorithm entering

failure mode). Then, by the preceding discussion, at least q+ 2 neighbors v of wt in
G are neighbors of c in Ht, where they all have have degree ∆− dt(v) + 1 = q + 1.
Therefore, by the independent coloring in the failure mode, the probability that the
algorithm fails in outputting a valid edge coloring since it assigns c to two or more
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edges of wt is at least

Pr[fail | enter failure mode] ≥ Pr
[
Bin

(
q + 2, 1

q + 1

)
≥ 2
]

= 1−
(

1− 1
q + 1

)q+2
− q + 2
q + 1 ·

(
1− 1

q + 1

)q+1

= 1−
(

q

q + 1 + q + 2
q + 1

)
·
(

1− 1
q + 1

)q+1

≥ 1− 2/e.

Consequently, Algorithm H.1 fails with constant probability, at least (1−1/e)(1−2/e),
as claimed.
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Abstract

The classic theorem of Vizing (Diskret. Analiz.’64) asserts that any graph
of maximum degree ∆ can be edge colored (offline) using no more than ∆ + 1
colors (with ∆ being a trivial lower bound). In the online setting, Bar-Noy,
Motwani and Naor (IPL’92) conjectured that a (1 + o(1))∆-edge-coloring
can be computed online in n-vertex graphs of maximum degree ∆ = ω(logn).
Numerous algorithms made progress on this question, using a higher number of
colors or assuming restricted arrival models, such as random-order edge arrivals
or vertex arrivals (e.g., AGKM FOCS’03, BMM SODA’10, CPW FOCS’19,
BGW SODA’21, KLSST STOC’22). In this work, we resolve this longstanding
conjecture in the affirmative in the most general setting of adversarial edge
arrivals. We further generalize this result to obtain online counterparts of the
list edge coloring result of Kahn (J. Comb. Theory. A’96) and of the recent
“local” edge coloring result of Christiansen (STOC’23).
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I.1 Introduction

Online edge coloring is one of the first problems studied through the lens of compet-
itive analysis [BMN92]. In this problem, a graph is revealed piece by piece (either
edge-by-edge or vertex-by-vertex). An algorithm must assign colors to edges upon
their arrival irrevocably so that no two adjacent edges are assigned the same color.
The algorithm’s objective is to use few colors in any graph of maximum degree ∆,
close to the (offline) optimal ∆ or ∆ + 1 guaranteed by Vizing’s Theorem [Viz64].

A trivial greedy online algorithm that assigns any available color to each edge
upon arrival succeeds while using a palette of 2∆− 1 colors. As shown over three
decades ago, no algorithm does better on low-degree n-vertex graphs with sufficiently
small maximum degree ∆ = O(logn) [BMN92]. While our understanding of online
edge coloring is thus complete on low-degree graphs, the dynamics are considerably
more complex and interesting when ∆ surpasses ω(logn). The authors in [BMN92]
even conjectured that barring the low-degree case, edge coloring can be performed
online while nearly matching the guarantees of offline methods.

Conjecture I.1.1 ([BMN92]). There exists an online edge-coloring algorithm for
n-vertex graphs that colors the edges of the graph online using (1 + o(1))∆ colors,
assuming known maximum degree ∆ = ω(logn).1

Progress towards resolving Conjecture I.1.1 was obtained for restricted settings,
including random-order edge arrivals [AMSZ03; BMM12; BGW21; KLSST22]
and vertex arrivals [CPW19; SW21; BSVW24]. In the most general setting, i.e.,
under adversarial edge arrivals, [KLSST22] recently provided the first algorithm
outperforming the trivial algorithm, showing that an ( e

e−1 + o(1))∆-edge-coloring is
achievable.

Most prior results for online edge coloring under adversarial arrivals [CPW19;
SW21; KLSST22] were attained via the following tight connection between online
edge coloring and online matching.2 Given an α∆-edge-coloring algorithm, it is easy,
by sampling a color, to obtain an online matching algorithm that matches each edge
with probability at least 1/(α∆). In contrast, [CPW19] provided an (asymptotically)
optimal reduction in the opposite direction, from online (α+ o(1))∆-edge-coloring
algorithms when ∆ = ω(logn) to online matching algorithms that match each
edge with probability at least 1/(α∆). (See Lemma I.2.1.) A positive resolution of
Conjecture I.1.1 therefore requires—and indeed, is equivalent to—designing an online
matching algorithm that matches each edge with probability at least 1/((1+o(1))∆).

Our Main Result In this work, we resolve Conjecture I.1.1:

1Knowledge of ∆ is necessary to even use fewer than e
e−1 ∆ ≈ 1.582∆ colors [CPW19].

2Online matching algorithms must decide for each arriving edge whether to irrevocably add it
to their output matching.
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Theorem I.1.2 (See exact bounds in Theorem I.4.11). There exists an online
algorithm that, on n-vertex graphs with known maximum degree ∆ = ω(logn),
outputs a (1 + o(1))∆-edge-coloring with high probability.

Via the aforementioned reduction, we obtain the above from our following key
technical contribution.

Theorem I.1.3. There exists an online matching algorithm that on graphs with
known maximum degree ∆, outputs a random matching M satisfying

Pr[e ∈M ] ≥ 1
∆ + Θ(∆3/4 log1/2 ∆)

= 1
(1 + o(1)) ·∆ ∀e ∈ E.

We note that the above matching probability of 1/(∆+q) for q = Θ(∆3/4 log1/2 ∆)
approaches a (lower order) lower bound of q = Ω(

√
∆) implied by the competitiveness

lower bound of 1− Ω(1/
√

∆) for online matching in regular graphs due to [CW18].
Before explaining further implications of our results and techniques, we briefly

discuss our approach for Theorem I.1.3 and its main differences compared to prior
work.

Techniques overview For intuition, consider a simple “algorithm” that, by its
very design, appears to match every edge with a probability of 1/(∆ + q):

When an edge et = (u, v) arrives and connects two unmatched vertices,
match it with probability

P (et) = 1
∆ + q

· 1
Pr[u, v both unmatched until time t] .

However, the caveat, and the reason for the quotation marks around ”algorithm”, is
that this process is viable only if P (et) constitutes a probability. This raises the
question: how large must q be to ensure that P (et) ≤ 1 for all edges et? Suppose we
naively assume that the events “u is unmatched until time t” and “v is unmatched
until time t” are independent. In that case, straightforward calculations show that
q = O(

√
∆) would suffice for well-defined probabilities. However, the assumption

of independence rarely holds outside of simplistic graphs like trees, and so the
aforementioned events may exhibit complex and problematic correlations. Such
correlations present the central challenge in establishing tight bounds for general
edge arrivals.

Previous studies addressed the above challenge by circumscribing and managing
these correlations. For instance, in more constrained arrival models, [CW18; CPW19]
used a variant of this approach; they rely heavily on one-sided vertex arrivals in
bipartite graphs to choose an edge to match in a correlated way upon each vertex
arrival, while creating useful negative correlation allowing for Chernoff bounds
beneficial for future matching choices. In contrast, the only known method for
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general edge arrivals was given by [KLSST22]: they subsample locally tree-like
graphs and employ sophisticated correlation decay techniques to approximate the
independent scenario, albeit at the expense of only being able to match each edge
with a probability of at least 1/(α∆) for α := e/(e− 1) + o(1). Unfortunately, the
ratio of e/(e− 1) appears to be an intrinsic barrier for this approach.

Our approach deviates from the one guiding [CW18; CPW19; KLSST22], by
allowing for correlations instead of controlling and taming them. Crucially, we present
a different but still simple algorithm, with a subtle difference, which we describe
informally here (see detailed exposition in Section I.3): instead of obtaining the
probability P (et) by scaling 1/(∆ + q) by 1/Pr[u, v both unmatched until time t],
our scaling factor depends upon the algorithm’s actual execution path (sequence of
random decisions) so far. The modified algorithm allows us to analyze the scaling
factor for an edge as a martingale process. While there may still be correlations, we
show that this martingale has (i) small step size and (ii) bounded observed variance.
These properties allow for strong Chernoff-type concentration bounds, specifically
through Freedman’s inequality (Lemma I.2.3), which is pivotal to our analysis. The
change of viewpoint is crucial for achieving our result and leads to a simple and
concise algorithm and analysis. The results and techniques also extend to more
general settings, as we explain next.

Secondary Results and Extensions In Section I.5 we combine Theorem I.1.3
with a new extension of the above-mentioned reduction, from which we obtain online
counterparts to two (offline) generalizations of Vizing’s theorem, concerning both
“local” and list edge coloring. For some background, a list edge coloring of a graph
is a proper coloring of the edges, assigning each edge a color from an edge-specific
palette. The list chromatic number of a graph, also introduced by Vizing [Viz76], is
the least number of colors needed for each edge to guarantee that a proper list edge
coloring exists. A seminal result of Kahn [Kah96] shows that the list chromatic
number is asymptotically equal to ∆. Another, “local”, generalization of Vizing’s
Theorem was recently obtained by Christiansen [Chr23], who showed that any
graph’s edges can be properly colored (offline) with each edge (u, v) assigned a color
in the set {1, 2, . . . , 1 + max(deg(u),deg(v))}. In this work, using Theorem I.1.3
and extensions of the aforementioned reduction, we show that results of the same
flavor as [Kah96] and [Chr23] can be obtained by online algorithms.

Theorem I.1.4 (See exact bounds in Theorem I.5.1). There exists an online
algorithm that computes an edge coloring which, with high probability, assigns each
edge e a color from its list L(e) (revealed online, with edge e), provided each list has
sufficiently large size (1 + o(1))∆ and that ∆ = ω(logn).

Theorem I.1.5 (See exact bounds in Theorem I.5.2). There exists an online
algorithm that computes an edge coloring assigning each edge e = (u, v) a color
from the set {1, 2 , . . . , dmax(e) · (1 + o(1))} with high probability, where dmax(e) :=
max{deg(u),deg(v)}, provided that dmax(e) = ω(logn).
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Finally, in Section I.6, we show that our algorithmic and analytic approach
underlying Theorem I.1.3 allows us more generally to round fractional matchings
online. Here, an α-approximate online rounding algorithm for fractional matchings
is revealed (online) an assignment of non-negative values to the edges, x : E → R≥0,
with value xe revealed upon arrival of edge e, so that the total assigned value to
the incident edges to each vertex is at most one,

∑
e∋v xe ≤ 1. The algorithm’s

objective is to output online a randomized matching M that matches each edge e
with probability at least xe/α. For one-sided vertex arrivals in bipartite graphs, it
is known that the optimal α is in the range (1.207, 1.534) [NSW23], while if the
matching is “sufficiently spread out”, maxe xe ≤ o(1), then α = 1 + o(1) is possible
[Waj20, Chapter 5]. We generalize the latter result to the more challenging edge
arrivals setting in general graphs.

Theorem I.1.6 (See exact bounds in Theorem I.6.1). There exists an online
(1 + o(1))-approximate rounding algorithm for online matching x⃗ under adversarial
edge arrivals, subject to the promise that maxe xe ≤ o(1).

We note that Theorem I.1.3 is the special case of Theorem I.1.6 applied to the
fractional matching assigning values 1/∆ = o(1) to each edge. While we focus on
this special case in the paper body for ease of exposition, we believe that our more
general rounding algorithm is of independent interest and has broader applicability.
Illustrating this, in Section I.6.1, we combine our rounding algorithm with a rounding
framework and algorithm for fractional edge coloring of [CPW19] to obtain the
first online edge coloring algorithm beating the naive greedy algorithm for online
edge coloring under vertex arrivals with unknown maximum degree ∆ = ω(logn);
specifically, we show (details in Theorem I.6.11) that (1.777 + o(1))∆-edge-colorings
are attainable in this setting, approaching the lower bound of 1.606∆ proved by
[CPW19].

I.1.1 Related Work
Since edge coloring is the problem of decomposing a graph into few matchings, it is
natural to relate this problem to online matching.

The study of online matching was initiated by Karp, Vazirani and Vazirani
[KVV90], whose main result was a positive one: they presented an optimal algorithm
under one-sided vertex arrivals in bipartite graphs, showing in particular that the
greedy algorithm’s competitive ratio is suboptimal for this problem. Similar positive
results were later obtained for several generalizations, including weighted matching
[AGKM11; FHTZ20; BC21; GHHNYZ21], budgeted allocation (a.k.a AdWords)
[MSVV07; HZZ20], and fully-online matching [HKTWZZ20; HTWZ20]. However,
in the most general setting, i.e., under edge arrivals, the competitive ratio of the
trivial greedy algorithm is optimal [GKMSW19].

The study of online edge coloring was initiated by Bar-Noy, Motwani and Naor
[BMN92], who presented a negative result: they showed that the greedy algorithm
is optimal, at least for low-degree graphs. Positive results were later obtained
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under random-order arrivals [AMSZ03; BMM12], culminating in a resolution of
Conjecture I.1.1 for such arrivals, using the nibble method [BGW21]. For adversarial
arrivals, [CPW19; BSVW24] show that in bipartite graphs with one-sided vertex
arrivals, the same conjecture holds. This was followed by progress in general graphs,
under vertex arrivals [SW21], and edge arrivals [KLSST22], though using more than
the hoped-for (1+o(1))∆ many colors. We obtain this bound in this work. Thus, we
show that not only is the greedy algorithm suboptimal for online edge coloring, but
in fact in the most general edge arrival setting, the online problem is asymptotically
no harder than its offline counterpart.

Follow-up work. Given the randomized results obtained in this work, a natural
remaining open question is whether deterministic online edge coloring algorithms
can achieve better competitive ratios than the greedy algorithm. Dudeja, Goswani
and Saks [DGS24] have since shown that for any constant ϵ > 0 and M > 0, there
exists a deterministic online edge-coloring algorithm using (1 + ϵ)∆ colors for graphs
of sufficiently large linear-in-n degree ∆ ≥ n/M . In another work, [BSVW25] we
provided a deterministic ( e

e−1 + o(1))∆-edge-coloring algorithm under one-sided
arrivals for bipartite graphs of any super-logarithmic maximum degree ∆ = ω(logn),
matching the degree bound needed of the deterministic lower bound of [BMN92]. It
remains unknown whether both the number of colors and degree bound of the above
two papers can be achieved simultaneously, in effect de-randomizing the current
paper.

I.2 Preliminaries

Notation. As standard, we denote by N(v) and δ(v) the neighborhood and edge
sets of v, respectively, and denote the number of vertices and edges of G by n := |V |
and m := |E|. We also denote by degH(v) the degree of vertex v in (sub)graph
H, and use the shorthand deg(v) := degG(v). We say an event happens with high
probability in a parameter k if it happens with probability at least 1 − k−c for a
constant c > 0.

Problem definition and notation In the online problems studied in this paper,
the input is an undirected simple graph G := (V,E) with known maximum degree ∆.
Its edges arrive one at a time, with edge et ∈ E arriving at time t. An online edge
coloring algorithm must color each edge et upon arrival with a color distinct from
its adjacent edges. Similarly, an online matching algorithm must decide whether
to match et upon arrival, if none of its endpoints are matched. For both problems,
we consider randomized algorithms and assume that the input is generated by an
oblivious adversary, which fixes the input graph and edges’ arrival order before the
algorithm receives any input.3 The objective of edge coloring algorithms is to output

3By standard reductions [BBKTW94], a result quantitatively similar to our main result against
an adaptive adversary would be equivalent to the task of finding a deterministic algorithm.
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a coloring using as few colors as possible, close to the offline optimal ∆ or ∆ + 1
colors [Viz64]. The objective of online matching algorithms is traditionally to output
a large matching. However, due to the reduction mentioned in the introduction, and
restated more formally below, our interest will be in online matching algorithms
that match each edge with high probability, close to 1/∆.

Lemma I.2.1 (Reduction ([CPW19; SW21])). Let A be an online matching algo-
rithm that, on any graph of maximum degree ∆ = ω(logn), matches each edge with
probability at least 1/(α ·∆), for α ≥ 1. Then, there exists an online edge coloring
algorithm A′ that on any graph with maximum degree ∆ = ω(logn) outputs an edge
coloring with (α+O((logn/∆)1/4)) ·∆ colors with high probability in n.

In Section I.5, we generalize the above lemma, and use this generalization to
obtain results for online list edge coloring (each edge has a possibly distinct palette)
and for online local edge coloring (each edge e should be colored with a color of
index not much higher than maxv∈e deg(v)). In particular, the appendix implies
(see Lemma I.5.15) that one can reduce the slack above to (α+O((logn/∆)1/3)) ·∆
colors.

Martingales A crucial ingredient in the analysis of our algorithms is the use of
martingales.

Definition I.2.2 (Martingale). A sequence of random variables Y0, . . . , Ym is a
martingale with respect to another sequence of random variables X1, . . . , Xm if the
following conditions hold:

• Yk is a function of X1, . . . , Xk for all k ≥ 1.

• E[|Yk|] <∞ for all k ≥ 0.

• E[Yk | X1, . . . , Xk−1] = Yk−1 for all k ≥ 1.

The technical advantage of using martingales in our analysis is their amenability
to specialized concentration inequalities which, unlike Chernoff-Hoeffding type
bounds, do not require independence (or negative correlation) between the involved
random variables. In particular, we will use a classic theorem due to Freedman
providing a Chernoff-type bound only depending on the step size and on the observed
variance of the martingale, with the latter defined as follows. For any possible
outcomes (x1, . . . , xm−1) of the random variables (X1, . . . , Xm−1), let:

Wm(x1, . . . , xm−1) :=
m∑
i=1

E[(Yi − Yi−1)2 | X1 = x1, . . . , Xi−1 = xi−1]

be the observed variance encountered by the martingale on the particular sample path
x1, . . . , xm−1 it took. To simplify notation, we usually assume that x1, . . . , xm−1
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are chosen arbitrarily and write:

Wm :=
m∑
i=1

E[(Yi − Yi−1)2 | X1, . . . , Xi−1].

Lemma I.2.3 (Freedman’s Inequality [Fre75]; see also [BDG16, Theorem 12],
[HMRR98, Theorem 3.15]). Let Y0, . . . , Ym be a martingale with respect to the
random variables X1, . . . , Xm. If |Yk − Yk−1| ≤ A for any k ≥ 1 and Wm ≤ σ2

always, then for any real λ ≥ 0:

Pr[|Yn − Y0| ≥ λ] ≤ 2 exp
(
− λ2

2(σ2 +Aλ/3)

)
.

We remark that we tailored the inequality to our use, and a more general version
holds [Fre75].

I.3 Online Matching Algorithm

In this section, we design an online matching algorithm as guaranteed by Theo-
rem I.1.3.

I.3.1 Our First Matching Algorithm

We first describe our key modification of the basic algorithm presented in the
introduction. Analogous to that algorithm, upon arrival of edge et whose endpoints
are still unmatched, we match et with a “scaled” probability P (et). However, and
crucially for our analysis, our scaling factor will depend on the specific execution
(random choices) of the algorithm. To illustrate this modification, refer to Figure I.1,
which depicts the neighborhood surrounding et. Here, we denote by etj the j-th
edge connecting a vertex in et with a vertex wj , with these k = 7 edges appearing
sequentially before et, with t1 < t2 < · · · < tk < t. Suppose now that we fixed
the randomness associated with all edges other than {et, et1,, et2 , . . . , etk}, and
conditioned on this event, which we refer to as R, let PR(etj ) represent the probability
that the algorithm will add the edge etj to the matching, assuming that none of the

u vw1

w2

w3

w4

w5

w6

w7

et

Figure I.1: An example of the neighborhood of et = (u, v) with k = 7.
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preceding edges et1 , et2 , . . . , etj−1 have been matched. Consequently, we have:

Pr[u, v both unmatched until time t | R] =
k∏
j=1

(1− PR(etj )),

and overall, by total probability,

Pr[u, v both unmatched until time t] =
∑
R

Pr[R] ·
k∏
j=1

(1− PR(etj )) .

The primary complication with the initial algorithm in the introduction is the
intricate correlation within the joint distribution of PR(ei1), . . . , PR(eik ) as functions
of the randomness R of edges outside the direct neighborhood of et. This correlation
complicates both the computational aspect of determining the probability that
vertices u and v are unmatched until time t, as well as the theoretical analysis of
the algorithm’s competitive ratio.

Our algorithm overcomes this challenge with a, in hindsight, simple strategy. We
utilize a scaling factor conditional on the randomness R, i.e., we scale with respect
to the “observed” probabilities, thus ensuring that the resulting online algorithm is
both computationally efficient and (as we will see) theoretically tractable to analyze.
Specifically, we obtain the following algorithm:

Algorithm I.1: NaturalMatchingAlgorithm
1 When an edge et = (u, v) arrives, match it with probability

P (et)←


1

∆+q ·
1∏k

j=1
(1−P (etj

))
if u and v are still unmatched,

0 otherwise,

where et1 , . . . , etk are those previously-arrived edges incident to the
endpoints of et.

Note that the values P (etj ) needed to compute P (et) are all defined at time
t (and easy to compute), since any such edge etj arrived before et. Moreover,
assuming u and v are unmatched (free), these values equal PR(etj ), where R is
the event corresponding to the random bits used in this execution for the edges
outside the neighborhood of et. Thus, if P (et) ≤ 1 for every edge et, this algorithm
is well-defined, and attains the right marginals, by total probability over R:

Pr[et matched] =
∑
R

Pr[R] · PR(et) · Pr[u, v both free until time t | R]

=
∑
R

Pr[R] · 1
∆ + q

= 1
∆ + q

.
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However, our new natural algorithm is ill-defined, as P (et) may exceed 1, even
on trees, as the following example illustrates.

Suppose edges in Figure I.2 arrive in a bottom-up, left-to-right order, and no
edge before et is matched by the algorithm (this is a very low-probability event).
Then P (et1) = 1

∆+q ·
1∏∆−2

i=1
(1−P (ei))

, where e1, . . . , e∆−2 are the edges below et1 .

But the term
∏
i(1−P (ei)) is the probability that none of the edges ei are matched

by the algorithm, which is exactly 1− ∆−2
∆+q = q+2

∆+q , since each ei in this example
is matched with probability exactly 1

∆+q and these are disjoint events. Hence
P (et1) = 1

∆+q ·
∆+q
q+2 = 1

q+2 . We can calculate P (et2) in the same way, remembering
to also scale up by 1

1−P (et1 ) , and we get P (et2) = 1
q+2 ·

1
1−P (et1 ) = 1

q+1 . Continuing
in this fashion, P (eti) = 1

q+3−i for any i = 1, . . . , q + 1 (importantly P (eti) < 1, so
indeed with some non-zero probability the algorithm will not match any of them).
Finally, by a similar calculation, P (et) = 1

q+1 ·
1∏q+1

i=1
(1−P (eti

))
= q+2

q+1 > 1, making
the algorithm undefined. However, in most runs of the algorithm, many bottom-level
edges are matched, and so P (eti) = 0 for many i, and P (et) is much smaller.

et1 et2 et3 etq+1

et

. . .

∆ − 2 ∆ − 2 ∆ − 2 ∆ − 2 ∆ − 1

Figure I.2: Example where Algorithm I.1 might be undefined.

In the above example, the event that P (et) in this case exceeds one hinges on
low-probability events. This therefore does not rule out matching probabilities of,
say, 1/(∆ + q) − 1/∆3 ≥ 1/(∆ + O(q)), so long as we avoid the use of P (et) as
probabilities when P (et) > 1. In the next section we present a modification of
Algorithm I.1 doing just this, and provide an overview of its analysis.

I.3.2 The Analysis-Friendly Matching Algorithm

As discussed, it is not at all clear whether the random variables P (et) in Algorithm I.1,
which we interpret as probabilities, even are valid probabilities, i.e., whether they
are upper bounded by 1. To avoid working with potentially invalid probabilities,
we use a slightly different variant of Algorithm I.1, whose pseudocode is given by
Algorithm I.2. This variant not only addresses the ill-defined probability concern,
but also introduces a more precise notation, facilitating our analysis. However, this
increased precision might initially obscure the connection between Algorithm I.2
and the more intuitive Algorithm I.1.

To clarify this relationship, consider the scaling factor 1/
∏k
j=1(1− P (etj )) for

an edge et = (u, v), which can be partitioned based on the edges incident to vertices
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u and v. Let δt(u) denote the set of edges incident at u and arriving before et. We
then define Ft(u) (and similarly Ft(v)) as follows:

Ft(u) :=
∏

etj
∈δt(u)

(1− P (etj )) and Ft(v) :=
∏

etj
∈δt(v)

(1− P (etj )).

Consequently, as G is a simple graph, the probability P (et) used in Algorithm I.1
can be reformulated as:

P (et) =
{

1
∆+q ·

1
Ft(u)·Ft(v) if u and v are still unmatched by time t,

0 otherwise.

The above aligns with the pseudo-code in Algorithm I.2. Assuming that P̂ (et) =
P (et) (and using that G is a simple graph and hence has no parallel edges), it
becomes evident that Algorithm I.2 is equivalent to Algorithm I.1 under the premise
that all probabilities P (et) are at most one. The critical modification in Algorithm I.2
is the introduction of P̂ , possibly distinct from P , ensuring that P (et) ≤ 1. This
is accomplished by constraining the values of Ft(v), now redefined in terms of P̂ ,
i.e., Ft(v) :=

∏
etj
∈δt(v)(1 − P̂ (etj )), to not fall below q

4∆ , implying P (et) ≤ 1 for
appropriately small q (see Observation I.4.3).

Analysis: Intuition and Overview As in Algorithm I.1, it is not hard to prove
that edge et is selected with a probability of 1/(∆ + q) if P (et) always equals P̂ (et),
as detailed in Section I.4.1. Therefore, the meat of our analysis, in Section I.4.2,
focuses on proving that for any edge et, the equality P (et) = P̂ (et) holds with high
probability in ∆. For intuition why this should be true, note that if each of the
degt(v) edges of vertex v by time t is matched with probability 1

∆+q , then the value
Ft(v)—that intuitively stands for the probability of v being free at time t—should
be:

Ft(v) = 1− degt(v)
∆ + q

≥ q

∆ + q
≈ q

∆ .

Above, the inequality follows from degt(v) ≤ ∆ and the approximation follows by
our choice of q = o(∆). Moreover, basic calculations (see Observation I.4.4) imply
that P̂ (et) = P (et) if min{Ft(u), Ft(v)} ≥ q

3∆ . In other words, P̂ (et) ̸= P (et) only
if the Ft(·)-value has dropped significantly below its “expectation” for one of the
endpoints of et.

The core of the analysis then boils down to proving concentration bounds that
imply, for any vertex v and time t, that Ft(v) ≥ ∆

3q with high probability in ∆. The
values Ft(v) are non-increasing as t grows, so it suffices to prove this inequality
for the final value F (v) := Fm(v). Let u1, . . . , uℓ be the neighbors of v in the final
graph. By simple calculations (Lemma I.4.5), we show that:

F (v) ≥ 1−
ℓ∑
i=1

Ei ·
1

∆ + q
· 1
Fti(ui)

, (I.1)



I.3. ONLINE MATCHING ALGORITHM 423

Algorithm I.2: MatchingAlgorithm
1 Initialization: Set F1(v)← 1 for every vertex v and M1 ← ∅.
2 At the arrival of edge et = (u, v) at time t:

• Sample Xt ∼ Uni[0, 1].

• Define

P (et) =
{

1
∆+q ·

1
Ft(u)·Ft(v) if u and v are unmatched in Mt,

0 otherwise.

and

P̂ (et) =
{
P (et) if min{Ft(u), Ft(v)} · (1− P (et)) ≥ q/(4∆)
0 otherwise.

• Set

– Ft+1(u)← Ft(u) · (1− P̂ (et));
– Ft+1(v)← Ft(v) · (1− P̂ (et));

– Mt+1 ←

{
Mt ∪ {et} if Xt < P̂ (et),
Mt otherwise.

where the binary random variables Ei are non-zero if and only if the neighbor ui
of v is unmatched by the time ti at which the edge (v, ui) arrives. If we denote by
S := {ui ∈ N(v) | ui not matched until time ti}, then Ei := 1[ui ∈ S].

The expectation of the sum Y :=
∑ℓ
i=1 Ei ·

1
∆+q ·

1
Fti

(ui) can be shown to be at
most ∆

∆+q . If the variables Ei and Fti(ui) were independent, one could now use
Chernoff-Hoeffding type bounds to conclude that Y ≤ ∆

∆+q/2 with high probability
in ∆, proving F (v) ≥ 1− Ym ≥ q

3∆ in the process (see Lemma I.4.5). However, in
general, the events of different neighbors ui of v being matched when (v, ui) arrives
are not independent, and so the variables Ei, Fti(ui) are correlated, making such an
approach not applicable. We overcome this by interpreting the right-hand side of
(I.1) as the final state of a martingale.

Concretely, our main idea is to parameterize the set S, the random variables
Ei and the sum Y over time. Assuming that the input stops at time step t ≤ m,
one can naturally define the analogues of S, Ei, and Y up to time t by St := {ui ∈
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N(v) | ui not matched until time min{t, ti}}, Eti := 1[ui ∈ St] and:

Yt :=
ℓ∑
i

Eti ·
1

∆ + q
· 1
Fmin{t,ti}(ui)

.

So, at each time step, we either change the value of a term or drop a term. With this
notation, we trivially have that S = Sm, Ei = Emi and Y = Ym. The advantage
of this representation is that Y0, . . . , Ym turns out to be a martingale with respect
to the random variables X1, . . . , Xm sampled by Algorithm I.2. As Y0 ≤ ∆

∆+q , our
objective reduces to proving that the following holds with high probability in ∆:

|Ym − Y0| ≤
∆

∆ + q/2 −
∆

∆ + q
.

As the martingale Y0, . . . , Ym takes ∆2 non-trivial steps (based on the two-hop
neighborhood), it is not enough to use the maximum step size and the number of
steps to argue about concentration as done in, e.g., Azuma’s inequality. However,
we can bound the maximum step size and the observed variance, which is sufficient
for applying Freedman’s inequality (Lemma I.2.3), yielding our desired result. In
the next section we substantiate the above intuition, and analyze Algorithm I.2.

I.4 Analysis of the Online Matching Algorithm

In this section we present the formal analysis of Algorithm I.2, and prove that it
matches each edge et with probability at least 1/(∆ +O(q)), with q to be chosen
shortly. Our analysis is divided into two parts.

In the first part (Section I.4.1), we prove that if P̂ (et) = P (et), i.e., the values
Ft(v) for both v ∈ et are large enough, then we match et with probability at least
1/(∆ + q) (Lemma I.4.2).

In the second part (Section I.4.2), we remove the assumption that P (et) = P̂ (et)
and prove that Algorithm I.2 achieves a matching probability of at least 1/(∆ + 4q),
by showing that with high probability in ∆, the values Ft(v) are large enough to
guarantee P (et) = P̂ (et). To prove the latter high-probability bound, we interpret a
sufficient desired lower bound (Lemma I.4.5) as the final state of a martingale, and
use Freedman’s inequality (Lemma I.2.3) to prove that Ft(v) is likely sufficiently
large for our needs.

Choice of q We will use q :=
√

200 ·∆3/4 ln1/2 ∆, for reasons that will become
clear in the proof of Lemma I.4.10. For the rest of the section we will only make
use of the following corollaries of our choice of q:

8
√

∆ ≤ q ≤ ∆/4. (I.2)

Note that the upper bound on q not only follows from its choice (for sufficiently
large ∆), but we may also assume this bound without loss of generality: if q > ∆/4,
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then simply picking a random color used by the (2∆− 1) colors of the greedy online
coloring algorithm will match each edge with probability 1/(2∆− 1), greater than
our desired 1/(∆ + 4q) matching probability.

I.4.1 A Sufficient Condition for 1/(∆ + q) Matching Probability

We begin with a simple observation, which will facilitate our characterization of
random values associated with Algorithm I.2 under various conditionings.

Observation I.4.1. For any time t, the random variables Ft(v), P (et), P̂ (et) are
determined by the current partial input e1, . . . , et and the current matching Mt−1.

Proof. Since P (et) and P̂ (et) are determined by the values of the variables Ft(v),
it suffices to prove the statement only for these latter variables. This follows by
induction on t. For the base case, we have F1(v) = 1 for all vertices, which implies the
statement trivially. For the inductive step with t > 1, note that by construction Ft(v)
is determined by the values {P̂ (et′) : t′ < t and et′ = (u′, v) is incident to v}. Any
such value P̂ (et′) is in turn a function of Ft′(u′), Ft′(v) and P (et′). By the inductive
hypothesis, Ft′(u′), Ft′(v) are functions of Mt′−1 and therefore also functions of
Mt−1 (since t′ < t). Finally, the value P (et′) is determined by Ft′(u′), Ft′(v) and
Mt′−1, which are again functions of Mt−1.

The following lemma formalizes the intuition discussed in Section I.3; it proves
that Algorithm I.2 has the correct behavior for an edge et = (u, v) by assuming
that the randomness outside the 1-neighborhood (δ(u) ∪ δ(v)) of et is fixed and
P̂ (et) = P (et).

Lemma I.4.2. For any edge et = (u, v) it holds that

Pr[Xt < P (et)] = 1
∆ + q

.

Proof. Fix all randomness except for the edges incident to u and v. That is, we fix
the outcomes Xt′ = xt′ for all edges et′ ̸∈ δ(u) ∪ δ(v). Denote this event by A(x⃗).
Let t1 < · · · < tℓ be the arrival times of the edges in δ(u) ∪ δ(v) before time t. The
only randomness left up to the point of et’s arrival is now given by the random
variables Xt1 , . . . , Xtℓ , which are independent of A(x⃗). For the selection of et to be
possible, we need to condition on the event that none of the edges et1 , . . . , etℓ are
taken in the matching. We note that conditioning on A(x⃗) and et1 , . . . , etℓ ̸∈ Mt

completely determines Mt′ for all time steps t′ ≤ t. Using Observation I.4.1, we
thus have that P̂ (et1), . . . , P̂ (etℓ), and Ft(u), Ft(v) are uniquely determined under
this conditioning. Let p̂(et1), . . . , p̂(etℓ), and ft(u), ft(v) be the concrete values of
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these random variables under this conditioning. We then have:

Pr[{et1 , . . . , etℓ} ∩Mt = ∅ | A(x⃗)] =
ℓ∏
i=1

Pr[Xti > p̂(eti)] =
ℓ∏
i=1

(1− p̂(eti)) = ft(u) · ft(v).

Above, for the first equality we used the independence of the different Xti , while for
the last equality we partitioned the edges incident to u and v to obtain the factors
ft(u) and ft(u) respectively. Note that, because the graph is simple and so parallel
edges are disallowed, this partitioning is well defined, as none of the edges eti connects
u to v. If u or v are unmatched before time t, we get: P (et) = 1

∆+q ·
1

ft(u)·ft(v) .
Since the random variable Xt is independent from Mt, the above then yields the
desired equality when conditioning on A(x⃗):

Pr[Xt < P (et) | A(x⃗)] = Pr[Xt < P (et) and {et1 , . . . , etℓ} ∩Mt = ∅ | A(x⃗)]

= 1
∆ + q

· 1
ft(u) · ft(v) · ft(u) · ft(v)

= 1
∆ + q

.

The lemma now follows by the law of total probability over all possible values of
A(x⃗).

Note that a consequence of the above lemma is that, if the values of P and P̂
were to always coincide during the execution of Algorithm I.2, then all edges would
be matched with probability 1/(∆ + q). In the following section, we prove that the
equality P̂ (et) = P (et) holds with high probability in ∆ for any edge et, which, by
simple calculations, implies a matching probability of 1/(∆ +O(q)).

I.4.2 Analysis of Algorithm I.2 in General
In this section we wish to prove that P̂ and P coincide for each edge with high
probability in ∆. This requires proving that Ft(v) is likely to be high for all times
t and vertices v—intuitively that means that the probability that v is unmatched
is never too low. We start by observing a trivial lower bound on Ft(v) and upper
bound on P (e) that follows directly from the algorithm’s definition.

Observation I.4.3. Ft(v) ≥ q/(4∆) and P̂ (et) ≤ P (et) ≤ 1/4 for all vertices
v ∈ V and times t.

Proof. For any fixed v, we prove the first statement by induction on t. For t = 0,
using (I.2), we have Ft(v) = 1 ≥ q/(4∆). Now, assume that Ft(v) ≥ q/(4∆)
for some t ≥ 0. If either v /∈ et or P̂ (et) = 0, then clearly Ft+1(v) = Ft(v)
and the statement is proven. Otherwise, by the definition of P̂ it follows that
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Ft+1(v) = Ft(v) · (1− P̂ (et)) = Ft(v) · (1−P (et)) ≥ q/(4∆), and again the statement
is proven. The fact that P (et) ≤ 1/4 is now a consequence of the previously proven
fact and q ≥ 8

√
∆, by (I.2):

P (et) = 1
∆ + q

· 1
Ft(u) · Ft(v) ≤

1
∆ + q

· 1
(q/(4∆))2 ≤

16∆
q2 ≤

1
4 .

To prove that P̂ (et) = P (et) with high probability in ∆, we note that by their
construction in Algorithm I.2, the values P̂ (et) can only differ from P (et) if the
values of the variables Ft(v) are too small, and in particular are close to their lower
bound of q/(4∆) guaranteed by Observation I.4.3.

Observation I.4.4. If et = (u, v) and min{Ft(u), Ft(v)} ≥ q/(3∆), then P̂ (et) =
P (et).

Proof. As P (et) ≤ 1/4 by Observation I.4.3, we have min{Ft(u), Ft(v)}·(1−P (et)) ≥
(q/(3∆)) · (3/4) = q/(4∆), which, by the algorithm’s definition, in turn implies that
P̂ (et) = P (et).

Given Observation I.4.4 and Lemma I.4.2, it suffices to show that the probability
that Ft(v) < q/(3∆) is very small for all time steps t. As Ft+1(v) ≤ Ft(v), it is
thus sufficient to bound this probability at the very last step, i.e., to bound the
probability that F (v) < q/(3∆), where F (v) := Fm(v). In the following lemma, we
identify a sufficient condition—Equation (I.3)— for the condition F (v) ≥ q/(3∆)
(and thus also P̂ (e) = P (e)) to hold. In particular, we lower bound F (v) by only
focusing on the impact of neighbors of v on P (eti) for edges eti ∋ v and then
applying the union bound.

Lemma I.4.5. Let et1 = (u1, v), . . . , etℓ = (uℓ, v) be the edges incident to v, arriving
at times t1 < · · · < tℓ. Let S := {ui ∈ N(v) | ui ̸∈ Mti} be those neighbors ui that
are not matched before time ti when the edge eti = (ui, v) arrives. Then,

F (v) ≥ 1−
∑
ui∈S

1
∆ + q

1
Fti(ui)

.

As a consequence, F (v) ≥ q/(3∆) holds if

∑
ui∈S

1
∆ + q

1
Fti(ui)

≤ ∆
∆ + q/2 . (I.3)

Proof. We look at how Ft(v) develops throughout the run of Algorithm I.2. When
edge eti = (ui, v) arrives, the algorithm sets Fti+1(v)← Fti(v) · (1− P̂ (eti)), yielding
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the following lower bound on Ft+1(v), relying on P̂ (eti) ≤ P (eti):

Fti+1(v) ≥ Fti(v) · (1− P (eti))

≥ Fti(v) ·
(

1− 1
∆ + q

1
Fti(v)Fti(u)

)
= Fti(v)− 1

∆ + q

1
Fti(u) .

Above, the second inequality is only an equality if both v, ui are not matched
before time ti, and in particular ui ∈ S. In the alternate case, we have that
P̂ (eti) = P (eti) = 0, and so Ft+1(v) = Ft(v). We conclude that Fti+1(v)− Fti(v)
can only be non-zero for times ti with ui previously unmatched (ui ∈ S), in which
case Fti+1(v)−Fti(v) ≥ − 1

∆+q
1

Fti
(ui) . Since F1(v) = 1 initially, the first part of the

lemma follows by summing over all ui ∈ S.
The second part of the lemma, whereby F (v) ≥ q/(3∆) provided Equation (I.3)

holds, now follows from the first part and a simple calculation, using that q ≤ ∆/4
by Equation (I.2):

F (v) ≥ 1−
k∑
j=1

1
∆ + q

1
Ftij

(uij )
(I.3)
≥ 1− ∆

∆ + q/2 = q/2
∆ + q/2 ≥ q/(3∆)

which is what we wanted to prove.

Similar arguments to those in Section I.4.1 can be used to prove that the sum
P :=

∑
ui∈S

1
∆+q

1
Fti

(ui) satisfies E[P ] ≤ ∆
∆+q . (This also follows from the subsequent

martingale analysis later.) That the expectation of P is bounded away from the
upper bound of ∆

∆+q/2 required in (I.3) hints at using appropriate concentration
inequalities, such as Chernoff-Hoeffding type bounds, to prove P ≤ ∆

∆+q/2 with
high probability in ∆. Unfortunately, P is not a sum of independent or negatively
correlated random variables in general, and therefore Chernoff-Hoeffding bounds
are not applicable. Instead, in the subsequent sections we model the development
of P as a martingale process, which will allow proving the desired concentration
inequality without having to argue explicitly about correlations.

Our martingale process

Fix a vertex v. To prove that the sufficient condition F (v) ≥ q/(3∆) of inequality
(I.3) holds often in general, we view the development of the left-hand-side of (I.3)
as a martingale. For a time step t, define:

St := {ui ∈ N(v) | ui ̸∈Mmin{t,ti}} and Yt−1 :=
∑
ui∈St

1
∆ + q

1
Fmin{t,ti}(ui)

.

Recall that ti is the time step at which the edge eti = (v, ui) arrives, and N(v) is
the final set of neighbors of v in the graph. Hence, St contains all neighbors of v in
the final graph (including the future neighbors), except those neighbors that were
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already matched by the time min{t, ti}. In particular, if ui ∈ Sti , i.e., ui was not
matched by the time ti it gets connected to v, it will remain inside all future sets
St, for t ≥ ti. Also, notice that both St and Yt are unknown to the algorithm at
time t, as their definition requires “future” knowledge of the input graph, and that
they are only used for the analysis.

With the above notation, Y0 = deg(v)
∆+q ≤

∆
∆+q and Y := Ym equals the left-hand-

side of Equation (I.3). Yt−1 is determined by the independent random variables
X1, . . . , Xt−1 sampled by Algorithm I.2. As we now show, Y0, . . . , Ym indeed form
a martingale:

Lemma I.4.6. Y0, . . . , Ym form a martingale w.r.t. the random variables
X1, . . . , Xm. Furthermore, the difference Yt − Yt−1 is given by the following two
cases:

• If et is added to Mt+1, which happens with probability P̂ (et), then:

Yt − Yt−1 = − 1
∆ + q

∑
ui∈St∩et

1
Ft(ui)

. (I.4)

• If instead et is not added to Mt+1, which happens with probability 1− P̂ (et),
then:

Yt − Yt−1 = 1
∆ + q

· P̂ (et)
1− P̂ (et)

∑
ui∈St∩et

1
Ft(ui)

. (I.5)

Proof. To prove the martingale property, we check the conditions given by Defini-
tion I.2.2. First, notice that fixing X1, . . . , Xt in Algorithm I.2 determines the set
St and the values of the random variables Fmin{t,ti}(ui) used to define Yt. Hence,
Yt is a function of X1, . . . , Xt. As Fmin{t,ti}(ui) ≥ q/(4∆), obviously E[Yt] <∞.

It remains to show that E[Yt | X1, X2, . . . , Xt−1] = Yt−1. We first verify the
claimed identities at (I.4) and (I.5). If the edge et arriving at time t is not incident
to any ui ∈ St with t < ti, then Yt+1 = Yt deterministically, and (I.4), (I.5) hold as
their right hand sides are equal to 0. On the other hand, if et is incident to one or
two such vertices ui ∈ St, then we have two cases: et might be added to Mt+1 or
not. If et was matched, St+1 = St \ (St ∩ et), so some terms are dropped from the
sum and the identity (I.4) follows. Otherwise, if et was not matched, we have for
any ui ∈ St ∩ et:

1
∆ + q

(
1

Ft+1(ui)
− 1
Ft(ui)

)
= 1

∆ + q

(
1

Ft(ui)(1− P̂ (et))
− 1
Ft(ui)

)
= 1

∆ + q
· P̂ (et)

1− P̂ (et)
· 1
Ft(ui)

,

and identity (I.5) follows by summing the above for all ui ∈ St ∩ et.
Now E[Yt | X1, X2, . . . , Xt−1] = Yt−1 follows by direct computation using (I.4)

and (I.5). Hence, all conditions of Definition I.2.2 are fulfilled, and indeed Y0, . . . , Ym
forms a martingale w.r.t. X1, . . . , Xm.
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Bounding martingale parameters

We recall that our goal is to prove that Equation (I.3), i.e., that Y = Ym satisfies
Y ≤ ∆

∆+q/2 with high probability (in ∆). As Y0 = deg(v)
∆+q ≤

∆
∆+q and trivially

Y ≤ Y0 + |Y − Y0|, it thus suffices to bound the difference between the first and last
step of the martingale, |Y − Y0|, as follows:

Fact I.4.7 (Sufficient Martingale Condition). Equation (I.3) holds if

|Y − Y0| ≤
∆

∆ + q/2 −
∆

∆ + q
. (I.6)

Our idea for proving that inequality (I.6) holds often is to use specialized
concentration inequalities for martingales, which do not require independence or
explicit bounds on the positive correlation. Specifically, we will appeal to Freedman’s
inequality (see Lemma I.2.3). To this end, in the following two lemmas we upper
bound this martingale’s step size and observed variance.

Lemma I.4.8 (Step size). For all times t, we have |Yt−Yt−1| ≤ A, where A := 8/q.

Proof. By using the expressions for the difference Yt − Yt−1 from Lemma I.4.6, we
obtain:

|Yt − Yt−1| ≤
1

∆ + q
·max

{
P̂ (et)

1− P̂ (et)
, 1
}
·
∑

ui∈St∩et

1
Ft(ui)

≤ 1
∆ + q

·
∑

ui∈St∩et

1
q/(4∆)

≤ 1
∆ + q

· 2
q/(4∆)

≤ 8/q.

For the second inequality, first notice that P̂ (et) ≤ P (et) ≤ 1/2 (by Observation I.4.3)
which implies P̂ (et)

1−P̂ (et) ≤ 1. Also, we have Ft(ui) ≥ q/(4∆) (by Observation I.4.3) at
any point of time in the algorithm. For the third inequality we used the trivial fact
that |St ∩ et| ≤ 2.

We next upper bound the observed variance Wm. While the following proof is
computation-heavy, we note that all our following manipulations are straightforward,
except for the insight that the hard lower bound F (v) ≥ q/(4∆) allows us to also
bound

∑
e∈δ(u) P̂ (e).

Lemma I.4.9 (Observed Variance). For the martingale Yt described above, we
have:

Wm :=
m∑
t=1

E[(Yt − Yt−1)2 | X1, . . . , Xt−1] ≤ 128∆ ln ∆
q2 . (I.7)
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Proof. Using the expression for Yt − Yt−1 (see Lemma I.4.6), we first have:

E[(Yt − Yt−1)2 | X1, X2, . . . , Xt−1] =

P̂ (et) ·
( ∑
ui∈St∩et

1
(∆ + q)Ft(ui)

)2

+

(1− P̂ (et)) ·
( ∑
ui∈St∩et

P̂ (et)
(∆ + q)Ft(ui)(1− P̂ (et))

)2

.

Note that the P̂ (et)’s and Ft(ui)’s depend on the variables X1, X2, . . . , Xt−1 we are
conditioning on, and that we will show the bound on the observed variance in any
execution of the algorithm. The above sums contain either one or two terms, as
|St ∩ et| ≤ 2. By using the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain
the following upper bound:

E[(Yt − Yt−1)2 | X1, X2, . . . , Xt−1] ≤

2P̂ (et) ·
∑

ui∈St∩et

(
1

(∆ + q)Ft(ui)

)2
+

2(1− P̂ (et)) ·
∑

ui∈St∩et

(
P̂ (et)

(∆ + q)Ft(ui)(1− P̂ (et))

)2

.

The above expression can be rewritten compactly by factoring out 2P̂ (et)
(∆+q)2·(Ft(ui))2 ,

which gives:

E[(Yt − Yt−1)2 | X1, X2, . . . , Xt−1] ≤
∑

ui∈St∩et

2P̂ (et)
(∆ + q)2(Ft(ui))2

(
1 + P̂ (et)

1− P̂ (et)

)
.

Using Observation I.4.3, we have P̂ (et) ≤ P (et) ≤ 1/2 and thus 1 + P̂ (et)
1−P̂ (et) ≤ 2, but

also Ft(ui) ≥ q/(4∆) for any ui ∈ St ∩ et. Additionally we note that |St ∩ et| ≤ 2,
and so we have:

E[(Yt − Yt−1)2 | X1, X2, . . . , Xt−1] ≤
∑

ui∈St∩et

2P̂ (et)
(∆ + q)2 ·

16∆2

q2 · 2 ≤ 128P̂ (et)
q2 .

By summing this inequality over all t we will obtain an upper bound for Wm.
Notice that an edge et is thereby summed over on the right hand side only if
it is incident to some vertex ui ∈ St at some time step t (see Figure I.3). As
St ⊆ S0 = N(v), we obtain the following upper bound, double counting edges et
that connect two distinct vertices of St (for example edge (u2, u3) in Figure I.3):

Wm :=
m∑
t=1

E[(Yt − Yt−1)2 | X1, X2, . . . , Xt−1] ≤
∑

ui∈N(v)

∑
et∈δ(ui)

128P̂ (et)
q2 . (I.8)
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v

u1

u2

u3

et1

et2
et3

Figure I.3: The configuration described in Lemma I.4.5, i.e., the 2-hop
neighborhood of v.

The (at most) ∆2 edges drawn correspond to the only non-trivial steps of the
martingale.

To upper bound the inner sum, fix a vertex ui ∈ N(v) and note that:

q

4∆ ≤ Fm(ui) =
∏

e∈δ(ui)

(1− P̂ (e)) ≤ exp

− ∑
e∈δ(ui)

P̂ (e)

 ,

which implies that
∑
e∈δ(ui) P̂ (e) ≤ ln

(
4∆
q

)
≤ ln(∆) (using that q ≥ 8

√
∆ ≥ 8 ≥ 4).

By plugging the above into (I.8) and using the fact that |N(v)| ≤ ∆, we finally can
conclude the proof of Lemma I.4.9:

Wm :=
m∑
t=1

E[(Yt − Yt−1)2 | X1, X2, . . . , Xt−1] ≤ 128∆ ln ∆
q2 .

Conclusion of the analysis

Having upper bounded both step size and variance of the martingale Y0, Y1, . . . , Ym =:
Y , we are now ready to leverage Freedman’s inequality to prove that with high
probability (in ∆), our desired upper bound on |Y − Y0| of inequality (I.6) holds,
and hence F (v) ≥ q/(3∆).

Lemma I.4.10. Pr[F (v) < q/(3∆)] ≤ 2∆−3.

Proof. Let λ := q/(3∆). By Fact I.4.7 and Lemma I.4.5, we have that

Pr[F (v) < q/(3∆)] ≤ Pr
[
|Y − Y0| ≥

∆
∆ + q/2 −

∆
∆ + q

]
≤ Pr[|Y − Y0| ≥ λ]. (I.9)

Above, the second inequality used that

q

3∆ ≤
∆

∆ + q/2 −
∆

∆ + q
,
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which, by taking a common denominator, is seen to be equivalent to 3∆q+ q2 ≤ ∆2,
which follows directly from q ≤ ∆/4 (see (I.2)).

Next, to upper bound the RHS of Equation (I.9), we appeal to Freedman’s
inequality (Lemma I.2.3). Letting σ2 := 128∆ ln ∆

q2 and A := 8/q (as in Lemmas I.4.8
and I.4.9) and λ as above, we have that:

Pr[|Y − Y0| ≥ λ] ≤ 2 exp
(
− λ2

2(σ2 +Aλ)

)

= 2 exp

− ( q
3∆ )2

2
(

128∆ ln ∆
q2 + 8

q ·
q

3∆

)


= 2 exp
(
− 200 ln ∆

18
(
128/200 + 8/3 ·∆−1/2

))
≤ 2 exp(−3 ln ∆)
= 2∆−3,

where for the second-to-last equality we used the definition of q =
√

200·∆3/4 ln1/2 ∆.
Combining the above with Equation (I.9), the lemma follows.

To obtain the statement of Theorem I.1.3, it remains to put the pieces together.
With high probability in ∆, the inequality from Lemma I.4.5 holds for both vertices
incident at an edge e. Also, by a sequence of other lemmas we know that this
inequality implies that P̂ (e) = P (e) (with high probability in ∆). Intuitively, this
should guarantee the right marginal 1/(∆ +O(q)) of matching e. More formally, we
now complete the proof of our main technical contribution:

Theorem I.1.3. There exists an online matching algorithm that on graphs with
known maximum degree ∆, outputs a random matching M satisfying

Pr[e ∈M ] ≥ 1
∆ + Θ(∆3/4 log1/2 ∆)

= 1
(1 + o(1)) ·∆ ∀e ∈ E.

Proof. We prove that Algorithm I.2 with q as in this section is such an algorithm. Fix
an edge et = (u, v). The marginal probability that et is matched by Algorithm I.2
is given by Pr[Xt < P̂ (et)]. We note that for the event Xt < P̂ (et), we need that
both Xt < P (et) and P̂ (et) = P (et) (else P̂ (et) = 0 and so trivially Xt ≥ P̂ (et)).
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We therefore have that

Pr[Xt < P̂ (et)] = Pr
[
(Xt < P (et)) ∧

(
P̂ (et) = P (et)

)]
= Pr[Xt < P (et)]− Pr

[
(Xt < P (et)) ∧

(
P̂ (et) ̸= P (et)

)]
≥ Pr[Xt < P (et)]− Pr[P̂ (et) ̸= P (et)]
≥ Pr[Xt < P (et)]− (Pr[F (v) < q/(3∆)] + Pr[F (u) < q/(3∆)])

≥ 1
∆ + q

− 4∆−3

≥ 1
∆ + 4q .

Above, the second and third inequalities follow from Lemma I.4.2 and Lemma I.4.10
together with union bound over u, v ∈ et. The last inequality, on the other hand,
which is equivalent to 3q

(∆+q)(∆+4q) ≥ 4∆−3, which clearly holds for large enough ∆,
and can be verified to hold for all ∆ ≥ 1, using 8

√
∆ ≤ q ≤ ∆/4, by (I.2).

From Matching to Edge Coloring We are finally ready to prove our main
result, the existence of an online ∆(1 + o(1))-edge-coloring algorithm. To do so, it
suffices to combine our online matching algorithm of Theorem I.1.3 with the known
reduction from online edge coloring to online matching given by Lemma I.2.1, or
alternatively, our strengthening of the latter in Lemma I.5.15. Combining these, we
obtain the following quantitative result.

Theorem I.4.11. There exists an online edge-coloring algorithm which, on n-vertex
graphs of known maximum degree ∆ = ω(logn), outputs with high probability (in n)
a valid edge coloring using ∆ + q′ colors, where:

q′ = O(∆3/4 log1/2 ∆ + ∆2/3 log1/3 n).

Proof. By Theorem I.1.3, there exists an online matching algorithm matching
each edge with probability at least 1/(α∆), for α := 1 + O(∆−1/4 log1/2 ∆). But
by Lemma I.5.15, such an online matching algorithm can be used to obtain an
(α+O(∆−1/3 log1/3 n) ·∆-coloring algorithm (assuming ∆ = ω(logn)). Combining
Theorem I.1.3 and Lemma I.5.15, we therefore obtain an online edge coloring
algorithm that, w.h.p. in n, on graphs of degree ∆ = ω(logn), uses the claimed
number of colors:

(α+O(∆−1/3 log1/3 n)) ·∆ = ∆ +O(∆3/4 log1/2 ∆ + ∆2/3 log1/3 n).
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APPENDIX

I.5 Online List Edge Coloring and Local Edge Coloring

In this section we present a number of applications that follow from our Algorithm I.2.
In particular, we show generalizations to online list edge coloring (Theorem I.5.1, in
Section I.5.3) and online local edge coloring (Theorem I.5.2, in Section I.5.4).

In the online list edge coloring problem, every online arriving edge e presents a
list L(e) ⊆ N of colors that can be used for coloring e. Unlike in the classical setting,
this list L(e) is not necessarily of the form {1, . . . ,∆ + q} for some q ≥ 1, but can
instead be arbitrary. The objective of an algorithm is to provide a valid coloring
of all edges with each edge e assigned color in its list, c(e) ∈ L(e), and no vertex
having two incident edges assigned the same color. Our result for this problem is
given by:

Theorem I.5.1 (Online List Edge Coloring). There exists an online list edge-
coloring algorithm which, on n-vertex graphs of known maximum degree ∆, outputs
with high probability (in n) a valid list-edge coloring, provided all lists L(e) satisfy
|L(e)| ≥ ∆ + q, for

q := 1024 lnn+ 104 ·
(

∆3/4 ln1/2 ∆ + ∆2/3 ln1/3 n
)
.

In particular, if ∆ = ω(logn), then lists of size ∆ + q with q = o(∆) suffice.

In the online local edge coloring problem, the setting is the same as in the
classical version. However, we now aim to color each edge e = (u, v) using a
color of index c(e) that is not much larger than the max degree of its endpoints,
dmax(e) := max{deg(u),deg(v)}. Here we prove the following result:

Theorem I.5.2 (Online Local Edge Coloring). There exists an online edge-coloring
algorithm which, on n-vertex graphs with a priori known degree sequence {deg(v) |
v ∈ V },4 computes, with high probability (in n), an edge coloring c : E → N that
colors each edge e using a color c(e) which satisfies:

c(e) ≤ dmax(e) + 2 · 1024 lnn+ 105 ·
(
d3/4

max(e) ln1/2 dmax(e) + d2/3
max(e) ln1/3 n

)
.

In particular, if dmax(e) = ω(logn), then c(e) ≤ dmax(e) · (1 + o(1)).

To obtain both generalizations of Theorem I.1.2 above, we rely on an online
coloring subroutine, Algorithm I.3, which we provide in the following section.
This algorithm colors a (potentially strict) subset of the edges of the graph, and
assigns each colored edge e a color from some individual (small) list of colors ℓ(e),
revealed when e arrives. Under the mild technical condition (which holds with high

4This theorem also holds if deg(v) are only upper bounds for the true degrees, in which case
the guarantees of the theorem will be with respect to these upper bounds.
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probability for our invocations of this algorithm in later sections) that |ℓ(e)| ≈ λ
for some appropriate parameter λ, the subroutine reduces the maximum degree ∆
of the remaining uncolored subgraph by ≈ λ. In other words, for all high-degree
vertices in U (those with degree ≈ ∆), the algorithm colors ≈ λ of their incident
edges. This subroutine is heavily inspired by [CPW19, Algorithm 4], which uses
(instead of our Algorithm I.2) an older online matching rounding algorithm, called
MARKING [CW18; Waj20], for sampling matchings. Unlike our subroutine which
works under edge arrivals, the previous [CPW19, Algorithm 4] is restricted to one-
sided vertex arrivals, because MARKING is also restricted to this regime. Moreover,
our algorithm’s more general ability to color from lists ℓ(e) for each edge e allows
us to obtain both the list edge coloring result and local edge coloring results, which
could not be obtained from [CPW19, Algorithm 4].

In Section I.5.2, we present Line 9, which applies Algorithm I.3 successively on
monotonically decreasing subgraphs of G to color edges. This coloring algorithm
is very flexible, in the sense that every arriving edge e presents a personalized list
L(e) of colors that can be used to color it. This algorithm forms the underpinning
of both theorems above, proven in later sections.

I.5.1 Subroutine to Reduce the Maximum Degree
In this section we provide an algorithmic subroutine for reducing the uncolored
maximum degree. This will be used for our list and local edge coloring results,
as well as our improvement on the reduction from edge coloring to matching of
Lemma I.2.1.

The psueocode of this algorithmic suroutine is given in Algorithm I.3, and it
works as follows. Its input is a graph U with n vertices and maximum degree upper
bounded by some ∆(U) arriving online edge-by-edge. (We think of U as the uncolored
subgraph of an initial graph G on the same vertex set.) Let λ := ∆(U)2/3 ln1/3 n.
We call a vertex v ∈ V dense if degU (v) ≥ ∆(U)− λ. For any arriving edge e, the
algorithm receives a list ℓ(e) of available colors. If e is incident to a dense vertex v,
the list ℓ(e) is guaranteed to have size |ℓ(e)| ≈ λ. For each new color revealed, we
run a copy of Algorithm I.2, guaranteeing that each edge is matched (and hence)
colored by each of the colors c ∈ ℓ(e) with probability ≈ 1

∆ .
As we now show, if the maximum degree of U is sufficiently large(r than lnn),

the above algorithm guarantees with high probability that dense vertices have ≈ λ
edges colored by this algorithm, and therefore the maximum degree of the remaining
uncolored graph decreases by roughly λ as well.

Theorem I.5.3. Every edge e colored by Algorithm I.3 is assigned a color c ∈ ℓ(e).
Moreover, after running Algorithm I.3 on U with ∆(U) ≥ 1024 lnn, and using
Algorithm I.2 with q := 102 ·∆(U)3/4 ln1/2 ∆(U), with the necessary promises, the
maximum degree of the remaining uncolored subgraph U ′ ⊆ U is upper bounded by
∆(U ′) := ∆(U)− λ+ 2λ · q+λ

∆+q + 6
√
λ lnn ≤ ∆(U)− 0.9λ with probability at least

1− 1
n15 .
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Algorithm I.3: Coloring Algorithm Reducing Maximum Degree
1 Input: Graph U with n vertices, arriving edge-by-edge. Each edge e arrives

with list of colors ℓ(e).
2 Promise: A value ∆(U) upper bounding the maximum degree of U is given.
3 Promise: For any edge e incident to a dense vertex, we have

λ ≤ |ℓ(e)| ≤ λ+ 10
√
λ lnn, for λ := ∆(U)2/3 ln1/3 n.

4 Output: Coloring of a subset of edges of U .
5 When edge e together with list ℓ(e) arrives:
6 for c ∈ ℓ(e) do
7 If c was never seen before, launch a new instance of Algorithm I.2

corresponding to c on U , using ∆(U) as an upper bound for the
maximum degree of U .

8 Input the edge e to the instance of Algorithm I.2 corresponding to c.
9 If e was matched by Algorithm I.2 and was not already colored, color e

with color c.

Before proving the above theorem, it will be convenient to present some useful
inequalities in a separate lemma, whose technical proof (which are easy to verify
hold asymptotically, but also hold for all choices of n ≥ 2 due to the large constants
chosen) is deferred to the end of the section:

Fact I.5.4. Suppose ∆(U) ≥ 1024 lnn and define the following parameters:

d := ∆(U),
q := 102 · d3/4 ln1/2 d

λ := d2/3 ln1/3 n

µ := (d− λ) · λ

d+ q

(
1− λ

d+ q

)
.

Then, these parameters satisfy the following inequalities:

µ ≥ λ− 2λ · q + λ

d+ q
(I.10)

0.1λ ≥ 2λ · q + λ

d+ q
+ 6
√
λ lnn (I.11)

µ ≥ 30 lnn. (I.12)

Proof of Theorem I.5.3. That each edge e is assigned a color (if any) from ℓ(e) is
immediate from the algorithm’s description. The “meat” of the proof is therefore in
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proving that removal of the edges colored yields a subgraph of maximum degree as
low as claimed in the theorem statement.

Consider a dense vertex v of U , i.e., with degree degU (v) ≥ d− λ. (If no such
vertex exists, the statement to prove follows trivially.) By the proof of Theorem I.1.3,
each edge e incident to v is picked by color c ∈ ℓ(e) with probability at least

1
d+4q′ ≥ 1

d+q , for q′ =
√

200d3/4 ln1/2 d, where 4q′ ≤ q. Let Xe be the indicator
variable for the event that e is colored by Algorithm I.3 with any color c ∈ ℓ(e). As
|ℓ(e)| ≥ λ for dense vertices, we have by the first two terms of the Taylor expansion
of exp(−λ/(d+ q)) for λ/(d+ q) ≤ 1 (as in our case):

Pr[Xe = 1] ≥ 1−
(

1− 1
d+ q

)λ
≥ 1− exp

(
− λ

d+ q

)
≥ λ

d+ q
−
(

λ

d+ q

)2
.

Let X :=
∑
e∈δ(v) Xe be the number of edges incident to v that are colored by

Algorithm I.3. We wish to argue that X is not much less than the following lower
bound E[X] ≥ µ := (d− λ) · λ

d+q

(
1− λ

d+q

)
on its expectation. (This lower bound

follows by our lower bound on Pr[Xe = 1], linearity of expectation, and the lower
bound on the number of edges of dense vertices.)

We now argue that with high probability in n, the expectation E[X] does not
fall short of this lower bound of µ. This would follow easily by standard Chernoff
bounds if the Xe were independent, though they clearly are not. However, we can
interpret these variables as indicator variables of a balls and bins process, which
are negatively associated (NA), and hence admit the same Chernoff bounds as
independent random variables [DR96; Waj17]. In more detail, we have a ball for
each color c, and each ball (color) c falls into a (single) bin corresponding to either
an edge e of v or a dummy bin, depending on whether or not e is matched by the
cth copy of Algorithm I.2, which happens independently (but not i.i.d) for different
c. The values Xe are therefore indicators for whether bin e is non-empty, and these
random variables are NA [Waj20, Corollary 2.4.6]. Consequently, the sum X of
the NA (but not independent) random variables Xe, which satisfies E[X] ≥ µ, also
satisfies the following standard Chernoff bound for any ε < 1:

Pr [X ≤ (1− ϵ) · µ] ≤ exp
(
−ε

2 · µ
2

)
. (I.13)

Fix ε :=
√

30 lnn
µ . By Equation (I.12) from Fact I.5.4, have that ε ∈ [0, 1]. On the

other hand, as we shall soon see, we also have that

(1− ε) · µ ≥ λ− 2λ · q + λ

∆ + q
− 6
√
λ lnn, (I.14)

To see this, first note that, as µ = λ · d−λd+q ·
(

1− λ
d+q

)
≤ λ, we have that ε · µ ≤

√
30λ lnn ≤ 6

√
λ lnn. Furthermore, µ ≥ λ− 2λ · q+λ

∆+q , by (I.10) from Fact I.5.4. We
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obtain (I.14) by summing up these last two inequalities. Consequently, combining
(I.13) and (I.14) and using our choice of ε, we have that

Pr
[
X ≤ λ− 2λ · q + λ

∆ + q
− 6
√
λ lnn

]
≤ Pr[X ≤ (1− ε) · µ] ≤ 1

n15 .

The claimed upper bound on the maximum degree of U ′ then follows, since this
upper bound holds for all non-dense vertices in U (which is a super graph of U ′),
together with union bound over all dense vertices v, which all have degree at most
∆(U) in U , and so, with high probability in n, in the new graph U ′ all vertices have
degree at most ∆(U)−

(
λ− 2λ · q+λ

∆+q − 6
√
λ lnn

)
≤ ∆(U)− 0.9λ, where the last

inequality follows from (I.11) from Fact I.5.4.

The inequalities from Fact I.5.4 are obtained by direct computation as follows:

Proof of Fact I.5.4. (I.10) follows easily:

µ = (d− λ) · λ

d+ q

(
1− λ

d+ q

)
= λ ·

(
1− q + λ

d+ q

)(
1− λ

d+ q

)
≥ λ− λ · q + λ

d+ q
− λ · λ

d+ q
≥ λ− 2λ · q + λ

d+ q
.

To get (I.11) it suffices to show:

2λ · q + λ

d+ q
≤ 0.05λ (I.15)

6
√
λ lnn ≤ 0.05λ. (I.16)

For (I.15), notice that:

2 · q + λ

d+ q
≤ 2 · q + λ

d
= 2 · 102 · d3/4 ln1/2 d

d
+ 2 · d2/3 ln1/3 n

d
.

The first term can be upper bounded by 0.025 for any n ≥ 2 given d ≥ 1024 lnn. The
second term can be upper bounded by 2 ln1/3 n

d1/3 ≤ 2/108 ≤ 0.025, since d ≥ 1024 lnn.
Summing the upper bounds for the two terms gives (I.15). Inequality (I.16) follows
from

√
λ/ lnn ≥ 108 ≥ 120, again since d ≥ 1024 lnn and so λ = d2/3 ln1/3 n ≥

1016 lnn.
It remains to prove (I.12). By (I.10) and (I.11), we have that µ ≥ 0.9λ. And

indeed, again using that d ≥ 1024 lnn and so λ ≥ 1016 lnn, we obtain the desired
inequality, as µ ≥ 0.9 · 1016 lnn ≥ 30 lnn.

We now turn to using this subroutine to completely color a given graph revealed
online.
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I.5.2 Generic Coloring Algorithm
Strategy For subsequent applications, we consider graphs G with a maximum
degree known to be at most ∆, with edges arriving online one by one. Moreover,
every arriving edge e provides a list of available colors L(e). We will repeatedly apply
Algorithm I.3, consuming different sublists ℓ(e) ⊆ L(e) of colors per phase, to reduce
the maximum degree of the currently uncolored graph U ⊆ G, by coloring subsets
of the edges of U . The following definition introduces the relevant parameters and
is used to define Line 9:

Definition I.5.5 (Degree Sequence). Let d0 := ∆ be (an upper bound on) the
maximum degree of a graph G with n vertices. For i ≥ 0, we define the following:

λi := d
2/3
i ln1/3 n,

qi := 102 · d3/4
i ln1/2 di,

di+1 := di − λi + 2λi ·
qi + λi
di + qi

+ 6
√
λi lnn ≤ di.

Let f be the minimal value for which df < 1024 lnn. (Such an f exists, since
di ≥ 1024 lnn, then by Fact I.5.4, di+1 ≤ di − 0.9λi ≤ di − 1.) We call the
parameters D(d0) := {di : 0 ≤ i ≤ f + 1} the degree sequence of d0.

Algorithm I.4: Generic Coloring Algorithm
1 Input: Graph G with n vertices, arriving edge-by-edge together with lists

L(e) of available colors. We use the notations introduced in Definition I.5.5,
and denote by C := ∪eL(e) the set of all colors.

2 Output: Coloring of a subset of edges of G.

3 Let C0, . . . , Cf+1 be a partitioning of C which is computed online.
4 Set U0 ← G.
5 for phase i ∈ {0, . . . , f} do
6 Apply Algorithm I.3 (online) on the currently uncolored graph Ui.
7 For any edge e incident to a dense vertex in Ui (i.e., having degree

≥ di − λi), use the sublist ℓi(e) := L(e) ∩ Ci to input online to
Algorithm I.3.

8 Set Ui+1 ← Ui \ {edges colored by Algorithm I.3 in phase i}
9 Try to color the final uncolored graph Uf+1 using Greedy with the

remaining lists of available colors ℓf+1(e) := L(e) ∩ Cf+1 for each edge e.

Let C := ∪e∈GL(e) be the set of all colors. Note that this set is a priori unknown
to the online algorithm and is only revealed indirectly through the lists L(e) of the
arriving edges. Line 9 partitions this set into f + 2 subsets of colors C0, . . . , Cf+1
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online. More concretely, whenever the arriving list L(e) of an edge e contains a
color c ∈ L(e) which is seen for the first time, it decides online to which of the sets
C0, . . . , Cf+1 color c will be assigned. We insist on the fact that this choice can be
made arbitrarily depending on the application. However, there is a restriction which
we discuss in the next paragraph.

The i-th phase is the iteration of Line 9 on the uncolored subgraph Ui. The
partitioning of C into C0, . . . , Cf+1 defines the colors to be used in each phase.
Thereby, ℓi(e) := L(e) ∩ Ci is the chosen sublist of L(e) which is inputted online
to Algorithm I.3 for edge e during the execution of the i-th phase. Let Li(e) :=
L(e) \ ∪i−1

j=0 ℓ
j(e) be the set of colors which are still available to use for e during the

i-th phase. For all edges e, the sublists ℓi(e) ⊆ Li(e) must have the size required
to apply Theorem I.5.3, that is, λi ≤ |ℓi(e)| ≤ λi + 10

√
λi lnn. This motivates the

following:

Definition I.5.6 (Admissible Partitioning of Colors). Given a fixed input of Line 9,
let C0, . . . , Cf+1 be a partitioning of the set of colors C := ∪e∈GL(e) which is
computed online. We say that the partitioning C0, . . . , Cf+1 is admissible if for any
edge e and phase i ∈ {0, . . . , f} in which e is incident to a dense vertex in Ui (i.e.,
having degree ≥ di − λi), we have that ℓi(e) := L(e) ∩ Ci satisfies:

λi ≤ |ℓi(e)| ≤ λi + 10
√
λi lnn.

By successively applying Algorithm I.3 (starting with the initial graph U0 :=
G), as done in Line 9, and using an admissible (online) partitioning of C into
C0, . . . , Cf+1 as defined in Definition I.5.6, one obtains a sequence of subgraphs
U0 ⊇ U1 ⊇ · · · ⊇ Uf+1 of G, such that by successive applications of Theorem I.5.3
we obtain the following:

Lemma I.5.7. With high probability in n, the graphs Ui computed online by
Line 9 (consisting of yet uncolored edges) have their maximum degree bounded by di.
Moreover, for i ≤ f we have di ≥ 1024 lnn.

Proof. Let goodi be the event that Ui has its degree upper bounded by di, where
i ∈ {0, . . . , f}. Clearly, good0 holds by the fact that d0 is an upper bound on the
maximum graph of the initial graph G. Assuming goodi holds, consider the i-th
phase of Line 9. Then, by Theorem I.5.3, the probability that goodi+1 holds is at
least 1− 1

n10 . Hence:
Pr[goodi+1 | goodi] ≥ 1− 1

n10 . (I.17)

By induction it easily follows that Pr[goodi] ≥ 1− i
n10 for any i ∈ {0, . . . , f}. For

i = 0 this is true with with probability 1, and for the induction step we use (I.17)
together with the induction hypothesis to obtain:

Pr[goodi+1] ≥ Pr[goodi+1 | goodi]·Pr[goodi] ≥
(

1− 1
n10

)
·
(

1− i

n10

)
≥ 1− i+ 1

n10 .
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In particular, for the complementary events we have Pr[goodi] ≤ 1
n9 for any i, and

the lemma follows by union bound over the at most n possible values of i:

Pr
[
∪i∈{0,...f} goodi

]
≤ n · 1

n9 ≤
1
n8 .

Analysis We have designed a generic coloring algorithm which, with high proba-
bility, successively reduces the maximum degree of the uncolored subgraphs Ui until
their maximum degree drops below O(logn). It remains to argue how to ensure the
following properties required implicitly by Line 9:

• The lists Li(e) of remaining colors need to have sufficiently large size to allow
extracting the sublists ℓi(e) ⊆ Li(e), such that |ℓi(e)| ≥ λi as required by the
application of Algorithm I.3 inside Line 9.

• In particular, to color Uf+1 successfully using Greedy, one needs to ensure
that Lf+1(e) ≥ 2df+1.

To obtain these guarantees, we maintain by induction, throughout all phases i, the
property |Li(e)| ≥ di + ai for edges connected to dense vertices, where ai is a large
enough slack. We define these slacks precisely:

Definition I.5.8 (Slack Sequence). Let d0 ≥ 1 and introduce the degree sequence
D(d0) of d0, and the parameters f, λi, qi as in Definition I.5.5. We define the slack
sequence Sl(d0) := {ai : 0 ≤ i ≤ f + 1} where:

af+1 := 1024 lnn > df+1

ai := ai+1 + 2λi ·
qi + λi
di + qi

+ 16
√
λi lnn.

As anticipated, we prove by induction that these slacks fulfill the required
guarantees:

Lemma I.5.9. Assume that |L(e)| ≥ 2 · 1024 lnn for all edges e. Furthermore,
assume that, before the execution of the i-th phase of Line 9, for any edge e connected
to a dense vertex, |Li(e)| ≥ di + ai. Then, after the execution of the i-th phase,
one has |Li+1(e)| = |Li(e) \ ℓi(e)| ≥ di+1 + ai+1. Furthermore, executing Greedy on
Uf+1 in Line 9 is possible, as |Lf+1(e)| ≥ 2df+1 for all edges e ∈ Uf+1.

Proof. Using |ℓi(e)| ≤ λi + 10
√
λi lnn, we obtain:

|Li+1(e)| = |Li(e)| − |ℓi(e)| ≥ di + ai − |ℓi(e)|
≥ di + ai − (λi + 10

√
λi lnn) = di+1 + ai+1,
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where the last inequality follows by the definitions of ai and di+1 (see Defini-
tion I.5.5 and Definition I.5.8). As for the property |Lf+1(e)| ≥ 2df+1, if e was ever
connected to a dense vertex in some phase i, then the property follows because
|Lf+1(e)| ≥ df+1 + af+1 ≥ 2df+1, where the last inequality is due to af+1 > df+1
(see Definition I.5.8). If on the contrary e was never connected to a dense vertex,
then Lf+1(e) = L(e) (i.e. the list of available colors never changed during the
execution of Line 9) and so we have |Lf+1(e)| = |L(e)| ≥ 2 · 1024 lnn > 2df+1.

To finish the analysis, it remains to upper bound the slacks ai in closed form,
as opposed to the (convenient but) recursive definition from Definition I.5.8. In
particular, the upper bounds on ai indicate how large the lists Li(e) need to be to
make Line 9 succeed. It is clear that:

ai = 1024 lnn+
f∑
j=i

(
2λj ·

qj + λj
dj + qj

+ 16
√
λj lnn

)

≤ 1024 lnn+
f∑
j=i

(
2λj ·

qj
dj

+ 2λj ·
λj
dj

+ 16
√
λj lnn

)

≤ 1024 lnn+ (f − i+ 1) ·
(

2λi ·
qi
di

+ 2λi ·
λi
di

+ 16
√
λi lnn

)
, (I.18)

where the last inequality follows because all three terms inside the parentheses are
non-increasing in j. By the above manipulations, it remains to upper bound the
quantity f − i+ 1, where f is the number of phases. For this purpose, the following
lemma is helpful:

Lemma I.5.10. Let a > 0 be any number. Consider a sequence (xk)k≥0 of non-
negative integer numbers, such that x0 ≥ 1 and:

xk+1 :=
{
xk − ⌈a · x2/3

k ⌉ if xk ≥ 1,
0 if xk < 1.

(I.19)

Then, for (integer) k ≥ 3 3√x0
a , we have xk ≤ 1.

Proof. We prove the statement by strong induction on the starting value x0 ≥ 1 of
the sequence. If x1/3

0 < a, then ax2/3
0 > xk, and in particular, x1 = x0−⌈a·x2/3

0 ⌉ < 0,
so the statement holds.

Now assume instead that x1/3
0 ≥ a, and that the statement holds for any

integer x′0 < x0. We apply the induction hypothesis on the sequence starting with
x′0 := x1 = x0 − ⌈a · x2/3

0 ⌉ (trivially x1 < x0). We can assume x1 ≥ 1, else the
statement already holds. The induction hypothesis gives us that xk+1 ≤ 1 for
k ≥ 3 3√x1

a . It thus suffices to prove:

3 3
√
x1

a
+ 1 ≤ 3 3

√
x0

a
,
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which we rearrange into:

3
√
x1 ≤ 3

√
x0 −

a

3 .

Now taking the third power of both sides (which are indeed both positive):

x0 − ⌈a · x2/3
0 ⌉ ≤ x0 − ax2/3

0 + a2x
1/3
0

3 − a3

9 .

The above inequality follows from the fact that ⌈ax2/3
0 ⌉ ≥ ax

2/3
0 , and a2x

1/3
0 /3 ≥

a3/3 > a3/9 (since we assumed x
1/3
0 ≥ a). Thus the induction proof is concluded

and the lemma proven.

We are now ready to upper bound f − i+ 1.

Lemma I.5.11. For every i ∈ {0, . . . , f}, one has f − i+ 1 ≤ 7 3
√

di

lnn .

Proof. Fix such an i. Notice that for any k with i ≤ k + i ≤ f we have dk+i+1 ≤
dk+i − 0.9λk+i (Fact I.5.4) and 0.9λk+i = 0.9 · d2/3

k+i ln1/3 n ≥ ⌈0.5 · d2/3
k+i ln1/3 n⌉ for

n, dk+i ≥ 10. Therefore:

dk+i+1 ≤ dk+i − ⌈0.5 · d2/3
k+i ln1/3 n⌉ for any k with i ≤ k + i ≤ f .

By Lemma I.5.10, the sequence (dk+i)k≥0 will drop below 1 after at most kmax :=
6 3
√

di

lnn steps. However, f is defined as the highest index k + i for which dk+i ≥

1024 lnn ≥ 1. This implies that f ≤ i + kmax ≤ i + 6 3
√

di

lnn . In particular:

f − i+ 1 ≤ 6 3
√

di

lnn + 1 ≤ 7 3
√

di

lnn .

Finally, we can now upper bound the slacks ai:

Lemma I.5.12 (Upper bounding slacks ai). For d0 ≥ 1, define the slack sequence
Sl(d0) according to Definition I.5.8. We have, for any i ∈ {0, . . . , f}:

ai ≤ 1024 lnn+ 104 ·
(
d

3/4
i ln1/2 di + d

2/3
i ln1/3 n

)
. (I.20)

Proof. We begin by recalling (I.18):

ai ≤ 1024 lnn+ (f − i+ 1) ·
(

2λi ·
qi
di

+ 2λi ·
λi
di

+ 16
√
λi lnn

)
.

Replacing λi = d
2/3
i ln1/3 n and applying Lemma I.5.11, we get:

ai ≤ 1024 lnn+ 14qi + 14 · d2/3
i ln1/3 n+ 112 · d2/3

i ln1/3 n.
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Replacing qi = 102 · d3/4
i ln1/2 di gives:

ai ≤ 1024 lnn+ 14 · 102 · d3/4
i ln1/2 di + 126 · d2/3

i ln1/3 n

≤ 1024 lnn+ 104 ·
(
d

3/4
i ln1/2 di + d

2/3
i ln1/3 n

)
.

which is the claimed statement.

Putting everything together By the above discussion, we can, with high
probability, color a graph G of known (upper bound on the) maximum degree
d0 := ∆ arriving online edge-by-edge assuming some mild conditions which we now
discuss. In the following, we consider the degree sequence D(d0) := {d0, . . . , df+1}
and the slack sequence Sl(d0) := {a0, . . . , af+1} as defined in Definition I.5.5 and
Definition I.5.8.

• By Lemma I.5.7, for any phase i during the execution of Line 9, the currently
uncolored subgraph Ui has maximum degree at most di (see Lemma I.5.7).

• For every arriving edge e of G, Line 9 expects to be provided a list L(e) of avail-
able colors online. It is required that |L(e)| ≥ 2 · 1024 lnn (see Lemma I.5.9).
Furthermore, the algorithm partitions (online) the set of colors C := ∪e∈GL(e)
into C0, . . . , Cf+1, and this partitioning is admissible as defined in Defini-
tion I.5.6.

• For any phase i ∈ {0, . . . , f} in which e is connected to a dense vertex of Ui, i.e.,
degUi

(v) ≥ di − λi, the algorithm uses the sublist ℓi(e) := L(e) ∩ Ci(e), made
up of currently unused colors. By the admissible choice of the partitioning of
colors, it is guaranteed that λi ≤ |ℓi(e)| ≤ λi + 10

√
λi lnn.

• If, during some phase i of Line 9, the edge e is connected to a dense vertex v in
Ui, i.e. degUi

(v) ≥ di−λi, the list Li(e) must have size at least |Li(e)| ≥ di+ai.
By Lemma I.5.9, it suffices that |Li(e)| ≥ di + ai holds for the first phase i in
which e is connected to a dense vertex.

We sum up the discussion above in a concise theorem:

Theorem I.5.13 (Main Coloring Theorem). Assume the input for Line 9 is such
that every arriving edge e presents a list L(e) with |L(e)| ≥ 2 · 1024 lnn colors.
Furthermore, the input contains a partitioning of the set of colors C := ∪e∈GL(e)
into C0, . . . , Cf+1, satisfying:

1. The partitioning C0, . . . , Cf+1 of the colors is admissible as defined in Defini-
tion I.5.6.

2. For any edge e = (u, v), we have:

|L(e)| ≥ di(e) + 1024 lnn+ 104 ·
(
d

3/4
i(e) ln1/2 di(e) + d

2/3
i(e) ln1/3 n

)
, (I.21)
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where:

i(e) := max{i ∈ {0, . . . , f + 1} : di ∈ D(d0), di ≥ degG(u) and di ≥ degG(v)}.
(I.22)

Under the guarantee of such an input, Line 9 colors all edges e of G online with
high probability (in n), such that every edge e is assigned a color c ∈ L(e).

Proof. By the discussion preceding the theorem statement, it suffices to prove that
the lists Li(e) are large enough across all phases i, such that the statement follows
by Lemma I.5.7 and Lemma I.5.9. More concretely, as discussed previously and
implied by Lemma I.5.9, it suffices to prove for any edge e that |Li(e)| ≥ di + ai
holds for the first phase i in which e is connected to a dense vertex. We claim that
condition 2 from the theorem statement implies this fact. Indeed, first let:

dmax(e) := max{degG(u) : e ∈ u} (I.23)

be the degree of the largest-degree vertex connected to e in the original graph G.
Furthermore, consider i(e) as defined in the theorem statement be the largest index
≤ f+1 in the degree sequence of d0 for which di(e) ≥ dmax(e). In particular, the index
of the first phase i in which e is connected to a dense vertex in Ui is at least i(e). By
Lemma I.5.9, if the initial list L(e) provided for e has size |L(e)| ≥ di(e) + ai(e), then
for all phases j ≥ i(e) in Line 9 we will have |Lj(e)| ≥ dj+aj . To end the proof, notice
that by Lemma I.5.12, the imposed condition (I.21) implies |L(e)| ≥ di(e) +ai(e).

I.5.3 List Edge Coloring
In this section we consider online list edge coloring, where we recall that each edge
e = (u, v) arrives with a list L(e) ⊆ N, and can only be colored using a color from
L(e) (while again guaranteeing no vertex has more than one edge of any color). Our
main result for this problem is the following.

Theorem I.5.1 (Online List Edge Coloring). There exists an online list edge-
coloring algorithm which, on n-vertex graphs of known maximum degree ∆, outputs
with high probability (in n) a valid list-edge coloring, provided all lists L(e) satisfy
|L(e)| ≥ ∆ + q, for

q := 1024 lnn+ 104 ·
(

∆3/4 ln1/2 ∆ + ∆2/3 ln1/3 n
)
.

In particular, if ∆ = ω(logn), then lists of size ∆ + q with q = o(∆) suffice.

Proof. We prove Theorem I.5.1 by running Line 9 and applying Theorem I.5.13.
For this purpose, we design an online algorithm Input such that conditions 1 and 2
are fulfilled. First, by assumption, all provided lists L(e) have size |L(e)| ≥ ∆ + q,
which already guarantees condition 2 of Theorem I.5.13. Hence, it remains to
design an online algorithm which partitions C := ∪e∈GL(e) into C0, . . . , Cf+1 such
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that condition 1 is fulfilled (i.e. admissibility of the partitioning as defined in
Definition I.5.6).

As an additional point, we run Line 9 with a minor change, which can be made
without loss of generality. Concretely, before the start of any phase i ∈ {0, . . . , f}, if
any list Li(e) of remaining colors for some edge e has size |Li(e)| > di+ai, we prune
some of the extra colors (chosen arbitrarily) in the list such that |Li(e)| = di + ai
holds. Effectively these extra colors are simply ignored.

Now we describe the admissible partitioning of colors. We define C0, . . . , Cf
as follows: For any i ∈ {0, . . . , f} let Ci := C \ ∪0≤j<i Cj be the set of not (yet)
used colors before phase i. Construct Ci by sampling (online) any color c ∈ Ci with
probability pi := (λi + 5

√
λi lnn)/(di + ai). We argue that pi is a valid probability,

i.e., pi ≤ 1. Indeed, this inequality is implied by di ≥ λi + 5
√
λi lnn. To show

this, notice that by Fact I.5.4, we have 5
√
λi lnn ≤ 0.1λi, such that the previous

inequality is implied by di ≥ 1.1λi, or di ≥ (1.1)2 lnn which is obviously true.
It is clear that this sampling algorithm can be implemented online. Whenever a

color c ∈ L(e) is seen for the first time, in the list L(e) of some arriving edge e, we
iterate through i ∈ {0, . . . , f} and assign c to Ci with corresponding probability pi
(and stop the algorithm as soon as c is assigned to some such Ci). Finally, let Cf+1
contain all those colors that have been assigned to none of C0, . . . , Cf .

We claim that the above partitioning algorithm provides an admissible partition-
ing as defined in Definition I.5.6 and as required by condition 1 of Line 9. In fact, we
will prove something slightly stronger by arguing the admissibility condition holds
for all edges e, and not only those which are connected to a dense vertex. In order
to do this, fix a phase 0 ≤ i ≤ f and assume that condition 1 was fulfilled for all
previous phases and edges in the past. It remains to prove that the sublists induced
by the algorithm, ℓi(e) := L(e) ∩ Ci(e), have the required size for all edges e:

Lemma I.5.14. The above partitioning algorithm induces sublists ℓi(e) := Li(e) ∩
Ci(e), which satisfy with probability at least 1− 1

n5 :

λi ≤ |ℓi(e)| ≤ λi + 10
√
λi lnn for all e.

Proof of Lemma I.5.14. Fix an edge e and its list of available colors Li(e). Since
condition 1 of Theorem I.5.13 is satisfied for all edges e until the current point in
the execution of Line 9, we have |Li(e)| ≥ di + ai. By our slight modification of
Line 9, we may assume equality, |Li(e)| = di + ai.

Hence, every color c ∈ Li(e) is picked by the sampling algorithm with probability
p := (λi + 5

√
λi lnn)/|Li(e)|, such that the expected number X of chosen colors is

distributed X ∼ Bin(|Li(e)|, p) with µ := E[X] = λi + 5
√
λi lnn. By a standard

Chernoff bound, we have for any ε ∈ [0, 1]:

Pr[|X − µ| ≥ εµ] ≤ 2 exp
(
−ε

2 · λi
3

)
.
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Fix ε :=
√

18 · lnn
µ . As di ≥ 1024 lnn, we have that µ ≥ λi = d

2/3
i ln1/3 n ≥ 18 lnn,

and so ε ∈ [0, 1]. Furthermore , we have εµ ≤ 5
√
λi lnn. Indeed, this is equivalent

(by squaring) to:

18 lnn · (λi + 5
√
λi lnn) ≤ 25λi lnn

90
√
λi lnn ≤ 7λi.

This last expression is equivalent to di ≥ (90/7)4 lnn which is obvious. Hence, the
Chernoff inequality gives:

Pr[|X − µ| ≥ 5
√
λi lnn] ≤ 2 · 1

n6 ≤
1
n5 ,

and so X = |ℓi(e)| ∈ [λi, λi + 10
√
λi lnn] with probability at least 1 − 1

n5 as
claimed.

Now that the lemma is proven, it follows easily by union bound that, with high
probability in n, all induced sublists ℓi(e) in all phases i ∈ {0, . . . , f} have the
required size, and so condition 1 of Theorem I.5.13 is fulfilled. This finishes the
proof of Theorem I.5.1.

An improvement of Lemma I.2.1 As a final note, we observe that the slack
q in Theorem I.5.1 can be naturally decomposed into two parts: the first part
is the O(∆3/4 log1/2 ∆)-term, which comes directly from the application of The-
orem I.5.3, which in turn relies on the fact that—by Theorem I.1.3—we have
access to an online matching algorithm that matches any edge e with probability
1/(∆+Θ(∆3/4 log1/2 ∆)). The second part of the slack is the O(∆2/3 log1/3 n)-term,
which comes from our choice of λ in Line 9.

However, it is not hard to see that these two parts of the final slack q in
Theorem I.5.1 arise independently of each other and, more generally, if one had
access to an online matching algorithm with a different guarantee than 1/(∆ +
Θ(∆3/4 log1/2 ∆)) matching probability per edge, this would directly translate to a
change in the corresponding first term of the final slack q. More concretely, for the
classical online edge coloring problem, we can generalize Lemma I.2.1 to obtain the
following reduction from online edge coloring to online matching:

Lemma I.5.15 (Improved Reduction). Let A be an online matching algorithm that,
on any graph of maximum degree ∆ = ω(logn), matches each edge with probability
at least 1/(α ·∆), for α ≥ 1. Then, there exists an online edge coloring algorithm
A′ that on any graph with maximum degree ∆ = ω(logn) outputs an edge coloring
with (α+O((logn/∆)1/3)) ·∆ colors with high probability in n.
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I.5.4 Local Edge Coloring
In this section we consider online local edge coloring, where we recall that we
wish to color each edge e = (u, v) with a color not much higher than dmax(e) :=
max{deg(u),deg(v)}. Our main result for this problem is the following.

Theorem I.5.2 (Online Local Edge Coloring). There exists an online edge-coloring
algorithm which, on n-vertex graphs with a priori known degree sequence {deg(v) |
v ∈ V },5 computes, with high probability (in n), an edge coloring c : E → N that
colors each edge e using a color c(e) which satisfies:

c(e) ≤ dmax(e) + 2 · 1024 lnn+ 105 ·
(
d3/4

max(e) ln1/2 dmax(e) + d2/3
max(e) ln1/3 n

)
.

In particular, if dmax(e) = ω(logn), then c(e) ≤ dmax(e) · (1 + o(1)).

Proof. The statement of Theorem I.5.2 is almost an immediate consequence of our
more general Theorem I.5.13. For i ∈ {0, . . . , f + 1}, let di and ai denote the
entries from the degree sequence and slack sequence of d0 := ∆(G) as defined in
Definition I.5.5 and Definition I.5.8 (also see Theorem I.5.13). We define the set of
colors C to be C := {1, . . . , d0 + a0} and propose the following partitioning:

Ci := {di + ai − (λi − 1), . . . , di + ai} for i ∈ {0, . . . , f}
Cf+1 := {1, . . . , 2 · df}.

The fact that this is a valid partitioning follows from Lemma I.5.9.
Now fix an edge e = (u, v) and let dmax(e) := max{deg(u),deg(v)}. If dmax(e) ≤

df+1, consider the following input list L(e) of available colors:

L(e) := {1, . . . , 2 · df+1}. (I.24)

As e is never connected to a dense vertex during phases i ∈ {0, . . . , f}, condition
1 is vacuously true. Furthermore, e can be assigned in phase f + 1 a color c(e) ∈
ℓf+1(e) = L(e)∩Cf+1 = L(e), such that c(e) ≤ 2 ·df+1 ≤ 2 ·1024 lnn, which implies
the statement from Theorem I.5.13 for edge e.

In the following, assume dmax(e) > df+1. Define i(e) as in Theorem I.5.13 and
notice that i(e) ≤ f because dmax(e) > df+1. Consider the following input list L(e):

L(e) :=
{

1, . . . , di(e) + 1024 lnn+ 104 ·
(
d

3/4
i(e) ln1/2 di(e) + d

2/3
i(e) ln1/3 n

)}
. (I.25)

Condition 2 of Theorem I.5.13 is trivially fulfilled. Consider the induced partitioning
of L(e) into sublists ℓ0(e), . . . , ℓf+1(e), where ℓi(e) := L(e) ∩ Ci. It holds that
|ℓi(e)| = λi for any phase i ≤ f in which edge e is connected to a dense vertex of Ui.

5This theorem also holds if deg(v) are only upper bounds for the true degrees, in which case
the guarantees of the theorem will be with respect to these upper bounds.
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This is because, for all such i, we have Ci ⊆ L(e) by Lemma I.5.12, and |Ci| = λi.
This property guarantees condition 1 of Theorem I.5.13.

By Theorem I.5.13, we obtain that, with high probability, Line 9 assigns each
edge e a color c(e) satisfying c(e) ≤ |L(e)|. Recall dmax(e) := max{deg(u),deg(v)} >
df+1, which implies i(e) ≤ f . First, we will make use the following inequality, whose
proof is deferred:

Lemma I.5.16. With the above notations, and assuming i(e) ≤ f , it holds that:

di(e) ≤ d(e) := dmax(e) + 2 · d2/3
max(e) ln1/3 n. (I.26)

Combining with the definition of L(e) in (I.25) and with the fact that c(e) ≤
|L(e)|, we obtain by the above lemma that:

c(e) ≤ |L(e)| ≤ g(e) := d(e) + 1024 lnn+ 104 ·
(
d(e)3/4 ln1/2 d(e) + d(e)2/3 ln1/3 n

)
.

(I.27)
To finish the proof of the theorem, it suffices to show that:

Lemma I.5.17. With g(e) as defined above, we have:

g(e) ≤ dmax(e)+2·1024 lnn+105 ·
(
d3/4

max(e) ln1/2 dmax(e) + d2/3
max(e) ln1/3 n

)
. (I.28)

As in the case of Lemma I.5.16, we defer the proof (see below). By combining
(I.27) and (I.28), we get the desired upper bound for c(e), and the statement of
Theorem I.5.2 follows.

We now present the proofs of lemmas Lemma I.5.16 and Lemma I.5.17, which
were deferred previously:

Proof of Lemma I.5.16. By definition, i(e) is the largest index i ∈ {0, . . . , f + 1},
such that di(e) ≥ dmax(e). As i(e) ̸= f+1, it follows that di(e)+1 ≤ dmax(e), and from
Definition I.5.5 we have di(e)+1 ≥ di(e) − λi(e). Recalling that λi(e) = d

2/3
i(e) ln1/3 n,

we conclude:

dmax(e) ≥ di(e) − λi(e) = di(e) ·

(
1− 3

√
lnn
di(e)

)
≥ di(e) ·

(
1− 3

√
lnn

dmax(e)

)
. (I.29)

Notice that, as i(e) ≤ f , we have di(e) ≥ 1024 lnn, which implies dmax(e) ≥
di(e) − λi(e) > 4 lnn, such that 3

√
lnn

dmax(e) < 1/2. Therefore, inequality (I.29) gives:

di(e) ≤ dmax(e) · 1
1− 3

√
lnn

dmax(e)

≤ dmax(e) ·
(

1 + 2 · 3

√
lnn

dmax(e)

)
= dmax(e) + 2 · d2/3

max(e) ln1/3 n.
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Proof of Lemma I.5.17. Recall that g(e) was defined as:

g(e) := d(e) + 1024 lnn+ 104 ·
(
d(e)3/4 ln1/2 d(e) + d(e)2/3 ln1/3 n

)
, (I.30)

where d(e) = dmax(e) + 2 ·d2/3
max(e) ln1/3 n. Now, if dmax(e) ≤ lnn, then d(e) ≤ 3 lnn.

But then (I.30) immediately gives that g(e) ≤ 2 · 1024 lnn, which implies the lemma.
Conversely, if dmax(e) ≥ lnn, then d(e) ≤ 3 · dmax(e). Therefore, we have:

d(e)3/4 ln1/2 d(e) ≤ 10 · d3/4
max(e) ln1/2 dmax(e)

d(e)2/3 ln1/3 n ≤ 3 · d2/3
max(e) ln1/3 n.

But then, by (I.30), we obtain the desired inequality:

g(e) ≤ dmax(e) + 2 · d2/3
max(e) ln1/3 n+ 1024 lnn +

104 ·
(

10 · d3/4
max(e) ln1/2 dmax(e) + 3 · d2/3

max(e) ln1/3 n
)

≤ dmax(e) + 1024 lnn+ 105 ·
(
d3/4

max(e) ln1/2 dmax(e) + d2/3
max(e) ln1/3 n

)
.

I.6 Extension: Online Rounding of Fractional Matchings

In this section we generalize the result in Section I.4 to a rounding algorithm for
fractional matchings. By fractional matching, we mean an assignment x ∈ [0, 1]E to
the edges such that for each vertex v, we have

∑
e∈δ(v)) xe ≤ 1. In the online model,

the value of xe is revealed alongside the edge e. An online rounding algorithm must
decide immediately and irrevocably whether to match the newest arriving edge. The
objective is to match each edge e with probability close to xe.

Algorithm I.2 can be viewed as an online algorithm which rounds the uniform
fractional matching {xe = 1

∆}e∈E to an integral one, while nearly preserving
marginals, Pr[e matched] = 1

∆ (1−o(1)). We show that one can—in a straightforward
manner—generalize our Algorithm I.2 to round arbitrary fractional matchings (also
in non-bipartite graphs, see Remark I.6.2), as long as they are sufficiently “spread
out”, resulting in our Algorithm I.5 and Theorem I.6.1. In particular, as long as all
xe ≤ ε, we will be able to round x⃗ while only incurring some a small loss which goes
to zero when ε→ 0. To our knowledge, this is the first online rounding algorithm
with such guarantees for general (non-bipartite) graphs, and also for adversarial
edge arrivals in any (bipartite) graph.

Theorem I.6.1. Let x ∈ RE be a fractional matching of some graph G, which
is revealed online, and satisfies xe ≤ ε for all edges e, for some known ε ≤ 0.99.
Then there exists a randomized online matching algorithm whose output matching
M satisfies for any edge e:

xe ≥ Pr[e matched by M] ≥ xe · (1− s(ε)),
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Algorithm I.5: MatchingAlgorithmChanges
1 At the arrival of edge et = (u, v) at time t: Sample Xt ∼ [0, 1] uniformly at

random. Define

P (et) =
{
xe · (1− s(ε)) · 1

Ft(u)·Ft(v) if u and v are unmatched in Mt,
0 otherwise.

2 and

P̂ (et) =
{
P (et) if min{Ft(u), Ft(v)} · (1− P (et)) ≥ s(ε)

4
0 otherwise.

3 Set
• Ft+1(u)← Ft(u) · (1− P̂ (et));

• Ft+1(v)← Ft(v) · (1− P̂ (et));

• Mt+1 =
{
Mt ∪ {et} if Xt < P̂ (et),
Mt otherwise.

where s(ε) := C · 4
√
ε · 2
√(

ln 1
ε

)
(for some large enough constant C > 0) converges to

0 as ε→ 0.

Remark I.6.2. Note that in general graphs, fractional matchings can be 3/2 times
larger than their largest integral counterparts, as exemplified by a triangle with
values xe = 1/2 for all its edges. That is, the integrality gap of this relaxation of
matchings is 3/2. Nonetheless, our algorithm works for non-bipartite graphs, and
for sufficiently spread out fractional matchings we almost losslessly round them to
integral matchings. This does not contradict the integrality gap of this relaxation
in general graphs, as all “odd set” constraints in the integral matching polytope
[Edm65] are approximately satisfied for spread out fractional matching xe ≤ ε. On
the other hand, to round fractional matchings in non-bipartite graphs, it is necessary
to incur some loss (with respect to ε) when rounding, even in offline settings.

The new algorithm, a straightforward adaptation of Algorithm I.2, is given by
Algorithm I.5. The following results are proven analogously to their counterparts
from Section I.4, and are therefore omitted here:

Observation I.6.3 (Corresponds to Observation I.4.3). Ft(v) ≥ s(ε)
4 and P̂ (et) ≤

P (et) ≤ ε
s2(ε) for every vertex v ∈ V and time t.
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Observation I.6.4 (Corresponds to Observation I.4.1). For any t, the random
variables Ft(v), P (et), P̂ (et) are determined by the current partial input e1, . . . , et
and the current matching Mt−1.

Lemma I.6.5 (Corresponds to Lemma I.4.2). For any edge et it holds that Pr[Xt <
P (et)] = xe · (1− s(ε)).

Lemma I.6.6 (Corresponds to Observation I.4.4). If et = (u, v) and
min{Ft(u), Ft(v)} ≥ s(ε)/3, then P̂ (et) = P (et).

The proof of Lemma I.6.6 (just as its counterpart Observation I.4.4) requires
P (et) ≤ ε

s2(ε) ≤ 1/4. This can be achieved by imposing:

C ≥ max
ε

(
4ε

√
ε · ln 1

ε

)
. (I.31)

However, as C is supposed to be a constant, we still need to check that the right hand
side of the above inequality is also a constant. By the statement of Theorem I.6.1,
we have that ε ≤ 0.99, and it is easy to check that the function ε 7→

(
ε√
ε·ln 1

ε

)
is

bounded in the interval (0, 0.99). Hence, the right hand side of (I.31) is a constant.
The analogue of Lemma I.4.5 is:

Lemma I.6.7 (Corresponds to Lemma I.4.5). Let et1 = (u1, v), . . . , etℓ = (uℓ, v) be
the edges incident to v with t1 < · · · < tℓ. Further, let S := {ui | ui ̸∈Mti} be those
neighbors ui that are unmatched by time ti when edge eti = (ui, v) arrives. If:∑

ui∈S

xeti
· (1− s(ε))
Fti(ui)

≤ 1− s(ε)
3 , (I.32)

then F (v) ≥ s(ε)/3.

For ease of notation let xi := xeti
be the fractional input of the edge eti = (ui, v),

which connects v to its neighbor ui. We will derive a martingale from the following
quantities:

St := {ui ∈ N(v) | ui ̸∈Mmin{t,ti}} and Yt−1 :=
∑
ui∈St

xi · (1− s(ε))
Fmin{t,ti}(ui)

.

Claim I.6.8 (Corresponds to Lemma I.4.6). Y0, . . . , Ym form a martingale w.r.t.
the random variables X1, . . . , Xm. Furthermore, the difference Yt − Yt−1 is given by
the following two cases:

• If et is added to Mt+1, which happens with probability P̂ (et), then:

Yt − Yt−1 = −
∑

ui∈St∩et

xi · (1− s(ε))
Ft(ui)

. (I.33)
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• If instead et is not added to Mt+1, which happens with probability 1− P̂ (et),
then:

Yt − Yt−1 = P̂ (et)
1− P̂ (et)

·
∑

ui∈St∩et

xi · (1− s(ε))
Ft(ui)

. (I.34)

To apply Freedman’s inequality, as in Section I.4, bounds on the step size and
on the variance of the martingale are required. They are given by the following two
lemmas:

Lemma I.6.9 (Corresponds to Lemma I.4.8). For all times t and realization of the
randomness, |Yt − Yt−1| ≤ A, where A := 8ε

s(ε) .

Proof. By using the expressions for the difference Yt − Yt−1 from Lemma I.6.7, we
obtain:

|Yt − Yt−1| ≤ max
{

P̂ (et)
1− P̂ (et)

, 1
}
·
∑

ui∈St∩et

xi(1− s(ε))
Ft(ui)

≤
∑

ui∈St∩et

ε

s(ε)/4 ≤
8ε
s(ε) .

For the second inequality, first notice that we already guarantee P̂ (et) ≤ P (et) ≤
1/4 for the proof of Lemma I.6.6, so in particular P̂ (et)

1−P̂ (et) ≤ 1. Also, we have
Ft(ui) ≥ s(ε)/4 (by Observation I.6.4) at any point of time in the algorithm. For
the third inequality we used the trivial fact that |St ∩ et| ≤ 2.

Lemma I.6.10 (Corresponds to Lemma I.4.9). Consider the martingale described
above. We have:

m∑
t=1

E[(Yt − Yt−1)2 | Xt−1, . . . X1] ≤ 128 ln
(

4
s(ε)

)
· ε

(s(ε))2 . (I.35)

Proof. Mimicking the proof of Lemma I.4.9: Assuming edge et arrives at time t, we
have:

E[(Yt − Yt−1)2 | Xt−1, . . . X1] ≤

2P̂ (et) ·
∑

ui∈St∩et

(
xi · (1− s(ε))

Ft(ui)

)2
+

2(1− P̂ (et))
∑

ui∈St∩et

·

(
P̂ (et) · xi · (1− s(ε))
Ft(ui)(1− P̂ (et))

)2

=

∑
ui∈St∩et

2P̂ (et) · x2
i · (1− s(ε))2

(Ft(ui))2

(
1 + P̂ (et)

1− P̂ (et)

)
≤

128 P̂ (et)
(s(ε))2 · x

2
i ,
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where we used Ft(ui) ≥ s(ε)/4, 1 + P̂ (et)
1−P̂ (et) ≤ 2 and |St ∩ et| ≤ 2.

We sum the above inequality over all t. An edge et is thereby summed over on
the right hand side only if et is incident to some vertex ui ∈ St. As St ⊆ S0 = N(v),
we have the following upper bound:

m∑
t=1

E[(Yt − Yt−1)2 | Xt−1, . . . X1] ≤
ℓ∑
i=1

x2
i ·

∑
et∈δ(ui)

128 P̂ (et)
(s(ε))2 . (I.36)

For any neighbor ui of v we have:

s(ε)/4 ≤ Fm(ui) =
∏

et∈δ(ui)

(1− P̂ (et)) ≤ exp

− ∑
et∈δ(ui)

P̂ (et)

 ,

which implies that: ∑
et∈δ(ui)

P̂ (et) ≤ ln
(

4
s(ε)

)
.

Hence:
ℓ∑
i=1

x2
i ·

∑
et∈δ(ui)

128 P̂ (et)
(s(ε))2 ≤

ℓ∑
i=1

x2
i ·128 ln

(
4
s(ε)

)
· 1
(s(ε))2 ≤ 128 ln

(
4
s(ε)

)
· ε

(s(ε))2 ,

because
∑ℓ
i=1 x

2
i =

∑
e:={v,ui} x

2
e ≤ ε ·

∑
e:={v,ui} xe ≤ ε.

We are finally ready to analyze our online rounding algorithm.

Proof of Theorem I.6.1. First, we remark that the proof of the upper bound is
straightforward, as we have:

Pr[et matched] = Pr[Xt < P̂ (et)] ≤ Pr[Xt < P (et)] = xe · (1− s(ε)) ≤ xe,

where the equality Pr[Xt < P (et)] = xe · (1− s(ε)) follows by Lemma I.6.5.
On the other hand, Pr[et matched] = Pr[Xt < P̂ (et)] can be expanded as follows:

Pr[et matched] = Pr[Xt < P (et)]−
Pr[Xt < P (et) | P̂ (et) ̸= P (et)] · Pr[P̂ (et) ̸= P (et)].

By Lemma I.6.5, we have that Pr[Xt < P (et)] = xe · (1 − s(ε)). Moreover, using
the definition of P (et) and the fact that Ft(u), Ft(v) ≥ s(ε)/4 (Observation I.6.3),
we have that, deterministically:

P (et) = xe · (1− s(ε)) ·
1

Ft(u) · Ft(v) ≤ xe ·
16
s2(ε) .
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Consequently, Pr[Xt < P (et) | P̂ (et) ̸= P (et)] ≤ xe · 16
s2(ε) . Finally, we leverage our

martingale to upper bound the probability of P̂ (et) ̸= P (et), as follows. Fix an
endpoint v ∈ et, and consider the martingale Y associated with Ft(v). First, we
note that Y0 :=

∑
ui∈St

xe · (1− s(ε)) ≤ 1− s(ε). By Lemmas I.6.6 and I.6.7, we
want to prove that Ym ≤ 1− s(ε)/3 is unlikely, and so it is sufficient to upper bound
Pr[|Y0−Ym| ≥ 2s(ε)/3]. By Freedman’s inequality, and taking s(ε) = C · 4

√
ε· 2
√(

ln 1
ε

)
(for some sufficiently large constant C), we obtain:

Pr[|Y0 − Ym| ≥ 2s(ε)/3] ≤

2 exp

− ( 2
3s(ε)

)2

2
(

128 ln
(

4
s(ε)

)
· ε

(s(ε))2

)
+ 8ε

s(ε) ·
( 2

3s(ε)
)
 ≤ 2ε5.

Consequently, by union bounding over both endpoints of et, we have that:

Pr[P̂ (et) ̸= P (et)] ≤ 4ε5.

Combining the above into our expanded form for Pr[et matched], we obtain the
desired inequality:

Pr[et matched] ≥ xe · (1− s(ε))− xe ·
16
s2(ε) · 4ε

5 ≥ xe · (1− 2s(ε)),

where the last inequality follows because it is equivalent to C3·ε3/4 (ln 1
ε

)3/2−64·ε5 ≥
0. This can be verified directly for C ≥ 40 and 0 < ε ≤ 0.99.

I.6.1 Application: Online Matching with Unknown ∆
In this section, we point out an immediate application of our generalized fractional
matching rounding algorithm (Theorem I.6.1 and Algorithm I.5). Here we consider
the online edge coloring problem, but where the maximum degree ∆ is initially
unknown. Again, using 2∆− 1 colors is easy by a greedy algorithm which always
colors an edge with the smallest available color. In contrast to the case of known ∆,
it is proven that a 1.606-competitive algorithm is the best we can hope for when
it comes to unknown ∆, even in the case of large ∆ = ω(logn) and vertex arrivals
[CPW19]. We approach this lower bound, and in so doing obtain the first online
algorithm beating the naive (2∆− 1)-edge-coloring algorithm for unknown ∆, under
general vertex arrivals.

Given our rounding scheme of Theorem I.6.1, our result for unknown ∆ follows
directly from known reductions introduced in [CPW19] (see also the end of [Waj20,
Chapter 6]). For completeness, we provide a sketch including pointers to the relevant
ingredients in [CPW19].

Theorem I.6.11. There exists an online algorithm which on n-vertex general graphs
with maximum degree ∆ only known to satisfy a lower bound ∆ ≥ ∆′ = ω(logn),
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with the graph revealed vertex-by-vertex, computes a (1.777 + o(1)) ·∆-edge-coloring
with high probability.

Proof (Sketch). [CPW19] study the following relaxation of edge coloring; in this
relaxation a fractional α∆-edge-coloring consists of α∆ many fractional matchings
such that each edge is matched to an extent of (at least) one when summed across
all fractional matchings. In their terminology, a graph is shown to be fractionally
k-edge-colorable if the following LP has a solution.∑

c∈[k]

xe,c = 1 ∀e ∈ E

∑
e∋v

xe,c ≤ 1 ∀v ∈ V, c ∈ [k]

xe,c ≥ 0 ∀e ∈ E, c ∈ [k]

For graphs with unknown degree, [CPW19] provide online fractional edge coloring
algorithms using e/(e− 1)∆ and 1.777∆ matchings under one-sided vertex arrivals
in bipartite graphs and arbitrary vertex arrivals in general graphs, respectively.
Both factional algorithms maintain collections of fractional matchings {xe,c}c with
bounded ℓ∞ norm, maxe xe,c = o(1), whenever ∆ = ω(1). [CPW19] further provide
(see their Algorithm 2) a rounding framework to round these; they show how to
convert online fractional α∆-edge-coloring algorithms with the above bounded ℓ∞
norm guarantee into (randomized) online (α + o(1))∆-edge-coloring algorithms
for graphs with unknown maximum degree ∆ satisfying ∆ ≥ ∆′ = ω(logn), with
∆′ known. (The above o(1) term is of the form poly(logn/∆′).) An important
ingredient for their framework is a (1 + o(1))-approximate rounding scheme for
online fractional matchings x⃗ with maxe xe = o(1). Such a rounding scheme for
fractional matchings under one-sided vertex arrivals in bipartite graphs was given
by [CW18] (see [Waj20, Chapter 5]). Our Theorem I.6.1 provides such a rounding
scheme under edge arrivals (and hence also under vertex arrivals) in general graphs.
Combining our new rounding scheme with the rounding framework of [CPW19] then
allows us to round their online fractional 1.777∆-edge-coloring algorithm and obtain
an online (1.777 + o(1))∆-edge-coloring algorithm under general vertex arrivals, as
claimed.
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